

Seguimiento y evaluación de espacios forestales: SERGISAT y aplicaciones LiDAR-PNOA

GEOFOREST-IUCA

Universidad de Zaragoza

Dra. M.T. Lamelas tlamelas@unizar.es

Instituto Universitario de Investigación en Ciencias Ambientales de Aragón Universidad Zaragoza

Departamento de Geografía y Ordenación del Territorio Universidad Zaragoza

SEMINARIO CARTOGRAFÍA DE LOS HABITATS ESPAÑOLES

Seguimiento y evaluación de espacios forestales: SERGISAT y aplicaciones LiDAR-PNOA

Geoforest-IUCA

Presentación: Líneas de trabajo

Presentación : Personal : Publicaciones : Líneas y proyectos de investigación : Enlaces : Equipamiento Resultados/Transferencia : Galería de Imágenes : Contacto Español

Personal

Juan de la Riva Fernández [ver CV] Investigador responsable. Profesor Titular e-mail: <u>delariva@unizar.es</u>. Tfno. (34) 876553925

Ma Teresa Echeverría Arnedo [verCV] Profesora Titular: e-mail: <u>mtecheve@unizar.es</u>, Tfno. (34) 876553929

Paloma Ibarra Benlloch [verCV] Profesora Titular: e-mail: pibarra@unizar.es, Tfno. (34) 876553911

Fernando Pérez-Cabello [verCV] Profesor Titular: e-mail: fcabello@unizar.es, Tfno. (34) 876553926

Alberto García Martín [verCV] Profesor Contratado Doctor: e-mail: <u>algarcia@unizar.es</u>, Tfno. (34) 976739867

Raquel Montorio Llovería [ver CV] Profesora Asociada: e-mail: montorio@unizar.es, Tfno. (34) 876553851

Teresa Lamelas Gracia [<u>verCV]</u> Profesora Contratada Doctora: e-mail: <u>tlamelas@unizar.es</u>, Tfno. (34) 976739866

Marcos Rodrigues Mimbrero [verCV] Profesor Asociado: e-mail: <u>rmarcos@unizar.es</u>, Tfno. (34) 876554058

Antonio Montealegre Gracia Profesor Asociado: e-mail: <u>monteale@unizar.es</u>, Tfno. (34) 876554058

Lidia Vlassova Becaria SENESCYT: e-mail: vlassova@unizar.es, Tfno. (34) 876554058

Olga Rosero Vlasova Becaria SENESCYT: e-mail: <u>oarosero@unizar.es</u>, Tfno. (34) 876554058

Daniel Borini Alves Becario CAPES Foundation (Gobierno de Brasil): e-mail: <u>dborini.unizar.es</u>, Tfno. (34) 876554058

Adrián Jiménez Ruano Becario FPU-MEC: e-mail: jimenez@unizar.es, Tfno. (34) 876554058

Darío Domingo Ruiz Becario FPU-MEC: e-mail: <u>ddomingo@unizar.es</u>, Tfno. (34) 876554058

Chabier de Jaime Lorén IES Valle del Jiloca: e-mail: <u>cdejaime@educa.aragon.es</u>, Tfno. (34) 978730137

Departamento de Geografía y Ordenación del Territorio **Universidad** Zaragoza

http://geoforest.unizar.es/

GEOFOREST-IUCA

ERTAlab -- Laboratorio de Espectro-Radiometría y Teledetección Ambiental de la Universidad de Zaragoza (Subprograma de proyectos de infraestructura científico-tecnológica cofinandados por FEDER-DGA, UNZA10-4E-488)

GEOFOREST-IUCA

Research areas in the 90s: Forest management / Erosion processes / Vegetation dynamic / Landscape dynamic-analysis / LU-LC digital classification

