ESTRUCTURA Y FENOLOGÍA DE LA COMUNIDAD DE AVES LIMÍCOLAS DEL SALOBRAR DE CAMPOS (ISLA DE MALLORCA) DURANTE LOS PASOS MIGRATORIOS Y LA INVERNADA

MATIES REBASSA*

RESUMEN

Se analiza, en base a los resultados obtenidos en 27 censos efectuados entre septiembre y mayo, la composición de la comunidad de limícolas del Salobrar de Campos. La abundancia de aves resultó ser notablemente superior entre los meses de octubre y enero, mientras que una mayor sucesión de especies tuvo lugar en septiembre. La diversidad específica, no obstante, fue máxima a finales de invierno (febrero-marzo), como consecuencia de una situación de vacío motivada por la ausencia de especies altamente dominantes, las cuales, por otra parte, condicionaron claramente la estructura de la comunidad en los demás meses del estudio. Por familias, Scolopacidae resultó ser la más diversa, mientras que Charadriidae y Recurvirostridae confirieron una mayor estabilidad al área. Especies de estas dos últimas familias fueron las dominantes en la práctica totalidad de meses censados.

Palabras clave: aves limícolas, comunidad, estructura, fenología, invernada, Islas Baleares, Mediterráneo, migración.

SUMMARY

Through 27 census done between the months of September and May, waders community at the Salobrar de Campos was studied. Bird's abundance was notably higher between October and January, whereas a higher species succession took place in September. Species diversity, nevertheless, was maximum at the end of winter (February-March), as a consequence of an emptiness situation motivated by the lack of strongly dominant species, which, on the other side, clearly affected community structure on the other months. Scolopacidae was the most diverse family, whereas Charadriidae and Recurvirostridae gave stability to the area. Species of these last two families were dominants in practically all the studied months.

Key words: Balearic Islands, community, Mediterranean Sea, migration, phenology, structure, waders, wintering.

Recibido: 01/02/01.
Aceptado: 24/04/01.
INTRODUCCIÓN

Así, y a pesar de que dichas zonas húmedas reciben cada año un creciente número de ornitólogos, tanto locales como foráneos, y de que los anuarios ornitológicos regionales intentan reflejar, con mayor o menor éxito, lo acarreado en tales zonas húmedas, apenas existen hasta la fecha estudios que aborden seriamente la fenología migratoria del mencionado grupo de aves. Las pocas publicaciones aparecidas, por contra, se deben únicamente a los recuentos puntuales acometidos en época invernal, dentro de un contexto nacional (ALBERTO & PURROY 1981; ALBERTO & VELASCO 1988; ARAGÓ & GARCÍA-RUA 1974) o regional (HEREBREDO et al. 1998 y 1999; GOB 1990 y 1991; LÓPEZ-JURADO & ESCANDELL 1993; MUÑOZ & CATCHOT 1995; MUÑOZ & ESCANDELL 1994; RAMIS et al. 1997; REBASSA et al. 1996; RIBA et al. 2000; WIJK et al. 1992); a obras de carácter general (DÍAZ et al. 1996; BARBOSA 1997a); o a estimaciones de las poblaciones reproductoras de algunas especies nidificantes, como la cigüeñuela común, Himantopus himantopus (GARCÍAS 1992), o el charlo de patinegro, Charadrius alexandrinus (GARCÍAS 1996).

Con el presente trabajo se pretende contribuir a llenar este vacío, mediante el análisis de la presencia de aves limícolas en el Salobrar de Campos (39°19’N, 03°25’E) durante los meses de septiembre a mayo, periodo que cubre la totalidad de la invernada de las especies presentes, así como gran parte de las migraciones pre y postnupciales de la mayoríá de especies.

ÁREA DE ESTUDIO

El Salobrar de Campos es una marisma litoral salobre, de carácter permanente, situada en el extremo más meridional de la isla de Mallorca. De sus más de 200 hectáreas, un porcentaje muy elevado (131 ha.) se halla transformado en salinas industriales (AMENGUAL 1991). Debido a la actual explotación de las mismas, y a la elevada salinidad del agua, la vegetación presente se reduce a diferentes halófitos (géneros Arthrocnemum, Salicornia, Suaeda y Juncus, principalmente) que se encuentran recubierto, con coberturas dispersas, los muros de separación de las diferentes cubetas.

