

EVALUACIÓN DE LOS RECURSOS HÍDRICOS PROCEDENTES DE LA INNIVACIÓN

PROGRAMA ERHIN

TRABAJOS DE TELEDETECCIÓN TEMPORADA NIVAL 2020 – 2021:

SUPERFICIE INNIVADA Y PERMANENCIA DE LA NIEVE

1 OBJETIVO

El objetivo del estudio de los trabajos de Teledetección dentro de la Campaña de ERHIN es utilizar las imágenes de satélite como información de apoyo para calcular la cobertura nival. La extensión de la superficie de nieve y su espesor son fundamentales en los cálculos de los balances hidrológicos, ya que contribuyen con un aporte de agua adicional en el momento del deshielo.

Frente a los sistemas convencionales consistentes en visitas de campo y recogida de datos en las estaciones, la teledetección permite cuantificar de forma rápida y económica la superficie nevada de una cuenca hidrográfica, tanto puntualmente en una fecha determinada, como periódicamente con la obtención de varias coberturas nivales en un periodo de tiempo. La frecuencia de adquisición de datos y la observación simultánea de grandes extensiones de terreno hacen posible un rápido análisis de las variaciones geográficas y temporales.

En este estudio se ha llevado a cabo el **seguimiento de la superficie de la cobertura nival en el periodo comprendido entre octubre 2020 y mayo 2021 con imágenes de baja resolución**. En concreto, se obtuvieron de forma periódica la superficie nival en las cordilleras montañosas del estudio. Para ello se han utilizado los productos semanales MOD10A2/MYD10A2 de MODIS, que se habían venido utilizando en campañas anteriores.

Contar con una cobertura nival semanal permite hacer un seguimiento de las variaciones de la superficie de nieve que se producen en un corto espacio de tiempo en cada una de las zonas y, además, hace que se pueda calcular a final de campaña la capa de permanencia de nieve durante el periodo de estudio, entendiendo esta como el número de días que cada píxel ha estado cubierto de nieve.

2 DATOS DE PARTIDA: IMÁGENES MODIS

Son imágenes capturadas por los satélites TERRA y AQUA de la NASA. Estos satélites son complementarios y están activos desde los años 1999 y 2000 respectivamente. Terra está programado para pasar de norte a sur y AQUA de sur a norte. Capturan 36 bandas espectrales: dos bandas con una resolución de 250 m, 5 bandas de 500 m y 29 bandas a 1 Km. Una de sus principales características es que se puede tener acceso a los datos después de su captura, ya que transmite los datos directamente a una estación en Tierra (Direct Broadcast).

A partir de los datos en crudo se elaboran un gran número de productos que están organizados en temas: Atmosfera, Tierra, Océanos y Calibración.

Para este estudio se ha utilizado los productos de nieve que están englobados dentro de los siguientes productos de Tierra (Modis Land – Snow cover/ Sea Ice) https://modis-land.gsfc.nasa.gov/snow.html)

 Productos Semanales (MOD10A2/ MYD10A2): Se han descargado, transformado y procesado y han servido para la obtención de datos para el proyecto:

MOD10A2: MODIS/Terra Snow Cover 8-Day L3 Global 500m Grid, Version 6

MYD10A2: MODIS/Agua Snow Cover 8-Day L3 Global 500m Grid, Version 6

 Productos Diarios (MOD10A1/ MYD10A1): Se han descargado y se han transformado, pero no se ha trabajado con ellos:

MOD10A1: MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6

MYD10A1: MODIS/Agua Snow Cover Daily L3 Global 500m Grid, Version 6

El producto semanal está creado a partir de 8 días de observaciones diarias, por tanto, muestra la extensión máxima de la cobertura nival en los 8 días que lo forman. Para generar este compuesto se utilizan los productos diarios MOD10A1/ MYD10A1 en los que se selecciona en cada píxel la mejor observación de las registradas que detecte presencia de nieve.

Son productos en formato HDF (*Hierarchical Data Format*) y proyección sinusoidal y con un tamaño de píxel de 500 m (463,31 m) y se sirven a través de teselas o tiles (por su nomenclatura en inglés). En la Figura 1, se puede ver un esquema de la distribución de los tiles según una malla uniforme de 1200 x 1200 km (10 x 10 grados) de la Tierra.

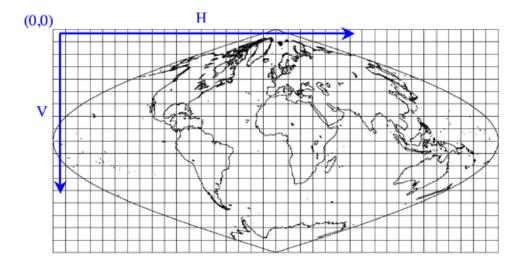


Figura 1: Esquema de la malla de tiles de MODIS

Para crear una imagen completa en una fecha de la Península (Figura 2) se han utilizado los cuatro tiles que la forman (h17v04, h17v05, h18v04, h18v05) (Canarias no pertenece a la zona de estudio)

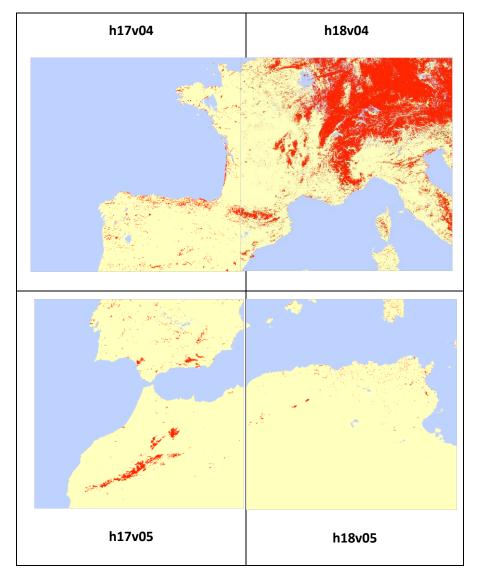


Figura 2: Vista de los 4 tiles del compuesto (01/01/2017 - 08/01/2017) de TERRA

El dato de presencia de nieve se calcula a partir del índice de nieve normalizado: *Normalized Difference Snow Index* (NDSI), más otros criterios de análisis necesarios para poder filtrar los errores de omisión/inclusión que pueda haber.

En la siguiente dirección se puede encontrar la descripción detallada de este índice NDSI

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100031195.pdf

En condiciones óptimas de iluminación y sin nubes ni sombras cuando el valor del índice NDSI es mayor de 0 entonces se determina que hay presencia de nieve. A veces no existen estas condiciones atmosféricas óptimas en el momento de la captura de la imagen, por lo que se producen errores

de omisión/inclusión, no detectando nieve, aunque la haya y detectando nieve cuando no la hay. Para evitar estos errores se aplican criterios adicionales de control con el objeto de mejorar los resultados.