			Fire ocurrence	Spatial statistics / Point pattern analysis – GIS – Model.
			Fuel moisture content .	
		Fire risk —	Fuel mapping F	ield work – MSpect / SpectRad / SAR / LiDAR – GIS – Model.
		modeling	Human fire risk	Machine learning / GWR – GIS – Model.
	fires		Ecologic vulnerability	Map algebra / Inductive models – GIS – Model.
	Forest	Post-fire	Fire severity	Field work – MSpect / SpectRad / SAR / LiDAR
ds.	les	environmental dynamic	Vegetation recovery Field (Exp.) work – FDARE – MSpect / SpectRad / SAR/LiDAR – Model.
are	7	monitoring and modelling	Hydro-aeomorpho-	Soil disturbances Field (Exp.) work – FDARE / SpectRad
^{ssearct} nd tect	hy		edaphic processes	Erosion predic- tive models Field work – MSpect – GIS – Model.
int re ds a	ograp		Biomass estimation	
Prese Metho	es carte ling	Measuring of vegetation	Dasometry (forest measurements)	
	/ariable modell	parameters	Biophysical parameters of mediterranean veget	Field work – MSpect / HypSpect / Thermal – GIS tation
	ental v and	Geo-hazards and Geo-resources ma	pping	Field work – Ortoph / MSpect – GIS / 3D – Model.
	viornm	Landscape mapping and diagn	iosis	Field work – Ortoph – GIS / 3D – Model.
	ш	Species distributior	n pattern	

SEMINARIO CARTOGRAFÍA DE LOS HABITATS ESPAÑOLES

Seguimiento y evaluación de espacios forestales: SERGISAT y aplicaciones LiDAR-PNOA

SERGISAT

SEVERIDAD Y REGENERACION EN GRANDES INCENDIOS FORESTALES MEDIANTE TELEDETECCION Y S.I.G.

SERGISAT

DATOS BÁSICOS DEL PROYECTO

TITULO: SEVERIDAD Y REGENERACION EN GRANDES INCENDIOS FORESTALES MEDIANTE TELEDETECCION Y S.I.G. (SERGISAT)

Referencia: CGL2014-57013-C2

Organismo/Centro: Departamento de Geología, Geografía y Medio Ambiente. Universidad de Alcalá; Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza

Modalidad: B Individual / Coordinado: Coordinado

IP1/2 (SP1): Emilio Chuvieco Salinero / Inmaculada Aguado Suárez

IP1 (SP2): Juan de la Riva.

SERGISAT

MOTIVACIÓN, HIPÓTESIS Y ESTRATEGIA DEL PROYECTO

MOTIVACIÓN CIENTÍFICA:

Mejorar la estimación de los daños causados por grandes incendios forestales, analizando los procesos de regeneración post-fuego en función de los distintos escenarios de severidad.

HIPÓTESIS DE PARTIDA:

La severidad del fuego afecta a la regeneración de la zona afectada. Por tanto, podemos estimar la regeneración en una superficie quemada a partir de su severidad.

SERGISAT

SERGISAT

SELECCIÓN DE LAS ÁREAS DE ESTUDIO

- >500 ha
- Distintos ambientes geográficos

Incendio de "El Tiemblo" (Ávila)

SERGISAT

Cartografía de los niveles de severidad en grandes incendios.

Preprocesado de las imágenes Landsat-TM (Incendio de "Uncastillo") Se han procesado en total mas de 450 imágenes

SERGISAT

Cartografía de los niveles de severidad en grandes incendios.

Generado a partir de modelos de transferencia radiativa desde imágenes

Landsat-TM (Incendio de "Uncastillo")

Todos los incendios están disponibles en http://www.sergisat.es/

SERGISAT

Recurrencia del fuego en grandes incendios.

1.500 3.000 6.000

Incendio de Uncastillo

SERGISAT

Reconstruir la evolución post-incendio en grandes incendios Generado a partir de series temporales de imágenes con LandTrendr

Representación conceptual de LandsatLinkr: stack de imágenes y perfil espectral a lo largo de la serie multitemporal. Fuente: http://landsatlinkr.jdbcode.com/guide.html

- 1. Descompresión de las imágenes.
- 2. Reprojección.