Los estranques más alejados del mar, no explotados por la compañía salinera, presentan un aspecto más natural, y en ellos pueden encontrarse, además de las especies arriba mencionadas, bosquetes de Tamarix sp. y, en alguno de ellos, cinturones de Phragmites australis, de poca extensión.

El área es, sin lugar a dudas, el mejor lugar para la observación de aves limícolas en las Baleares, y forma parte, junto a las dunas que la separan del mar, de la ZEPA «Lagunas de Salobrar de Campos-Playa d’es Trenc» (DE JUANA 1990), de importancia internacional para la conservación de algunas especies de aves acuáticas, así como de importancia nacional para limícolas (BARBOSA 1997b).

MATERIAL Y MÉTODO

Entre los años 1991 y 1997 se efectuaron 27 censos de las aves presentes en el área de estudio, distribuidos por meses de la siguiente manera: septiembre (4), octubre (2), noviembre (2), diciembre (4), enero (5), febrero (2), marzo (3), abril (3), y mayo (2).

Todos los recuentos fueron realizados por la mañana, entre aproximadamente las 07:00 y las 10:00 horas (horario solar), recorriéndose la zona a pie y utilizándose para la identificación de las aves prismáticos y un telescopio terrestre. La mayoría de los censos fueron llevados a cabo por el autor en solitario, salvo los correspondientes al mes de enero en los que participó además un número variable de personas. En todos los recuentos se recorrió un mismo itinerario, que fue probado con
TABLA 1.
VALORES MEDIOS MENSUALES DE LOS DIFERENTES PARÁMETROS DESCRIPTIVOS DE LA COMUNIDAD.
[MONTHLY AVERAGES OF DIFFERENT COMMUNITY'S PARAMETERS]

<table>
<thead>
<tr>
<th></th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>626</td>
<td>1.175</td>
<td>1.126</td>
<td>1.713</td>
<td>1.284</td>
<td>485</td>
<td>773</td>
<td>625</td>
<td>663</td>
</tr>
<tr>
<td>R</td>
<td>16,25</td>
<td>15,5</td>
<td>13,5</td>
<td>14,5</td>
<td>17</td>
<td>15</td>
<td>14,67</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Do</td>
<td>0,46</td>
<td>0,42</td>
<td>0,40</td>
<td>0,41</td>
<td>0,40</td>
<td>0,32</td>
<td>0,31</td>
<td>0,34</td>
<td>0,53</td>
</tr>
<tr>
<td>De</td>
<td>0,64</td>
<td>0,65</td>
<td>0,72</td>
<td>0,64</td>
<td>0,59</td>
<td>0,51</td>
<td>0,55</td>
<td>0,64</td>
<td>0,75</td>
</tr>
<tr>
<td>N</td>
<td>2,47</td>
<td>2,33</td>
<td>2,21</td>
<td>2,29</td>
<td>2,37</td>
<td>2,60</td>
<td>2,61</td>
<td>2,50</td>
<td>1,98</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>19</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>17</td>
</tr>
</tbody>
</table>

* A: abundancia; R: riqueza; Do: dominancia de May; De: dominancia de McNaughton; N: número de especies.

Anterioridad mediante la realización de cuatro censos previos (en 1990), en los cuales el autor se familiarizó con el área y con los problemas de control de cada una de las especies objeto de estudio.

El itinerario escogido cubre gran parte de la zona húmeda (aproximadamente un 80% de su totalidad), y en ella se hallan incluidas las áreas que presentan unas mayores densidad y diversidad de aves. Quedan al margen del territorio cubierto, no obstante, las pequeñas áreas encharcadas donde presencia de plantas helófitas (Phragmites australis) y bosques de ribera (Tamarix sp.) es mayor, zonas que resultan muy querenciosas para unas pocas especies de limícolas, de las cuales la agachadora común (Gallinago gallinago) sería la más relevante (P. GARCÍA com. pers.; obs. pers.).