3 METODOLOGÍA

3.1 PROCESADO DE LAS IMÁGENES MODIS

<u>Compuestos semanales MOD10A2/MYD10A2:</u> Se han procesado un total de 240 imágenes MODIS, 120 de TERRA (30 imágenes por cada uno de los 4 tiles) y 120 de AQUA (30 imágenes por cada uno de los 4 tiles) correspondientes al periodo del 30/09/2020 al 30/05/2021. Cada uno de estos compuestos semanales está creado por cada una de los ocho productos diarios. Las imágenes se han trasformado desde los tiles individuales en formato HDF y proyección Sinusoidal a un mosaico por cada fecha de imagen y por cada una de las bandas, en formato TIF y en proyección WGS84/UTM30.

Estos productos tienen dos bandas:

BandaO: Maximum Snow Extent. Banda codificada con los siguientes valores:

Tabla 1. Descripción de los códigos de la banda denominada Maximum Snow Extent

TIPO DE DATO	VALOR ORIGINAL
Sin datos	0
Datos de baja calidad	1
Sombras	11
Sin nieve	25
Lagos	37
Océanos	39
Nubes	50
Hielo en lagos	100
Nieve	200

Detector saturado	254
Relleno	255

Banda1: *Eight_Day_Snow_Cover*. Banda codificada en valores de 0 a 255 que traducen en valores 0 y 1 todas las posibles combinaciones posibles de los 8 días que forman el compuesto.

integer Day:								
value	8	7	6	5	4	3	2	1
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	1	1	0
7	0	0	0	0	0	1	1	1

Figura 6: Ejemplo de la codificación de la banda Eight day Snow cover

Como resultado del procesado, se obtienen dos imágenes, una por cada banda, para cada fecha procesada, en formato tif y recortadas a la extensión de la Península y Baleares.

Posteriormente se ha transformado la codificación original de la banda1 *Eight_Day_Snow_Cover* a número de días reales con nieve. Como antes se ha mencionado esta banda tiene una codificación original en valores de 0 a 255 que son las combinaciones de los 8 días que puede haber con nieve. Estas combinaciones se pueden reclasificar de manera que la imagen resultante esté codificada en valores enteros de 1 a 8, que representarían el número de días totales en los que se observó nieve durante ese periodo de 8 días. A la capa resultante se le denominó NumDIAS_NIEVE. Este procesado se ha llevado a cabo con un programa específico desarrollado sobre el software R.

Para el cálculo de la superficie de la cobertura nival se ha utilizado el producto denominado *Maximum Snow Extent*. En concreto, se hizo una reclasificación de ese mapa asignándole valores nulos a todos los píxeles excepto aquellos clasificados como nieve (valor original igual a 250). A estos últimos, se les asignó un valor igual al tamaño de celda. Después, se utilizó el contorno de las cuencas pertenecientes al proyecto ERHIN y se hizo el sumatorio de todos los píxeles del mapa

reclasificado que quedaban dentro de los límites de la cuenca. De este modo se obtenía el valor total de superficie innivada para cada fecha en la que se tenga dato (uno por cada 8 días) y para cada una de las cuencas. Este procesado se ha llevado a cabo con un código específico desarrollado en Python y el uso del comando consola de ArcMap.

3.1.1 MAPA DE PERMANENCIA DE LA COBERTURA NIVAL

A final de campaña y con la suma de todas las imágenes de NumDIAS_NIEVE disponibles se obtiene el mapa de permanencia de la cobertura nival. En esta campaña se ha contado con 30 imágenes del sensor TERRA y otras 30 de AQUA. Con ellas se generan dos ráster procedentes de sumar independientemente las imágenes de cada uno de los sensores.

Debido a la diferente hora de paso entre los dos satélites, puede ser que una zona a una hora esté cubierta por nubes y se traduzca en un píxel sin datos y a otra hora esté libre de nubes y por tanto se haya registrado dato. Esto se traduce en que los valores procedentes de TERRA y AQUA para un mismo día no tienen por qué ser los mismos. Es por esto que para obtener un resultado con el mayor número de datos se hace por separado el sumatorio de cada sensor. Posteriormente se selecciona para cada píxel el valor más alto del sumatorio de cada sensor, es decir se selecciona en cada píxel el mayor número de observaciones de nieve, asumiendo que si uno de los satélites registró nieve es porque hubo nieve, aunque el otro no lo registrase.

En Figura 3 se muestra el mapa de permanencia de la cobertura nival de la Península y Baleares para esta temporada. Las zonas de tonos negros es donde la nieve ha permanecido durante más días, y que lógicamente corresponden con los sistemas montañosos más elevados: Pirineos y Sierra Nevada. Las áreas de tonos verdes son zonas con menor número de días y corresponden a zonas de menor altitud donde las nevadas son ocasionales y la nieve se mantiene menos tiempo. Este año su extensión es mucho mayor de lo habitual en zonas de cotas bajas debido a los efectos de Filomena.

En los siguientes epígrafes se analizará con detalle los resultados obtenidos para cada uno de los sistemas objeto de estudio: Sistema Cantábrico, Pirineos, Sistema Central y Sierra Nevada.

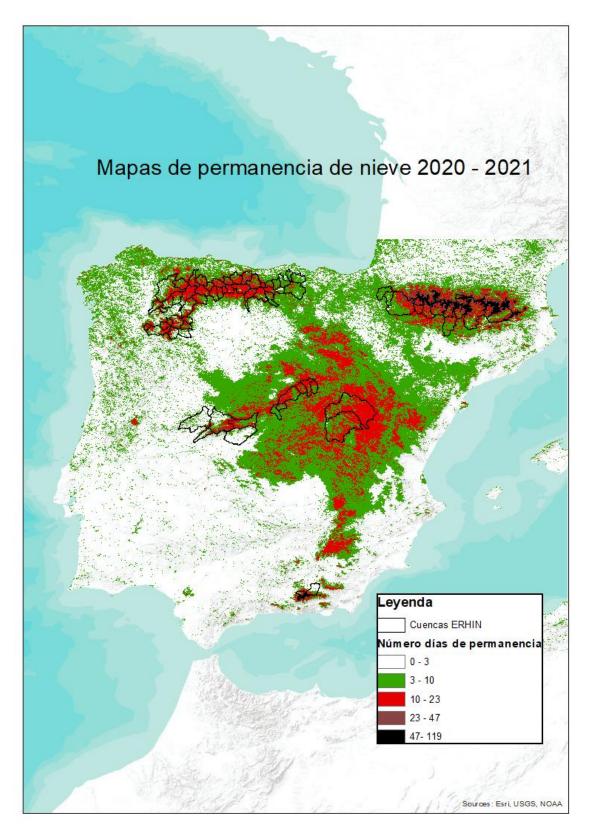


Figura 3. Mapa de permanencia de la cobertura nival (en días) para la temporada nival 2020 - 2021

• Compuestos diarios MOD10A1/MYD10A1:

Además de los productos MOD10A2 y MYD10A2 se han descargado los productos diarios MOD10A1 y MYD10A1 en su versión 6. Estos productos se han transformado, pero no se ha trabajado con los datos, debido a que para los objetivos del proyecto era más práctico y directo hacerlo con el producto semanal procesado por la NASA. Estas imágenes se han mosaicado y transformado a GeoTIF, separándolas en cada una de las 5 bandas que lo forman y reproyectadas a WGS84/UTM30, manteniendo su tamaño de píxel de 463,3 m.