Departamento de

Ordenación del Territorio

Universidad Zaragoza

Geografía y

- 3. Generación de composiciones de bandas.
- 4. Creación de máscaras de nubes.
- 5. Mejora de la geolocalización de las imágenes MSS.
- 6. Aplicaciones de corrección atmosférica (si es necesario).
- Calibración espectral de las imágenes MSS a las imágenes TM.
- 8. Calibración espectral de las imágenes OLI a las imágenes ETM+.
- 9. Creación de composiciones anuales de bandas libres de nubes.

.....

SERGISAT

Instituto Universitario de Investigación

en Ciencias Ambientales

Universidad Zaragoza

de Aragón

Proceso de segmentación en LandTrendr

Geolorest ERTAlab

- a) Eliminación de picos.
- b) Identificación de vértices en la serie multitemporal.
- c) Extracción de vértices extraños.
- d) Identificación de la mejor línea de tendencia entre los vértices.
- e) Simplificación de la serie multitemporal.
- f) Selección del mejor modelo utilizando estadísticas de ajuste simple.

SERGISAT

Reconstruir la evolución post-incendio en grandes incendios

Generado a partir de series temporales de imágenes con LandTrendr

Departamento de

Ordenación del Territorio Universidad Zaragoza

Inavectoria espectra

Geografía y

.....

SERGISAT

Factores ambientales para el modelado de la regeneración

SERGISAT

SERGISAT

SERGISAT

		Pinar_GB	Pinar_GM	Quejigos_R	Encina-carrasca_R	
_	L101P1S1		5 (PS-PP)			
P P	L101P1S2		5 (PS-PP)			C
0 B/	L101P1S3		_5_(PS-PP)2_(PP)1_(PS)3_ (PP)			re
EL	L101P2S1		<u>5_ (PS-PP)</u>			
-SU	L101P2S2		_5_ (PS-PP)3_ (PP)			
LIMA.	L101P2S3		_5_ (PS-PP)2_ (PP)1_ (PS)3_ (PP)	_1_	_1_	
Ū	L102P1S1		<u>5 (PS-PP)</u>			
E	L1O2P1S2		<u>5 (PS-PP)</u>			
ONAI	L102P1S3		_5_ (PS-PP)2_ (PP)1_ (PS)3_ (PP)		<u> </u>	K
D	L102P2S1					
2 Z	L102P2S2		<u>5 (PS-PP)</u>			
8	L102P2S3		_5_ (PS-PP)2_ (PP)1_ (PS)3_ (PP)		<u> </u>	
	L2O1P1S1		<u>7 (PN)</u>			
Ę	L2O1P1S2	9		11		
0 V	L2O1P1S3	_13119864_ 1210_	_13_ (PP-PN)11_ (PN)9_ (PP)4_ (PP)12_ (PN)10_ (PP-PN)7_ (PN)	_11127_	_131194 _12107_	
E	L2O1P2S1		<u>7 (PN)</u>			
-SL	L2O1P2S2	9	<u>_11_ (PN)</u>	_11_		
IMA	L2O1P2S3	_13119864_ 1210_	_13_ (PP-PN)11_ (PN)9_ (PP)4_ (PP)12_ (PN)10_ (PP-PN)7_ (PN)	_11127_	_131194 _127_	
U	L2O2P1S1		<u>7 (PN)</u>			
Ē	L2O2P1S2	9	<u>13 (PP-PN)</u>			
ONAI	L2O2P1S3	_13119864_ 1210_	_10_ (PP-PN)13_ (PP-PN)11_ (PN)9_ (PP)4_ (PP)12_ (PN)7_ (PN)	_127_	_131194 _12107_	
C	L2O2P2S1					
ND	L2O2P2S2	9		_11_		
00	L2O2P2S3	_13119864_ 1210_	_13_ (PP-PN)11_ (PN)9_ (PP)4_ (PP)12_ (PN)10_ (PP-PN)7_ (PN)	_11127_	_131194 _127_	

Combinaciones resultantes:

- Pinar germinador bueno
 – P. halep
 - Pinar germinador malo – P. sylvestris – P. nigra – P. pinaster
- Quercíneas
 rebrotadoras
 Quejigos –
 Q. ilex

