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Outline

1. Riparian forests in California’s Mediterranean
climate zone

2. Historical human impacts to the ecosystem
3. Deciding what to restore--processes or structure?

4. Quantitative approaches to restoring riparian
forests

-restoring ecological processes efficiently
-restoring riparian structure effectively




Non-Equilibrium Ecosystems:
Multiple Disturbances and Drivers of Change
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Riparian
Structure and
Pattern

Herbaceous cover
Cottonwood forest
B vixed riparian forest
HH Valley oak forest

e High structural
complexity

e Patchy distribution

e Important terrestrial
and in-stream habitat
(litter, large woody
debris, shade)

Riparian Vegetation Establishment
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Human Impacts in Riparian Zones

Floodplain
development

Habitat fragmentation

Channelization and bank
stabilization

Water Development in
California’s Central Valley

Major Water  Shasta Dam,
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Ecological Impact:
o few remnant forest patches

* no seedling establishment
e conversion to other vegetation type

What Should We Restore in a
Disturbance-Dependent Ecosystem?

1. Ecological processes:

(e.g., flow variability, sediment transport,
channel migration)

2. Habitat structure and pattern

(e.g., species composition, canopy configuration,
age structure)




General Restoration Approach

¢ understand hydrologic dependencies of riparian
and aquatic species

e model hydrology and stratify floodplain by degree
of hydrological connectivity

» choose meaningful quantitative metrics for each
restoration approach
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Seedling Recruitment
Processes for Riparian
Populus and Salix

« Populations limited by seedling
recruitment

¢ Short-lived seeds; no seed bank

¢ Reproduction timing coincides
with regular spring floods

e Seedlings establish in high-flow
years
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Critical Ecological Processes for
Seedling Establishment

e river flow regime
e seed release timing

e seedling water stress thresholds

Banks dry during seed release

Water stress igN/f
LY

Mahoney JM, and Rood SB. 1998.

- summer baseflow  yyetiands 18:634-645.
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Spring Floods

¢ Peak seed release
coincides with
snowmelt recession

¢ Annual timing

influenced by
temperature

seed release index (open catkins/tree)




Modeling Seed Release Timing
From Seasonal Heat Sums
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Seedling Water Stress Experiment

¢ seedlings grown in tanks

* 5 water table reduction
treatments

* measured seedling survival,
growth, and physiology




Modeling Cohort Survival
from Empirical Data

=
o
o

2

days since start of drawdown

cohort survival (%)
D
o

Flow Requirements for Successful Recruitment

600
Populus seed release
500 « > ]
Salix seed release

———

S
o
S

1

unimpaired
regulated
i proposed

discharge (m?3/s)

A A A A A A A
o ¢e® W p Wl we W o ce®

10



Restoring Riparian Habitat Structure
on Dredger Tailings
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Merced River Riparian Tree
Planting Experiment

¢ 4 native species
« 3 elevation levels
e irrigation (+/-)

e survival and
growth analysis
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Predicting Survival in Year 1
from Initial Planting Size
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Conclusions

1. Restoring non-equilibrium ecosystems requires novel
approaches.

2. Choose what to restore: processes and/or habitat
structure.

3. Restoring processes efficiently requires understanding
key ecological mechanisms.

4. Restoring habitat effectively requires controlled studies
to isolate treatment effects from covariate factors.

5. Developing meaningful quantitative metrics is critical.

Thank you for your attention!
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Climate change.... a wildcard
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Question: How much can trees adapt?
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California rivers and water projects

Maps courtesy of California Department of Water Resources.
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Conceptual Model of Key
Ecological Processes
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Adapted from: Mahoney JM, and Rood SB. 1998. Streamflow requirements for
cottonwood seedling recruitment--an integrative model. Wetlands 18:634-645.

Using Degree-Days to Predict Timing

¢ Degree-days are an alternative way to mark development time
e Established method in agriculture and pest management
e Experimental vs. empirical models

 Daily degree-days: Dy=T,-6;
» Cumulative degree-day threshold: ~ D* =} °Dy
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Climate change.... a wildcard
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Question: How much can trees adapt?