Estos productos tienen como datos principales la cobertura nival, obtenida a partir del cálculo del índice de nieve Normalized Difference Snow Index (NDSI) y el albedo. Cada píxel tiene la mejor observación registrada diaria de NDSI y la de albedo, teniendo en cuenta los parámetros de elevación solar, distancia al nadir y la cobertura en superficie del píxel.

A continuación, se muestra una tabla con un ejemplo de la descripción de los 5 ficheros existentes para cada día. Ésta en particular es del día 275 de TERRA que corresponde a la fecha 02/10/2016, que es aplicable a cualquier otra fecha.

Bandas de los productos diarios MOD10A1/MYD10A1	Bandas	
MYD10A1.A2016275.NDSI.tif	valor de NDSI	
MYD10A1.A2016275.Snow_Albedo_Daily_Tile.tif	valor de Albedo	
MYD10A1.A2016275.NDSI_Snow_Cover.tif	clasificación de las coberturas (nieve,mar, nube, aguas continentales, lagos helados)	
MYD10A1.A2016275.NDSI_Snow_Cover_Algorithm_Flags_QA.tif	Bandas de calidad	
MYD10A1.A2016275.NDSI_Snow_Cover_Basic_QA.tif	bandas de candad	

Figura 11: Tabla con las imágenes en las que se separa cada banda del producto M0D10A1/MYD10A1

Una información más detallada de estos productos se puede encontrar en la siguiente dirección:

http://nsidc.org/sites/nsidc.org/files/files/MODIS-snow-user-guide-C6.pdf

3.1.2 MAPA DE SUPERFICIE DE LA COBERTURA NIVAL

En total se han procesado 30 días de TERRA y 30 días de AQUA. De forma similar al mapa de permanencia, se observaron diferencias entre los resultados obtenidos con el satélite AQUA y TERRA, siendo generalmente el satélite AQUA el que registra una mayor superficie innivada. Esto podría deberse a las diferentes sensibilidades de los sensores. Ante esta situación y la imposibilidad de saber con certeza cuál de ambos sensores es más certero, se tomó como criterio que con que uno de los sensores identifique como nieve (valor 250) un píxel es que ese píxel debe haber estado cubierto por nieve en algún momento de la semana. Este criterio se basa en que las probabilidades de no capturar nieve, aunque la haya (falso negativo), debido a la presencia de nubes y otros factores ambientales es mayor que la de definir como nieve píxeles que no lo son (falso negativo). En la Figura 4 se muestra, como ejemplo y por su relevancia, la superficie innivada correspondiente al DOY 9 del año 2021 (09/01/2021) – fecha próxima a cuando tuvo lugar Filomena y en la que se pude observar claramente los efectos de la misma.

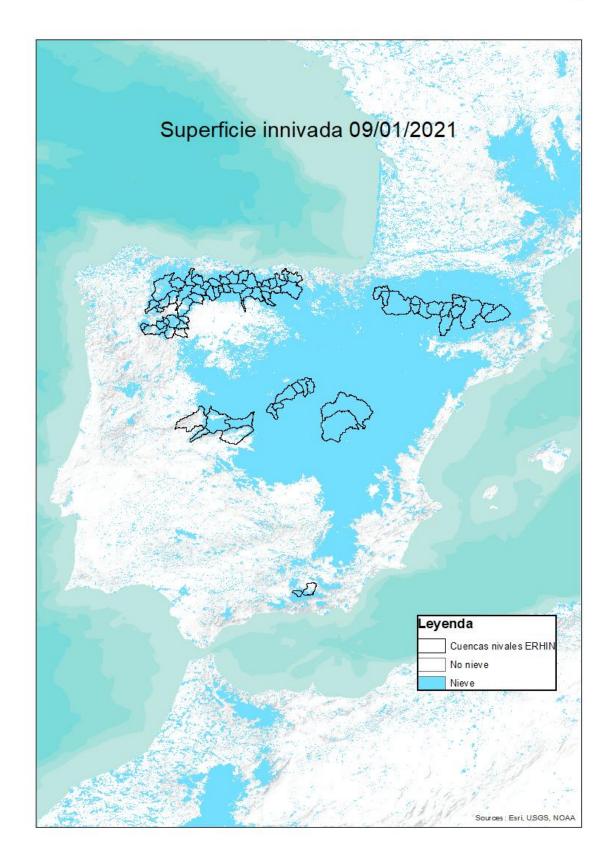


Figura 4. Mapa de superficie cubierta por nieve para el día 09/01/2021 en los cuatro sistemas objeto de estudio.

RESULTADOS POR ÁREA MONTAÑOSA

4.1 SISTEMA CANTÁBRICO

Mapa de permanencia de la cobertura nival

La cordillera Cantábrica ha tenido nieve desde cotas muy bajas, por debajo de 1000 m, pero ahí ha permanecido poco tiempo – alrededor de una semana en las cotas más próximas a 1000 m (Tabla 2 y Figura 5). Es a partir de los 1500 m cuando hay un aumento pronunciado en el número días que se mantiene la nieve y a partir de los 2000 m el número de días con nieve supera los 14 días de permanencia en cualquier caso. No obstante, no se supera en ninguna cota los 65 días con nieve (27 % del tiempo de estudio). Véase Figura 6 y Figura 7 para ver la distribución espacial de la permanencia de nieve en la parte occidental y oriental respectivamente.

MÍNIMO TIEMPO DE MÁXIMO TIEMPO TIEMPO MEDIO DE **BANDA COTAS PERMANENCIA DE PERMANENCIA PERMANENCIA** [0 - 500]0 14 4,7 CANTÁBRICO SISTEMA [500 - 1000] 0 29 7,2 [1000 - 1500] 0 12,6 39 [1500 - 2000] 3 57 25,0 [2000 - 2500] 14 65 38,7

Tabla 2. Permanencia de la cobertura nival por rangos de altitud en el Sistema Cantábrico

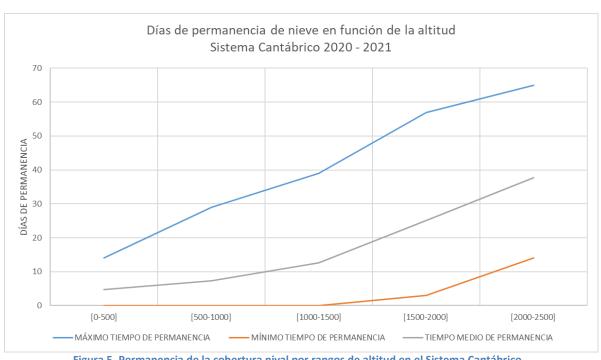


Figura 5. Permanencia de la cobertura nival por rangos de altitud en el Sistema Cantábrico

Figura 6. Mapa de permanencia de la cobertura nival en el occidente del Sistema Cantábrico.