SERGISAT

	U	Autores.			recha.	
Nº parcela:		Nº Fotos:			Hora inicio	:
Coordenadas:					Hora fin:	
Estrato	FCC %		Estrato	Especie		Abundancia dominancia por especie
5 Arbóreo > 5 m:]				
4 Arborescente 3	-5 m:					
3 Arbustivo 1-3 m	ו:					
2 Subarbustivo <:	1m:					
1 Herbáceo:			15			
Pedregosidad:						
Madala da a	am huatik la					
Prometheus:	JIIDUSUDIE	1				
Rothermel:		1				
		1				
Prof. Horizonte 0:]	C			
Prof. horizonte A:		-				
Prof. horizonte A: Nº muestras suelo]				
Prof. horizonte A: Nº muestras suelo	D:					
Prof. horizonte A: Nº muestras suelo Datos go	o:	arcela		Estado general del a	arbolado/vv	egetación
Prof. horizonte A: Nº muestras suelo Datos ge Tipo de erosión	enerales de la p Intensidad: Alta (A), Media(M), Baja(B)	>arcela % sup. en 1/4 de parcela (<1;		Estado general del a Daños (Viento, hongos, perforadores, defoliadores, muérdago)	arbolado/ve Nivel (0: Sin daños, 1: <25% ples, 2: 25-50% p., 3: 50- 75% p., 4:>75% p.	egetación Especies afectadas
Prof. horizonte A: Nº muestras suelo Datos ge Tipo de erosión Rills	enerales de la p Intensidad: Alta (A), Media(M), Baja(B)	% sup. en 1/4 de parcela (<1;		Estado general del a Daños (Viento, hongos, perforadores, defoliadores, muérdago)	arbolado/ve Nivel (0: Sin daños, 1: <25% pies, 2: 25-50% p., 3: 50- 75% p., 4:>75% p.)	egetación Especies afectadas
Prof. horizonte A: Nº muestras suelo Datos ge Tipo de erosión Rills Laminar	enerales de la p Intensidad: Alta (A), Media(M), Baja(B)	% sup. en 1/4 de parcela (<1;		Estado general del a Daños (Viento, hongos, perforadores, defoliadores, muérdago)	arbolado/ve Nivel (0: Sin daños, 1: <25% ples, 2: 25-50% p., 3: 50- 75% p., 4:>75% p.)	egetación Especies afectadas
Prof. horizonte A: Nº muestras suelo Datos ge Tipo de erosión Rills Laminar Enlosado	enerales de la p Intensidad: Alta (A), Media(M), Baja(B)	% sup. en 1/4 de parcela (<1;		Estado general del a Daños (Viento, hongos, perforadores, defoliadores, muérdago)	arbolado/ve Nivel (0: Sin daños, 1: <25% ples, 2: 25-50% p., 3: 50- 75% p., 4:>75% p.)	egetación Especies afectadas
Prof. horizonte A: Nº muestras suelo Datos go Tipo de erosión Rills Laminar Enlosado Pedestales	enerales de la p Intensidad: Alta (A), Media(M), Baja(B)	marcela % sup. en 1/4 de parcela (<1;		Estado general del a Daños (Viento, hongos, perforadores, defoliadores, muérdago)	arbolado/w Nivel (0: Sin daños, 1: <25% pies, 2: 25-50% p., 3: 50- 75% p., 4:>75% p.)	egetación Especies afectadas

Diagnóstico de regeneración:

- biodiversidad
- estructura vertical de la vegetación y biomasa contenida
- > grado de cobertura

Ince	ndio:			Autores:					Nº parce	la:	
				D	atos de i	inver	ntario				
	Especie/ Forma	ØM (cm)	Øm (cm)	H (m)	H 1ª rama v. (m)		Especie/ Forma	ØM (cm)	Øm (cm)	H (m)	H 1ª rama v. (m)
1						36					
2						37					
3						38					
4						39					
5						40					
6						41					
7						42					
8						43					
9						44					
10						45					
11						10					

SEMINARIO CARTOGRAFÍA DE LOS HABITATS ESPAÑOLES

Seguimiento y evaluación de espacios forestales: SERGISAT y aplicaciones LiDAR-PNOA

LIDAR-PNOA

Aplicaciones forestales del laser escáner aeroportado (ALS)

.....

