

08 April 2016 Issue 452 <u>Subscribe</u> to free weekly News Alert

Source: Fu, Y., Shao, L., Liu, H., Li, H., Zhao, Z., Ye, P., Chen, P. & Liu, H. (2015). Unexpected decrease in yield and antioxidants in vegetable at very high CO₂ levels. *Environmental Chemistry Letters*, 13(4): 473–479. DOI: 10.1007/s10311.015. 0522.6

Contact: LH64@<u>buaa.edu.cn</u>

Read more about: Agriculture, Air pollution, Climate change and energy

The contents and views included in Science for Environment Policy are based on independent, peer-reviewed research and do not necessarily reflect the position of the European Commission.

To cite this article/service: <u>"Science</u> for Environment Policy": European Commission DG Environment News Alert Service, edited by SCU, The University of the West of England, Bristol.

1.http://www.esrl.noaa.gov/gmd /ccgg/trends/weekly.html

2. Kimball, B. and Idso, S. (1983). Increasing atmospheric CO₂: effects on crop yield, water use and climate. *Agricultural Water Management* 7(1–3): 55–72.

Science for Environment Policy

Very high CO₂ levels decrease yield and antioxidant content of some green vegetables

Increases in the amount of CO₂ in the atmosphere can be beneficial to crops, by providing a source of carbon for growth. However, very high levels of CO₂ have the reverse effect, decreasing the yield and quality of vegetable crops, a new study has shown. The researchers say atmospheric CO₂ concentration should be kept below 5 000 ppm to enhance the yield of leafy vegetables such as cabbage and lettuce.

The concentration of carbon dioxide in the atmosphere has reached 400 parts per million (ppm) for the first time in recorded history¹. As well as driving <u>climate change</u>, elevated levels of CO_2 have important effects on <u>agriculture</u> — although these may not necessarily be negative.

During photosynthesis, plants take up CO_2 from the atmosphere, which provides a source of energy and carbon (needed to synthesise carbohydrates). This means a rise in atmospheric CO_2 concentration can increase growth rate and, therefore, yield of crops. A number of studies have shown beneficial effects of CO_2 on crop growth; a review of over 400 observations showed CO_2 enrichment increased yield by an average of $36\%^2$.

However, almost all studies have studied effects up to a concentration of 1 200 micromoles per mole (μ mol/mol). This is because concentrations above this level are not expected to be reached on Earth for many decades. Yet, there are some situations in which crops may be exposed to such concentrations, such as in volcanic areas or closed greenhouses.

This study looked at the effect of CO_2 at levels ranging from 400 ppm (current concentration — for gases ppm is the same as µmol/mol) to 5 000 µmol/mol, on the yield of two typical leafy vegetables: lettuce (*Lactuca sativa*) and Chinese cabbage (*Brassica chinensis*). The researchers also measured changes to the concentration of antioxidants in the vegetables, molecules which may protect cells from damage and which some studies have linked to the prevention of disease. Antioxidant content can be used as an indicator of crop quality, but findings on how CO_2 affects antioxidant content have been contradictory.

To shed light on this, the researchers subjected the plants to five different CO_2 concentrations: 400, 800, 2 000, 3 000 and 5 000 µmol/mol, in confined chambers. At each concentration, they measured yield, concentrations of specific antioxidants (phenols, flavonoids, glutathione and vitamin C) and total antioxidant activity.

CO₂ concentrations between 1 000 and 3 000 µmol/mol increased both yield and antioxidant content, compared to ground level CO₂ (400 µmol/mol). This was expected by the researchers, as it is in line with the findings of previous studies. More surprisingly, they found that concentrations between 3 000 to 5 000 µmol/mol decreased both yield and antioxidant content, suggesting that very high atmospheric CO₂ levels may impede the growth and quality of plants.

Continued on next page.

Environment

Science for Environment Policy

Very high CO₂ levels decrease yield and antioxidant content of some green vegetables (continued)

08 April 2016 Issue 452 <u>Subscribe</u> to free weekly News Alert

Source: Fu, Y., Shao, L., Liu, H. et al. (2015). Unexpected decrease in yield and antioxidants in vegetable at very high CO₂ levels. *Environmental Chemistry Letters*, 13(4): 473–479. DOI: 10.1007/s10311.015. 0522.6

Contact: LH64@buaa.edu.cn

Read more about: Agriculture, Air pollution, Climate

change and energy

The contents and views included in Science for Environment Policy are based on independent,

peer-reviewed research and do not necessarily reflect the position of the European Commission.

To cite this article/service: <u>"Science</u> for Environment Policy": European Commission DG Environment News Alert Service, edited by SCU, The University of the West of England, Bristol. The optimal CO₂ concentration for yield of cabbage was 2 000 µmol/mol, while for lettuce it was between 2 000 and 3 000 µmol/mol. The optimal level for antioxidant content was between 1 000 and 3 000 µmol/mol. To enhance the yield and quality of these crops, the authors suggest atmospheric CO₂ concentration should be maintained at least below 5 000 µmol/mol. Ideally, it should not exceed 3 000 µmol/mol.

The finding that agricultural production could be depleted at high atmospheric CO_2 levels has important implications for future food security. However, further systematic studies with a larger number of plants — including other types of crops — are needed before policy conclusions can be made.

Environment