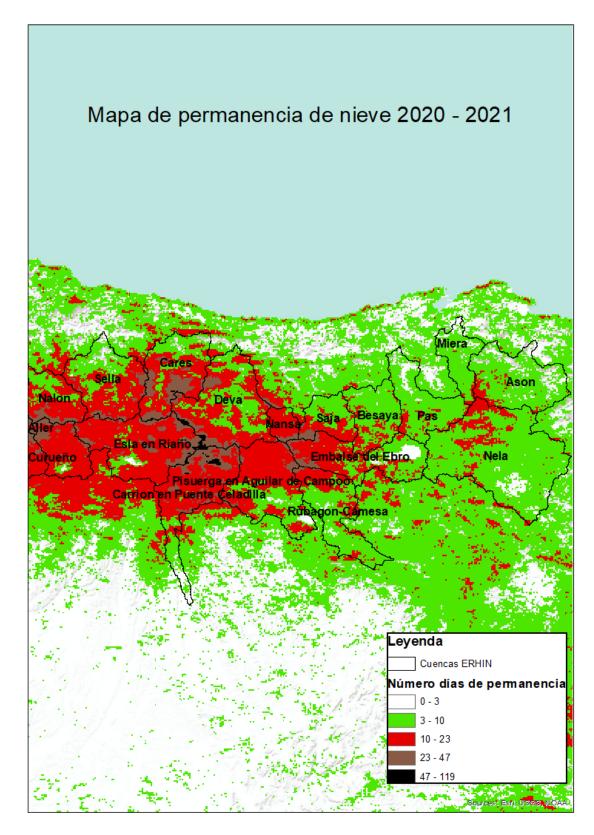


Figura 7. Mapa de permanencia de la cobertura nival en la parte oriental del Sistema Cantábrico

4.1.2 Evolución de la superficie innivada

Tal y como se puede ver en la Figura 8, se produjo una primera nevada a principios de noviembre de la que se perdería casi completamente toda la nieve, hasta que se produjo un segundo evento nival de relativa entidad a finales de noviembre. En esta temporada nival, el evento de máxima superficie coincidió con el fenómeno de Filomena, si bien previo a este fenómeno las acumulaciones de nieve eran ya de cierta entidad (Figura 8). En cualquier caso, para este momento de máxima superficie nival, el sistema llegó a estar cubierto por nieve en alrededor de 18.000 km². Posteriormente, la nieve sufrió un rápido proceso de fusión, seguido de sucesivos procesos de pérdida-ganancia que llevaría a la casi total pérdida de superficie innivada a mediados de abril.

Del total de mapas de superficie innivada generados (1 mapa cada 8 días para la temporada de octubre de 2020 a mayo de 2021), se han seleccionado tres puntos correspondientes al inicio de la temporada nival (23/10/2020), momento de máxima acumulación cercano a Filomena (09/01/2021) y fecha correspondiente a la última nevada esperada de la temporada (23/04/2021). La comparativa en la distribución de la superficie cubierta por nieve para tales fechas se puede observar en Figura 9 y Figura 10.

Figura 8. Evolución temporal de la superficie innivada en km² de las cuencas pertenecientes al Sistema Cantábrico. Los mapas de superficie innivada correspondiente a los puntos señalados en rojo se presentan en las Figura 9 y Figura 10

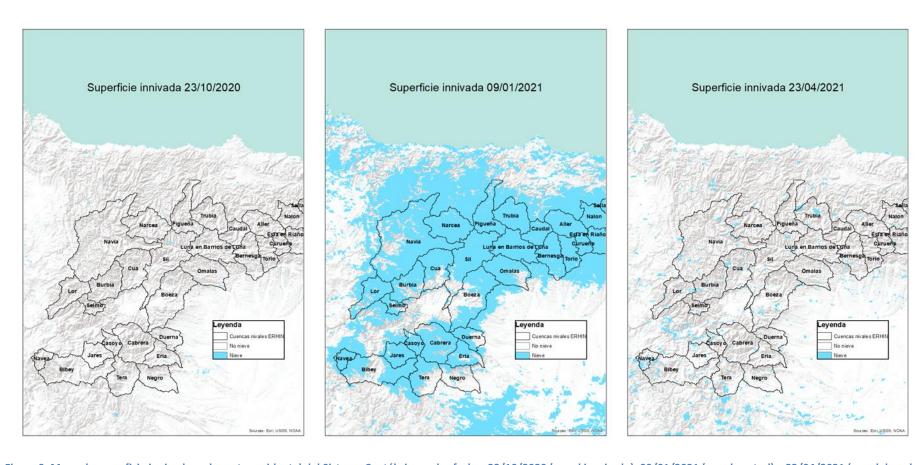


Figura 9. Mapa de superficie innivada en la parte occidental del Sistema Cantábrico en las fechas 23/10/2020 (panel izquierdo), 09/01/2021 (panel central) y 23/04/2021 (panel derecho)

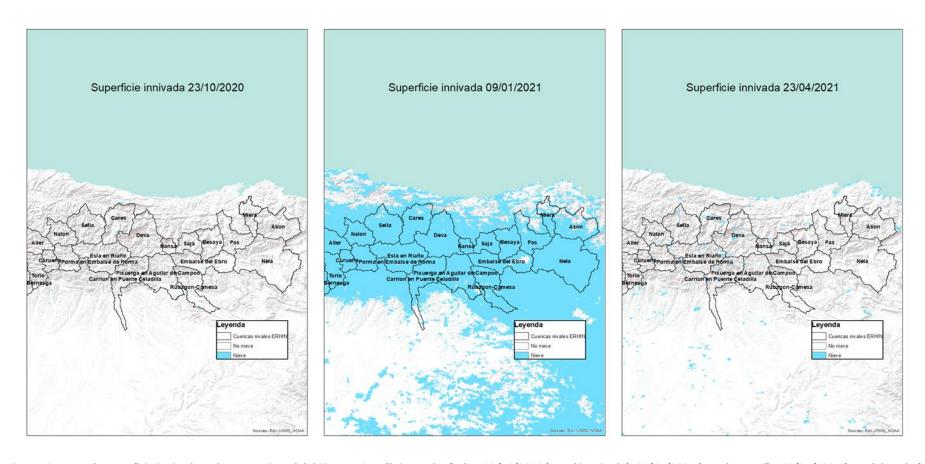


Figura 10. Mapa de superficie innivada en la parte oriental del Sistema Cantábrico en las fechas 23/10/2020 (panel izquierdo), 09/01/2021 (panel central) y 23/04/2021 (panel derecho)

4.2 PIRINEOS

4.2.1 Mapa de permanencia de la cobertura nival

Es la cordillera que presenta mayor permanencia de nieve, a partir de los 2000 m el número de días de permanencia puede llegar a superar la tercera parte del total de la temporada nival. A partir de los 3000 m, la diferencia entre el número de días mínimo y máximo es muy pequeño, es decir, que a esta cota la permanencia de la nieve es muy estable y menos sujeta a otras variables diferentes a la propia cota (Figura 11 y Tabla 3).

