INFORMATIVE INVENTORY REPORT

SUBMISSION TO THE
SECRETARIAT OF THE GENEVA
CONVENTION AND EMEP
PROGRAMME

REPORTING TO THE
EUROPEAN COMMISSION
UNDER DIRECTIVE
(EU) 2016/2284

EDITION 2021 (1990-2019) SPAIN MARCH 2021

Informative Inventory Report (Informe de inventario de emisión de contaminantes a la atmósfera) Ministerio para la Transición Ecológica y el Reto Demográfico Secretaría General Técnica. Centro de Publicaciones 2021

Lengua/s: Inglés NIPO: 665-21-046-5

Gratuita / Unitaria / En línea / pdf

Front Cover photograph:

Sunset on the coast of Mallorca (Mallorca, Spain), by Subdirectorate-General for Clean Air and Industrial Sustainability (SGALSI)

Chapter's inner covers photographs:

Executive summary: World Heritage Site "Las Médulas" (León, Spain), by Germán Méndez Magaña

Introduction: Belmonte de Miranda (Asturias, Spain), by Germán Méndez Magaña

Explanation of key trends: "Peine del Viento" sculpture (The Comb of the Wind) (Guipúzcoa, Spain), by Ma del Rosario Sendin García

Energy (NFR 1): Arnedo (La Rioja, Spain), by Ma del Rosario Sendin García

IPPU (NFR 2): Oil refinery, Cartagena (Murcia, Spain), by Martín Fernández Díez-Picazo

Agriculture (NFR 3): Olive grove landscape (Jaén, Spain), by Mario Fernández Barrena

Waste (NFR 5): Municipal Solid Waste (MSW) Cañada Hermosa (Murcia, Spain), by Mario Fernández Barrena

Natural emissions (NFR 11): Irati Forest (Navarra, Spain), by Ma del Rosario Sendin García

Recalculations and planned improvements: Margarita Xirgu sculpture, Mérida (Badajoz, Spain), by Ma del Rosario Sendin García

Projections: Yamdrok Lake (Tibet, China), by Mario Fernández Barrena

Reporting of gridded emissions and LPS: Aigüestortes i Estany de Sant Maurici National Park (Lérida, Spain), by Mª del Rosario Sendin García

Adjustments: Irati Forest (Navarra, Spain), by Ma del Rosario Sendin García

Annexes: Irati Forest (Navarra, Spain), by Ma del Rosario Sendin García

Glossary: Irati Forest (Navarra, Spain), by Ma del Rosario Sendin García

References: (Madrid, Spain), by Sonia Lázaro Navas

CONTENTS

0.		VE SUMMARY	_
		ral introduction	
	0.2. Emiss	sions coverage	15
	_	raphical coverage	
		nary of main emissions	
	•	stments	
		oliance with National Ceilings	
		analysis for year 2019	
	•	rends	
		tory recalculations and summary of main differences since last Invent	-
		on	
		ned improvements	
	-	orting of PM condensable component	
	_	ementation of EMEP/EEA Guidebook 2019	
	0.13. Web	-page and contact details	30
1.	INTPODI	JCTION	25
Δ.		nal Inventory background	
		utional arrangements	
		itory preparation process	
	1.3.1		
	1.3.2	,	
	1.3.3		
	1.3.4	Data processing	41
	1.3.5	•	
	1.3.6	• •	
	1.4. Meth	ods and data sources	43
	1.4.1	Selection of methods	43
	1.4.2	Consideration of the effect of abatement techniques	45
	1.4.3	. General Reference to Information sources on Activity Variables	46
	1.4.4	Geographical distribution of data	50
	1.5. Key c	ategories	51
	1.6. Quali	ty Assurance and Quality Control (QA/QC) and verification	54
	1.6.1	The QA/QC system	54
	1.6.2	. The QA/QC plan	54
	1.6.3	. Quality objectives	55
	1.6.4	Roles and responsibilities	56
	1.6.5		
	1.6.6	Quality control and documentation	58
	1.6.7	Quality control and documentation tools	60
	1.6.8	. Quality assurance system	63
	1.6.9	. Verification	64
	1.6.1	0. Confidentiality handling	65