LIDAR-PNOA

Point cloud classification

LIDAR-PNOA

Point cloud classification

Geoforest ERTAlab

Departamento de Geografía y Ordenación del Territorio Universidad Zaragoza

Two sample zones, T1 (2 km x 2 km) and T2 (4 km x 2 km). Topography characterized by a hilly relief, elevation ranging from 400 to 750 m.a.s.l. Forest is dominated by Aleppo pine (*Pinus halepensis* Mill.) and evergreen shrub vegetation.

2º) 50 Plots Ø 3 m 424 LiDAR returns: 185 in T1 y 239 in T2

4°) Field work to help manual classification of returns

GPS-GNSS centimetric precision

LIDAR-PNOA

Point cloud classification

LIDAR-PNOA

Point cloud classification

		(%)	Error	(%)	Карра
Fil	tering methods/tools	Type I	Type II	Overall accuracy	index (k)
	-s 1 -t 0,3	12,7	20,8	83,3	0,67
MCC	-s 1 -t 0,4	8,0	34,0	79,0	0,58
IVICC	-s 1 -t 0,5	3,3	35,8	80,4	0,61
	-s 1,5 -t 0,3	16,5	21,2	81,1	0,62
	Defecto	24,1	11,8	82,1	0,64
	Fina	20,8	13,7	82,8	0,66
ELISION	w2 g-2,5 1	60,8	7,1	66,0	0,32
FUSION	w2 g-2,5 2	61,3	2,8	67,9	0,36
	ALDpat Zhang y Whitman (2005)	35,8	31,6	66,3	0,33
ALDpat	ALDpat Zhang et al. (2003)	39,6	14,6	72,9	0,46
	ALDpat Vosselman (2000)	75,0	0,0	62,5	0,25
	Inverse distance 1 st order	38,2	7,5	77,1	0,54
	Inverse distance 2 nd order	40,6	8,0	75,7	0,51
	Inverse distance 3 rd order	38,2	10,8	75,5	0,51
PCAL	Linear	67,5	4,7	63,9	0,28
DCAL	Natural neighbour	64,2	4,7	65,6	0,31
	Nearest neighbour	33,0	19,3	73,8	0,48
	Polinomial regresion 2 nd order	56,1	3,8	70,0	0,40
	Polinomial regresion 3 rd order	55,7	4,2	70,0	0,40

- Best overall accuracy: MCC -s 1 -t 0.3 (83,3%),

- Worst overall accuracy : Vosselman (2000) (62,5%).

- Type I errors from 3,3% (MCC -s 1 t 0,5) to 75% (ALDpat Vosselman (2000)).

-Type II errors from 0% (ALDpat Vosselman (2000)) to 35,8% (MCC -s 1 -t 0,5).

Instituto Universitario de Investigación

en Ciencias Ambientales

de Aragón

Point cloud classification

Sprouted scrub, stumps, and woody debris were the more problematic cover type in filtering, as well as terrain slopes higher than 15°. However, less firm conclusions can be drawn from point density and scan angle variables, because morphological methods are less sensitive to these factors.

Departamento de

Ordenación del Territorio

Universidad Zaragoza

Geografía y

.....

....

ÎÎ

154

■Total error (%) ■Type II error (%) =Type I error (%)

回经税

■ Total error (%) ■ Type II error (%) ■ Type I error (%)

%) ■ Total error (%) ■ Type II error (%) ■ Type I error (%)

■ Total error (%) ■ Type II error (%) ■ Type I error (%)

■ Total error (%) ■ Type II error (%) ■ Type I error (%)