Tabla 3. Permanencia de la cobertura nival por rangos de altitud en el Pirineo

	BANDA COTAS	MÍNIMO TIEMPO DE PERMANENCIA	MÁXIMO TIEMPO DE PERMANENCIA	TIEMPO MEDIO DE PERMANENCIA
	[0 - 500]	0	27	8,2
	[500 - 1000]	0	27	8,2
00	[1000 - 1500]	0	39	12,8
PIRINEOS	[1500 - 2000]	41	84	26,7
PR	[2000 - 2500]	10	97	52,7
	[2500 - 3000]	26	97	69,1
	[3000 - 3500]	62	93	81,1

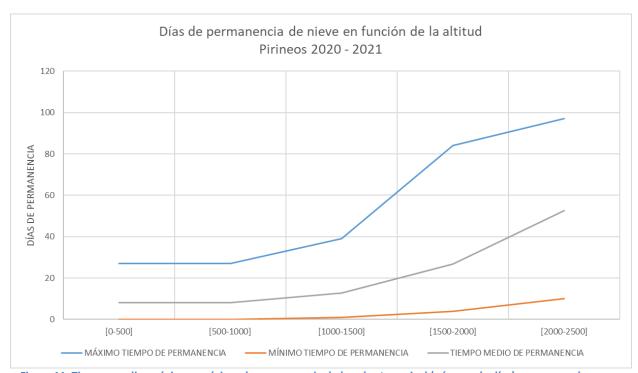


Figura 11. Tiempo medio, máximo y mínimo de permanencia de la cobertura nival (número de días) por rangos de altitud en el Pirineos

En la Figura 12 y Figura 13 se pueden ver las zonas donde la nieve se acumula y se mantiene durante más tiempo y las zonas donde la nieve es más efímera.

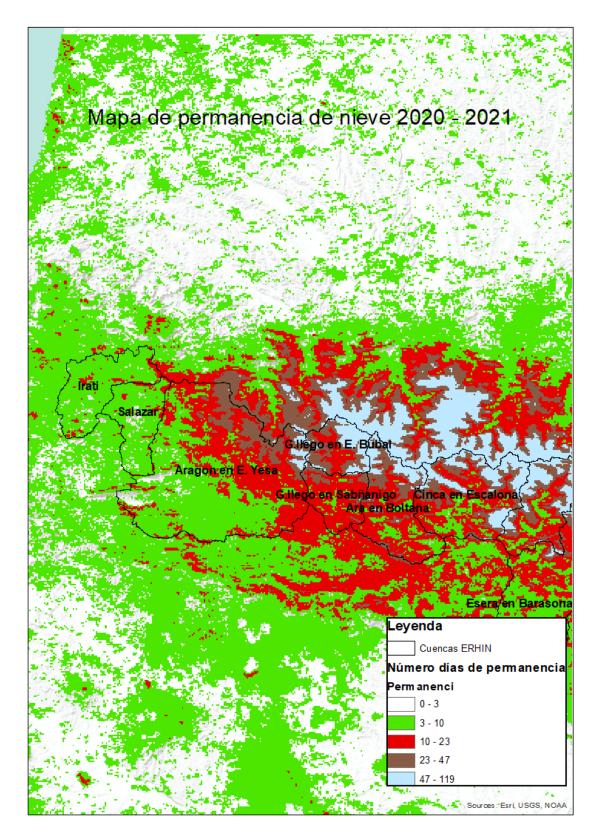


Figura 12. Mapa de permanencia de la cobertura nival (número de días) en la parte occidental del Pirineo

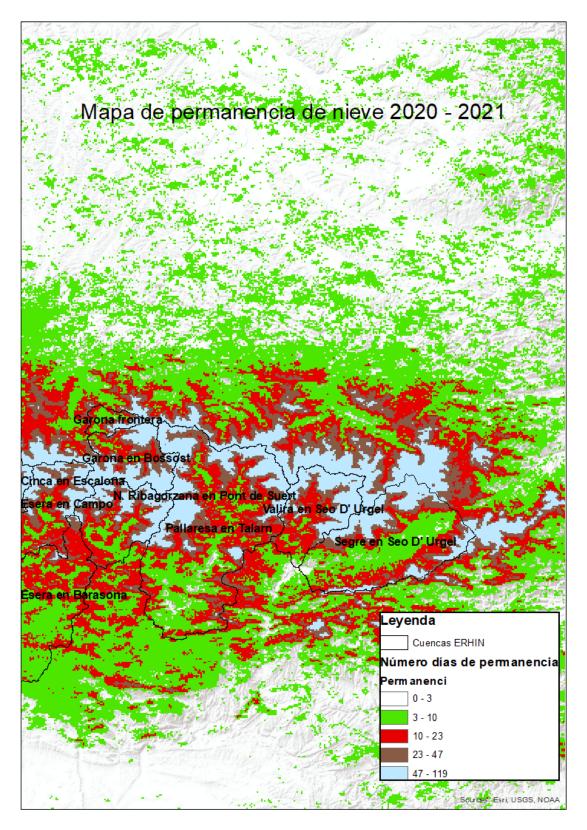


Figura 13. Mapa de permanencia de la cobertura nival (número de días) en la parte oriental del Pirineo

4.2.2 Evolución de la superficie innivada

Según se puede observar en la Figura 14, un total de 2.000 km² se mantiene cubierto por nieve durante la mayor parte de la temporada nival. En el momento de máxima acumulación (que fue casi coincidente con el fenómeno de Filomena), la superficie ocupada por nieve supera los 10.000 km². Este primer evento se mantuvo y fue alimentado por una nevada de cierta entidad que dio lugar a un pequeño aumento de la superficie nival en febrero. A partir de este segundo pico, se pueden observar algunos procesos de fusión-ganancia que han mantenido la superficie innivada en los 2.000 km² a finales de abril (Figura 14).

Igual que antes, del total de mapas de superficie innivada generados (1 mapa cada 8 días para la temporada de octubre de 2020 a mayo de 2021), se han seleccionado tres puntos correspondientes al inicio de la temporada nival (23/10/2020), momento de máxima acumulación cercano a Filomena (09/01/2021) y fecha correspondiente a la última nevada esperada de la temporada (23/04/2021). La comparativa en la distribución de la superficie cubierta por nieve para tales fechas se puede observar en las Figura 15 y Figura 16.