Para cada censo efectuado se hallaron los valores de riqueza específica (número de especies detectadas), abundancia (número total de ejemplares contados), índices de dominancia de MAY (1975) y de McNAUGHTON (1968), e índice de diversidad específica de SHANNON-WEAVER (1963). Los resultados fueron posteriormente agrupados por meses, para la realización de un análisis más completo del espectro fenológico abarcado.

RESULTADOS Y DISCUSIÓN

Los valores obtenidos en cada censo aparecen (agrupados siguiendo un orden mensual) en el Apéndice I. En total fueron censadas 26.871 aves, pertenecientes a 31 especies diferentes.

Los táxones dominantes resultaron ser la avefría europea (Vanellus vanellus), con un 23,1% del total; el chortitejo patinegro, con un 20,4%; y el correlimos menudo (Calidris minuta), con un 16,2%.

El índice de dominancia de May varió entre el 0,23 y el 0,74, con una media del 0,40. El índice de dominancia de McNaughton osciló, por su parte, entre el 0,44 y el 0,90 (0,63 de media) y el índice de diversidad de Shannon-Weaver entre 1,33 y 3,11, con un valor medio de 2,41.

Para proceder a un análisis de los resultados obtenidos, se agruparon todos aquellos censos efectuados durante un mismo mes. Los valores medios resultantes, para cada uno de los parámetros estudiados, aparecen reflejados en la tabla 1.

La abundancia media del período octubre-enero resultó ser notablemente superior a la del resto de meses muestreados (tabla 1). Ello viene motivado, por una parte, por la masiva llegada durante estos meses de la avifría europea, que presentó entre noviembre y enero unas densidades no iguales por ninguna otra especie en ninguno de los periodos abarcados por el estudio (ver Apéndice D); y por otra, por el importante paso de migrantes que tuvo lugar entre los meses de octubre y noviembre, fenómeno típico de las zonas húmedas situadas en el mediterráneo occidental (BAU-ILA & SERMÉT 1975; BERNIS 1966; JOHNSON 1974; MARTÍNEZ-VILALTA 1985; MESTRE 1979), y que presenta en el Salobrar de Campos al chortitejo patinegro como máximo exponente. Tenemos, pues, que el área actúa principalmente como importante cuarcel de invernada de limícolas; si bien debe considerarse también como notoria el paso migratorio que en ella se produce durante el período prenupcial. Ambos sucesos constituyen
una característica propia, como ya hemos apun
tado, de muchas de las zonas húmedas de estas
latitudes, como han puesto de manifiesto AMAT
(1984), GALARZA (1984), HERNÁNDEZ & VELAS-
CO (1990); HORTAS (1997) o MARTÍNEZ-VILAL-
TA (1985) en diferentes puntos de la Península
Ibérica.

En cuanto a la riqueza específica (tabla 1), los
máximos se dieron en septiembre-octubre y en
enero, siendo el mes de septiembre en el que se
produjo una mayor sustitución de especies
(tabla 1). Ello viene motivado por el hecho de que
en este mes coinciden las especies estivales (repro-
ductor as o no) que no han abandonado la zona,
con una gran diversidad de especies esencialmente
migrantes. Al parecer, no existe ninguna relación
significativa entre los valores de riqueza específ-
ica y abundancia de aves ($r_s = -0,15; \ p < 0,05$),
probablemente como consecuencia de los altos
valores de dominancia que presentaron unas pocas
especies, y que caracterizaron claramente la estra-
tura de la comunidad de aves. Los valores de rique-
za específica de la migración prenupcial no con-
siguieron alcanzar los obtenidos por el período
migratorio postreproductor, fenómeno que se
repite en otras zonas húmedas españolas (Galar-
za 1984; LORENZO 1993, MARTÍNEZ-VILAL-
TA 1985).