LIDAR-PNOA Point cloud classification and interpolation routine assessment

				F	iltering n	nethod			F	iltering r	nethod	
		DEM pixel (m)	MCC- LiDAR v.2.1	LAS tools	BCAL LiDAR v.1.5.1	ALDPAT v.1.0	FUSION v. 3.30	MCC- LiDAR v.2.1	LAS tools	BCAL LiDAR v.1.5.1	ALDPAT v.1.0	FUSION v. 3.30
	TD	1	2.68	3.69	8.04	2.99	17.69	42.80	44.02	42.10	44.18	44.26
	IR	2	5.48	6.30	10.88	6.05	20.30	47.10	47.54	42.94	46.71	47.05
σ		1	2.95	4.02	8.53	2.99	19.41	40.40	41.58	39.09	43.93	40.85
tho	NN	2	5.52	7.47	10.37	6.52	19.73	46.00	44.79	43.95	48.21	46.34
me		1	2.99	3.75	8.05	2.83	18.62	45.40	44.30	40.44	44.83	40.67
L	ANUDEM	2	5.42	5.74	10.30	5.75	17.38	42.70	47.25	42.84	45.86	48.58
atic		1	3.64	4.21	16.02	3.06	28.93	37.10	37.15	37.50	45.70	42.07
loc	IDW	2	5.74	6.05	17.18	5.87	28.38	40.60	50.44	43.09	47.35	49.90
ter	OK	1	3.91	4.02	7.55	3.39	16.20	38.10	44.94	44.85	41.68	43.51
Ľ	UK	2	5.25	5.86	9.34	6.00	16.61	44.10	50.29	45.34	46.01	48.79
	DD	1	6.64	7.36	20.94	7.55	39.15	50.90	53.79	44.98	52.56	59.77
	PK	2	17.67	17.70	28.20	19.91	37.25	63.00	63.77	62.67	59.31	57.28

DEM validation

RMSE (cm) for combinations of filtering algorithm and interpolation method for two spatial resolutions (1 and 2 m cell size) using the validation datasets.

Fig.7 Ranking of the best DEMs validated.

LIDAR-PNOA

de Aragón

LIDAR-PNOA

Forest fire severity assessment

Pine forest fire severity mapping using a logistic regression methodology

coforest ERTAlab

Observed and predicted fire severity cross-tabulation for both training and validation datasets, Kappa index (K) and ROC curves.

Table 5. Spearman's coefficient (Rho) and Kruskal–Wallis (K.W.) chi-square values for selected variables with a statistical significance level *p*-value ≤ 0.01 .

Departamento de

Ordenación del Territorio Universidad Zaragoza

Geografía y

......

ALS Variables	Rho	K.W. Chi ²	ALS Variables	Rho	K.W. Chi ²
Elev_kurtosis	0.788	54.169	Percentage first returns above 3.00	-0.690	39.927
Elev_P25	-0.767	64.776	Ratio_All_returns_3m	-0.690	39.797
Elev_P30	-0.764	63.550	Elev_mean	-0.684	34.138
%_All_returns_1m	-0.757	56.715	Elev_P60	-0.674	42.868
Elev_P20	-0.754	68.566	%_First_returns_mean	-0.673	62.590
Elev_P40	-0.752	63.802	Canopy relief ratio	- <mark>0.671</mark>	57.964
Elev_skewness	0.747	64.611	Ratio_All_returns_mean	-0.661	64.776
%_First_returns_1m	-0.744	52.460	Elev_P70	-0.653	33.988
Ratio_All_returns_1m	-0.742	51.915	Elev_P75	-0.649	29.533
%_All_returns_2m	-0.736	51.570	Elev_IQ	-0.637	29.544
%_Class_Unassigned	-0.729	54.131	Elev_P80	-0.631	24.535
%_Class_Ground	0.729	54.131	%_All_returns_mean	-0.630	67.337
Elev P50	-0.728	57.146	%_num_of_ret 1	0.623	30.906
%_First_returns_2m	-0.723	47.116	%_num_of_ret 2	-0.622	31.020
Ratio_All_returns_2m	-0.722	46.904	Elev_AAD	-0.614	16.834
Percentage all returns above 3.00	-0.702	43.290	Elev_P90	-0.608	16.450

Table 8. β coefficients, Walt test values, degrees of freedom (*d.f.*) and their significance $p \le 0.05$ computed for the variables of the selected regression model.