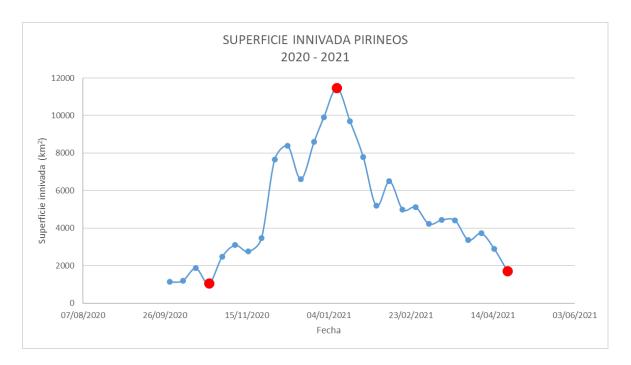


Figura 14. Evolución temporal de la superficie innivada en km² de las cuencas pertenecientes al Pirineo. Los mapas de superficie innivada correspondiente a los puntos señalados en rojo se presentan en las Figura 15 y Figura 16)

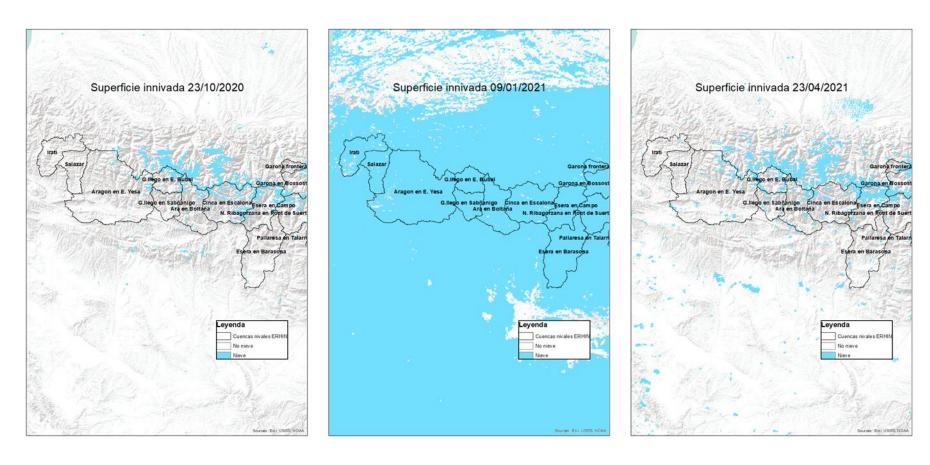


Figura 15. Mapa de superficie innivada en la parte occidental del Pirineo en las fechas 23/10/2020 (panel izquierdo), 09/01/2021 (panel central) y 23/04/2021 (panel derecho)

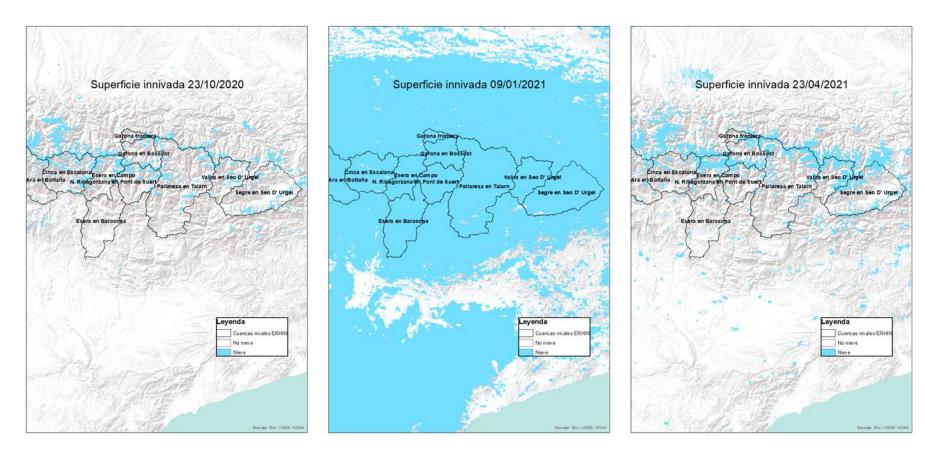


Figura 16. Mapa de superficie innivada en la parte oriental del Pirineo en las fechas 23/10/2020 (panel izquierdo), 09/01/2021 (panel central) y 23/04/2021 (panel derecho)

4.3 SISTEMA CENTRAL

4.3.1 Mapa de permanencia de la cobertura nival

Es la cordillera que presenta menor tiempo de permanencia medio de nieve. No es hasta superar los 1000 – 1500 m que el tiempo medio empieza a superar la decena de días, aunque puede llegar a permanecer hasta 66 días en las cotas más altas (Tabla 4 y Figura 17).

Tabla 4. Permanencia de la cobertura nival por rangos de altitud en el Sistema Central

	BANDA COTAS	MÍNIMO TIEMPO DE PERMANENCIA	MÁXIMO TIEMPO DE PERMANENCIA	TIEMPO MEDIO DE PERMANENCIA
	[0 - 500]	0	14	2,5
A A	[500 - 1000]	0	18	6,3
SISTEMA CENTRAL	[1000 - 1500]	0	29	10,3
SIS	[1500 - 2000]	1	52	17,9
	[2000 - 2500]	9	66	38,1

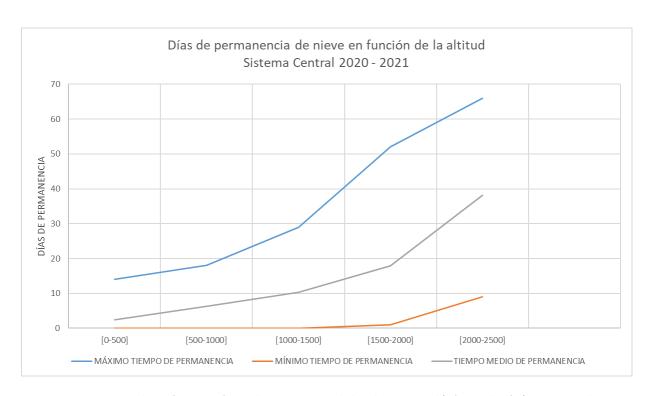


Figura 17. Tiempo medio, máximo y mínimo de permanencia de la cobertura nival (número de días) por rangos de altitud en el Sistema Central

En las Figura 18 y Figura 19 se pueden ver las zonas donde la nieve se acumula y se mantiene durante más tiempo y las zonas donde la nieve es más efímera.