En base a lo hasta ahora comentado cabría espe-
 rar unos valores de diversidad específica máxi-
mos durante el período postreproductor. Sin emar-
go, estos tuvieron lugar a finales de invierno
(tabla 1), concretamente en los meses de febre-
ro-marzo. La explicación viene dada por el hecho
de que la diversidad específica no depende tanto
de la sucesión más o menos rápida de especies que
pueda producirse, como de los valores de domi-
nancia que alcanzan las especies más abundantes.
Ello queda de manifiesto al relacionar el índice
de Shannon-Weaver con los índices de dominan-
cia específica: la relación negativa resultante es
significativa para el índice de May ($r_s = -0,60;
\ p < 0,05$), y altamente significativa para el índi-
ce de McNaughton ($r_s = -0,88; \ p < 0,01$). Así,
los meses de transición que se producen en febre-
ro-marzo, en los cuales ya abandonaron el área las
especies dominantes del período invernal, pero
todavía no han podido establecerse las especies
estivales, presentan unos índices de dominancia
mínimos (tabla 1) que repercuten, haciéndolo
máximo, en el índice de diversidad específica. Así-
mismo, las máximas predominancias obtenidas en
los inicios del período reproductor provocan que
el índice de Shannon-Weaver sea mínimo en estos
momentos.

Cuatro familias se vieron representadas en los cen-
sos, siendo tres de ellas (Scolopacidae, Charadridi-
daes y Recurvirostridae) de presencia constante en
el área, al igual que ocurría para el delta del Ebro
(MARTÍNEZ-VILALTA 1985). La cuarta familia, Bur-
hinidae, es de presencia irregular y muy escasa.
Scolopacidae, con 22 especies detectadas, fue la
familia más diversa en cada uno de los meses estu-
diados, presentando además una notable cons-
tancia en los porcentajes mensuales sobre el total
de especies detectadas, que variaron entre el
52,6% y el 72,0%.

En cuanto a las densidades diferenciales de aves
pertenecientes a las diferentes familias, pode-
mos ver (figura 1) cómo Scolopacidae se vio supe-
rada por Charadridae en los meses de noviembre
a enero, y por Recurvirostridae en mayo. La ya
comentada elevada presencia de la avefría euro-
pea en los meses inviernos fue la causante del pri-
mer suceso, mientras que el segundo vino moti-
vado por la formación de las colonias de cría de
la cigüeñuela común, que ya se hallaban bien esta-
blecidas en mayo. Los intervalos situados entre
dichos eventos, y que se corresponden con gran

![Fig. 1. Evolución mensual del porcentaje de aves pertenencia-
tes a las diferentes familias estudiadas. (Monthly percentage evo-
lution of different sighted families' birds.]]
precisión con los períodos de mayor intercambio de especies, se ven dominados por Scolopacidae, que como ocurre para otras áreas (ver, por ejemplo, LORENZO 1993; MARTINEZ-VILALTA 1995) actúa aquí como la principal familia diversificadora. Charadridae y Recurvirostridae, por contra, actuaron en sentido inverso, como lo prueba el hecho de que, a pesar de ser estas familias muy inferiores en cuanto a número de especies, presentaran unas dominancias mayores que Scolopacidae. Así, en 7 de los 9 meses objeto de estudio fue alguna especie perteneciente a una de aquellas familias la dominante, y en la totalidad de meses al menos una de las dos especies más numerosas perteneció a aquellas.

AGRADECIMIENTOS

A Pere Garçias, Manolo Suárez y Josep Ramon Sunyer por sus comentarios, que sirvieron para mejorar la versión original de este manuscrito. Igualmente, a A. Barbosa por su cuidada revisión del artículo.

REFERENCIAS BIBLIOGRÁFICAS

331

APÉNDICE I

EJEMPLARES OBSERVADOS DE CADA ESPECIE. CENSOS AGRUPADOS POR MESES.

[COUNTED BIRDS. COUNTS GROUPED BY MONTHS.]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Botaurus stellaris</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Hirundo rustica</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Rhinolophus ferrumequinum</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Vespadelus velatus</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Phyllostomus hastatus</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>63</td>
<td>84</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
</tr>
</tbody>
</table>

*Observaciones homologadas por el comité de recens de la SEO.

*Species accepted by the Spanish society’s Committee.