Independent Variables	β	Standard Error	Wald Test	d.f.	Signif.
Canopy relief ratio	-12.236	3.451	12.571	1	0.000
Percentage all returns above 1.00	-0.055	0.013	17.620	1	0.000
Constant	6.925	1.566	19.546	1	0.000

LIDAR-PNOA

Fuel types mapping using LiDAR, SAR and high resolution multispectral images

LIDAR-PNOA

LIDAR-PNOA

C-IRJ

Outlier and noise removal

Filtering using the multiscale curvature classification algorithm (Evans and Hudak, 2007), implemented in MCC 2.1 command-line tool

Digital Elevation Model (DEM) 1 m resolution applying "Point-TIN-Raster" interpolation method to ground returns

The ALS60 sensor was operating in 1.064 μm wavelength, 0.22 mrad beam divergence and ±29 scan angle degrees. Normalized return heights and ALS-derived metrics with "Grid/Metrics" and "CSV2Grid" commands implemented in FUSION LDV 3.30

A total of 29 ALS-derived metrics were obtained: height percentiles, several metrics which describe the laser returns height distribution, and percentages of returns above a height threshold. Height bin approach following Mutlu et al. (2008) using *"DensityMetrics"* command. Series of grids where each grid contains density information for a specific range of heights above ground.

A total of 8 ALS height bins were obtained: 0-0.5 m (HB1), 0.5-1 m (HB2), 1-2 m (HB3), 2-4 m (HB4), >4 m (HB5), 3-3.5 m (HB6), 3.5-4 m (HB7) y 1-4 m (HB8).

LIDAR-PNOA

Launch Date Launch Vehicle Launch Location **Orbital Altitude** Orbital Inclination Speed Equator Crossing Time **Orbit Time Revisit** Time Swath Width **Metric Accuracy** Digitization

May 3, 2002 Ariane 4 Guiana Space Centre, Kourou, French Guyana 822 kilometers 98.7°, sun-synchronous 7.4 Km/second (26,640 Km/hour) 10:30 AM (descending node)

101.4 minutes

2-3 days, depending on latitude 60 Km x 60 Km to 80 Km at nadir < 50m horizontal position accuracy (CE90%) 8 bits

Platform SPOT-5 satellite **Acquisition date** 29-08-2010

Band 1: Green (0.50 – 0.59 μm) Band 2: Red (0.61 – 0.68 μm) Band 3: Near infrared (0.78 – 0.89 μm) Band 4: Short wave infrared (1.58 – 1.75 μm)

Additionally, NDVI (Normalized Difference Vegetation Index) and NDII (Normalized Difference Infrared Index) were calculated.

LIDAR-PNOA

Instituto Universitario de Investigación

en Ciencias Ambientales

CA de Aragón Universidad Zaragoza

Training and validation samples

Fuel type	Field plots	Pixels for training	Pixels for validation	TOTAL
1	14	321	36	357
2	24	445	50	495
3	15	198	20	218
4	9	175	18	193
5	23	507	56	563
6	9	181	18	199
7	14	260	29	289
Bare ground		352	40	392
TOTAL	108	2439	267	2706

•	•	•	•	•	•	•	•	•	•		Ту	ре	e 3	
•	٠	٠	٠	•	•	٠	٠	•	•	٠	٠	٠	٠	•
٠		•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	٠	•	•	•	•	•	•	•
٠	•	•	٠	•	٠	٠	٠	•	•	٠	•	•	•	•
٠	•	•	•	•		٠	-	•		٠	٠	•	•	•
٠	•	•	•	•	•	•	•			•	٠	•	•	•
		•	•	•	•	•	•			•	•	•	•	•
•		•	•	•			-	•				•		•
	•	•	•	•	•	•	•	•	•	٠	٠	•	•	

Considering the centroids of the plots, a total of **2314 pixels** were selected at which the **fuel** was allocated manually. **392 pixels** corresponding to **bare ground** were included in the sample.

10% of the total sample was randomly selected for validation and 90% was used in the training phase.