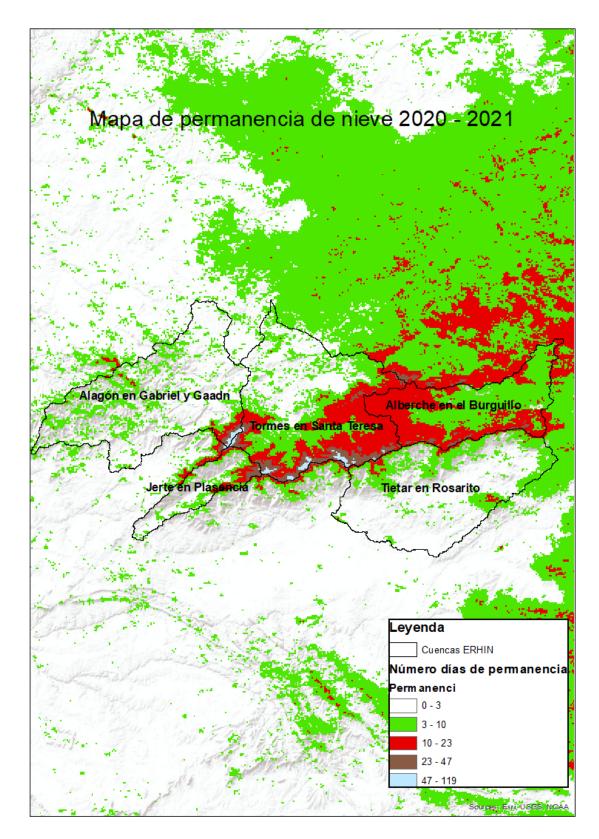


Figura 18. Mapa de permanencia de la cobertura nival (número de días) en la parte occidental del Sistema Central

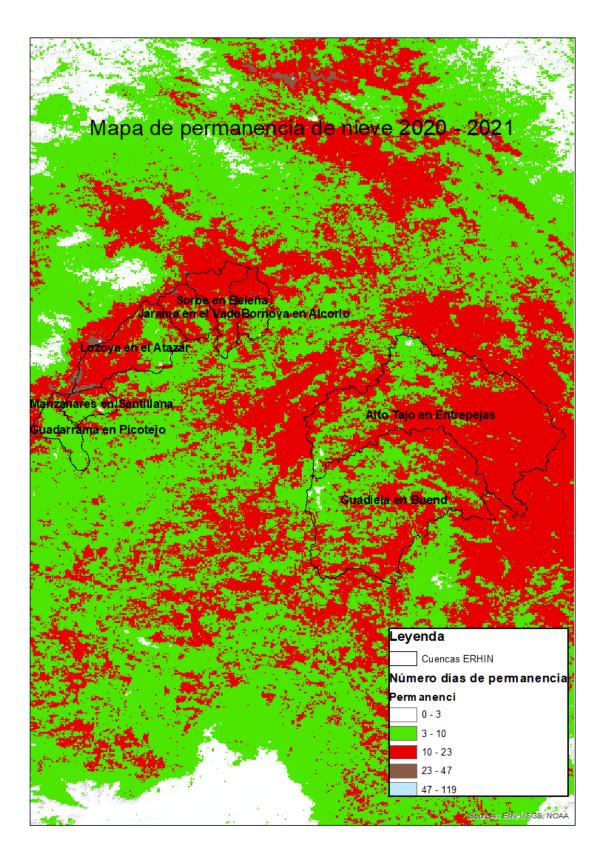


Figura 19. . Mapa de permanencia de la cobertura nival (número de días) en la parte oriental del Sistema Central

4.3.2 Evolución de la superficie innivada

A diferencia del Sistema Cantábrico y del Pirineo, en el Sistema Central el manto de nieve no permanece constante durante la temporada nival, produciéndose procesos múltiples de acumulación y fusión de nieve. Esto da lugar a que la variación temporal de la superficie cubierta por nieve presente una sucesión de picos de mayor o menor entidad seguidos por pérdidas rápidas de superficie cubierta por nieve. De forma similar al Sistema Cantábrico y Pirineos, Filomena tuvo un efecto notable en la evolución temporal del manto de nieve, dando lugar a un máximo que se encontraba cerca de los 14.000 km² (Figura 20).

De igual forma que en los sistemas anteriores, del total de mapas de superficie innivada generados (1 mapa cada 8 días para la temporada de octubre de 2020 a mayo de 2021), se han seleccionado tres puntos correspondientes al inicio de la temporada nival (23/10/2020), momento de máxima acumulación cercano a Filomena (09/01/2021) y fecha correspondiente a la última nevada esperada de la temporada (23/04/2021). La comparativa en la distribución de la superficie cubierta por nieve para tales fechas se puede observar en las Figura 21 y Figura 22.

Figura 20. Evolución temporal de la superficie innivada en km² de las cuencas pertenecientes al Sistema Central. Los mapas de superficie innivada correspondiente a los puntos señalados en rojo se presentan en las Figura 21 y Figura 22)

Figura 21. Mapa de superficie innivada en la parte occidental del Sistema Central en las fechas 23/10/2020 (panel izquierdo), 09/01/2021 (panel central) y 23/04/2021 (panel derecho)

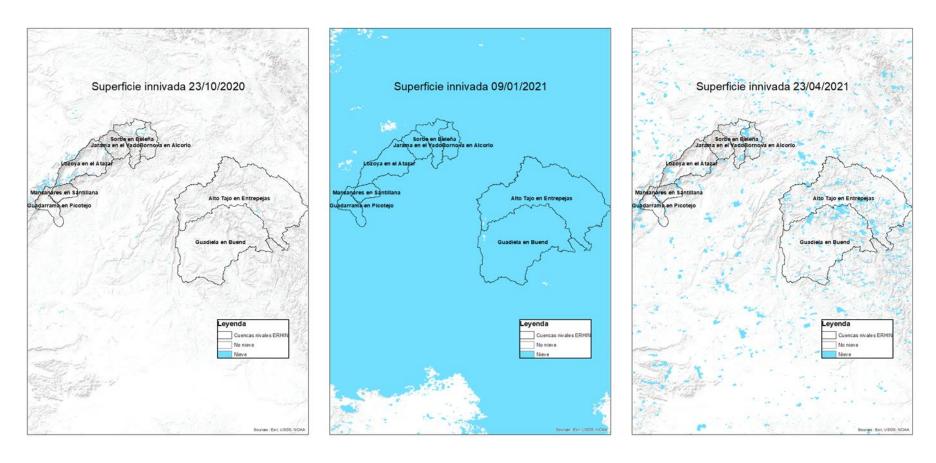


Figura 22. Mapa de superficie innivada en la parte oriental del Sistema Central en las fechas 23/10/2020 (panel izquierdo), 09/01/2021 (panel central) y 23/04/2021 (panel derecho)

4.4 SIERRA NEVADA

4.4.1 Mapa de permanencia de la cobertura nival

[1500 - 2000]

[2000 - 2500]

[2500 - 3000]

[3000 - 3500]

Junto con los Pirineos es la zona donde la nieve se mantiene durante más días. A pesar de localizarse al sur de la Península, las elevadas cotas hacen que la nieve perdure. A partir de los 2000 m de altitud el número máximo de días casi se estabiliza estando más de 120 días (la mitad del tiempo de estudio) cubierto por nieve.