LIDAR-PNOA

Instituto Universitario de Investigación

en Ciencias Ambientales

CA de Aragón Universidad Zaragoza

Training and validation samples

Fuel type	Field plots	Pixels for training	Pixels for validation	TOTAL
1	14	321	36	357
2	24	445	50	495
3	15	198	20	218
4	9	175	18	193
5	23	507	56	563
6	9	181	18	199
7	14	260	29	289
Bare ground		352	40	392
TOTAL	108	2439	267	2706

•	•	•	•	•	•	•	•	•	•		Ту	ре	e 3	
•	٠	٠	٠	•	•	٠	٠	•	•	٠	٠	٠	٠	•
٠		•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	٠	•	•	•	•	•	•	•
٠	•	•	٠	•	٠	٠	٠	•	•	٠	•	•	•	•
٠	•	•	•	•		٠	-	•		٠	٠	•	•	•
٠	•	•	•	•	•	•	•			•	٠	•	•	•
		•	•	•	•	•	•			•	•	•	•	•
•		•	•	•			-	•				•		•
•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	

Considering the centroids of the plots, a total of **2314 pixels** were selected at which the **fuel** was allocated manually. **392 pixels** corresponding to **bare ground** were included in the sample.

10% of the total sample was randomly selected for validation and 90% was used in the training phase.

LIDAR-PNOA

Source of information	Bands	<i>Chi</i> -square
SPOT-5 image	NDVI	2000.8
	HB 1	1993.1
ALS point clouds	Elev. Mean (EM)	1993.0
ALS point clouds	75 th percentile (P ₇₅)	1974.9
	Variance (V)	1949.2
	Band 4	1948.2
SPOT-5 image	Band 2	1925.2
	Band 1	1854.4
	HB 5	1731.9
ALS point clouds	HB 8	1595.1
ALS point ciouus	HB 4	1570.9
	HB 7	1363.8
SPOT-5 image	POT-5 image Band 3	
	HB 6	1317.7
ALS point clouds	Percentage of first returns above mean height (%Ret)	1316.4
	Terrain slope model	812.0
	DEM	718.2

Multiband	Success rate (%)	Kappa coefficient (k)
SPOT-5 bands	59.2	0.5
PCA components 1 to 9 derived from (SPOT-5 bands + NDVI + HB1,4,5,6,7,8 + ME, P ₇₅ , V, %Ret) + DEM + Terrain slope model		0.7
SPOT-5 bands+ NDVI + HB 1,4,5,6,7,8 + EM, P ₇₅ , V, %Ret	72.7	0.7
SPOT-5 bands+ HB 1,4,5,6,7,8 + EM, P ₇₅ , V, %Ret + DEM + Terrain slope model		0.7
MNF components 1 to 8 derived from (SPOT-5 bands+ HB 1,4,5,6,7,8 + EM, P ₇₅ , V, %Ret) + NDVI + DEM + Terrain slope model	76.8	0.7

LIDAR-PNOA

MNF components derived from SPOT-5 bands; ALS height bins 1,4,5,6,7,8; Elev. Mean; 75_{th} percentile; Elev. Variance; percentage of first returns above mean height.

Terrain slope model

Component	Eigenvalues	% of total variance	Cumulative
CP1	70,083	53,262	53,262
CP2	25,163	19,123	72,386
CP3	7,408	5,630	78,015
CP4	6,318	4,802	82,817
CP5	4,351	3,306	86,124
CP6	3,696526	2,809	88,933
CP7	3,508181	2,666	91,599
CP8	2,570352	1,953	93,553
CP9	1,964258	1,493	95,046
CP10	1,459451	1,109	96,155
CP11	1,425	1,083	97,238
CP12	1,306632	0,993	98,231
CP13	1,182918	0,899	99,130
CP14	1,144812	0,870	100,000
	TOTAL	100,000	

LIDAR-PNOA

LIDAR-PNOA

Structural variables estimation in Aleppo pine forest

A. L. Montealegre^{1,2*}, M. T. Lamelas^{2,3}, J. de la Riva^{1,2}, A. García-Martín^{2,3} and F. Escribano³

LIDAR-PNOA

SEMINARIO CARTOGRAFÍA DE LOS HABITATS ESPAÑOLES

Seguimiento y evaluación de espacios forestales: SERGISAT y aplicaciones LiDAR-PNOA

Muchas gracias ¿?