MÍNIMO TIEMPO DE MÁXIMO TIEMPO TIEMPO MEDIO DE PERMANENCIA DE PERMANENCIA **PERMANENCIA BANDA COTAS** [0 - 500]0 0 0 SIERRA NEVADA [500 - 1000] 0 4 1,2 [1000 - 1500] 0 21 2,9

48

89

113

115

12,3

46,7

74,3

74,5

0

8

11

24

Tabla 5. . Permanencia de la cobertura nival por rangos de altitud en Sierra Nevada

Figura 23. Tiempo medio, máximo y mínimo de permanencia de la cobertura nival (número de días) por rangos de altitud en Sierra Nevada

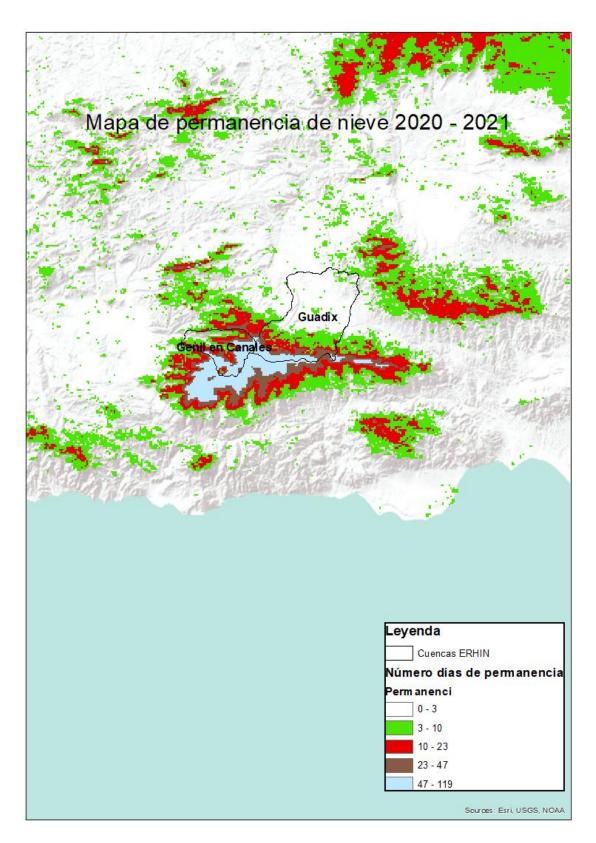


Figura 24. Mapa de permanencia de la cobertura nival (número de días) en Sierra Nevada

4.4.2 Evolución de la superficie innivada

Tal y como se puede ver en la Figura 25, en Sierra Nevada, durante el mes de noviembre y diciembre se producen dos nevadas sucesivas de cierta entidad que hacen que la superficie cubierta por nieve aumente de forma progresiva hasta llegar a su máximo a principios de diciembre. Esta superficie de nieve se ve reducida a gran velocidad hasta que se vuelven a producir nevadas en enero. En comparación con el resto de la península, los efectos de Filomena en esta región fueron mucho menores. De forma similar a lo observado en el Sistema Central y contrariamente a lo que ocurre en Sistema Cantábrico y Pirineo, la superficie innivada en Sierra Nevada oscila entre valores máximos y mínimos como resultado de la concatenación de procesos de acumulación débiles seguidos de procesos de fusión rápidos.

Del total de mapas de superficie innivada generados (1 mapa cada 8 días para la temporada de octubre de 2020 a mayo de 2021), se han seleccionado tres puntos correspondientes al inicio de la temporada nival (23/10/2020), momento de máxima acumulación cercano a Filomena (09/01/2021) y fecha correspondiente a la última nevada esperada de la temporada (23/04/2021). La comparativa en la distribución de la superficie cubierta por nieve para tales fechas se puede observar en la Figura 26.

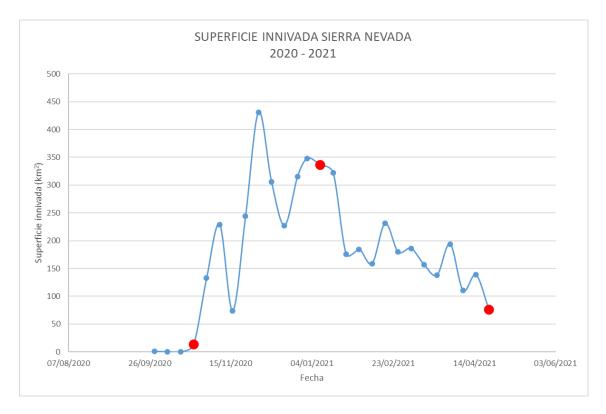


Figura 25. Evolución temporal de la superficie innivada en km² y en porcentaje con respecto al total del área de las cuencas pertenecientes a Sierra Nevada. Los mapas de superficie innivada correspondiente a los puntos señalados en rojo se presentan en la Figura 26)

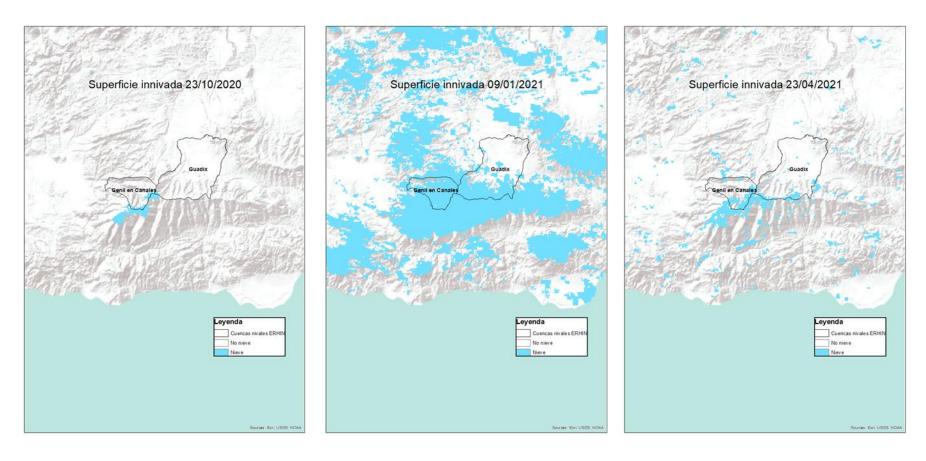


Figura 26. Mapa de superficie innivada en Sierra Nevada en las fechas 23/10/2020 (panel izquierdo), 09/01/2021 (panel central) y 23/04/2021 (panel derecho)