		1.6.11.	Main features from QC activities	65
	1.7.	Genera	al uncertainty evaluation	66
		1.7.1.	Quantitative Assessment of the Uncertainty	66
		1.7.2.	Qualitative assessment of the uncertainty	66
	1.8.	Genera	al Assessment Completeness	69
		1.8.1.	Sources not estimated (NE)	70
		1.8.2.	Sources included elsewhere (IE)	76
	Арр	endix 1	: QA Audit certificate	78
2.	EX	PLANAT	TION OF KEY TRENDS	83
	2.1.	Analysi	is by pollutant	83
		2.1.1.	Nitrogen Oxides (NOx)	84
		2.1.2.	Non-Methane Volatile Organic Compounds (NMVOC)	86
		2.1.3.	Sulphur Oxides (SOx)	89
		2.1.4.	Ammonia (NH ₃)	91
		2.1.5.	Fine Particulate Matter (PM _{2.5})	94
		2.1.6.	Carbon Monoxide (CO)	97
		2.1.7.	Lead (Pb)	98
		2.1.8.	Cadmium (Cd)	100
		2.1.9.	Mercury (Hg)	102
		2.1.10.	Dioxins and Furans (PCDD/F)	103
		2.1.11.	Polycyclic Aromatic Hydrocarbons (PAHs)	105
	2.2.	Analysi	is by activity category	107
		2.2.1.	Energy (NFR 1)	108
		2.2.2.	Industrial Processes and Product Use (NFR 2)	109
		2.2.3.	Agriculture (NFR 3)	110
		2.2.4.	Waste (NFR 5)	111
3.	EN	ERGY (N	VFR 1)	119
	3.1.	Sector	overview	120
	3.2.	Sector	analysis	122
		3.2.1.	Key categories	124
		3.2.2.	Analysis by pollutant	124
		3.2.3.	Condensable component of PM ₁₀ and PM _{2.5}	133
	3.3.	Major	changes	136
	3.4.	Key cat	tegories analysis	137
		A.	Public electricity and heat production (1A1a)	
		B.	Petroleum refining (1A1b)	144
		C.	Combustion in industry (1A2)	148
		D.	Air traffic at airports (1A3a)	155
		E.	Road Transport (1A3b)	158
		F.	National navigation (1A3d)	165
		G.	Combustion in other sectors (1A4)	167
		H.	Fugitive emissions from fuels (1B)	175
	3.5.	Memo	items	180

	3.6.	Recalcu	ılations	180
	3.7.	Sector	improvements	213
	Арр	endix 3.	.1: Inventory Energy Balance (IEB)	215
4.		-	2)	
			overview	
	4.2.	Sector	analysis	227
		4.2.1.	Key categories	
		4.2.2.	Analysis by pollutant	229
		4.2.3.	Condensable component of PM ₁₀ and PM _{2.5}	238
	4.3.	Major	changes	240
	4.4.	Key cat	egories analysis	240
		A.	Mineral industry (2A)	241
		B.	Chemical industry (2B)	244
		C.	Metal Production (2C)	253
		D.	Solvent use (2D)	261
		E.	Other industrial processes and product use (2G+2H+2I+2J+2K+2L)	267
	4.5.	Recalcu	ulations	269
	4.6.	Sector	improvements	275
5.			URE (NFR 3)	
			overview	
	5.2.		analysis	
		5.2.1.	,8	
		5.2.2.	Analysis by pollutant	
			Condensable component of PM ₁₀ and PM _{2.5}	
		•	changes	
	5.4.	•	regories analysis	
		Α.	Manure management (3B)	
			Crop production and agricultural soils (3D)	
		C.	Field burning of agricultural waste (3F)	
			ılations	
	5.6.	Sector	improvements	332
6.	W	ASTF (NI	FR 5)	339
			overview	
	6.2.	Sector	analysis	341
		6.2.1.	Key categories	342
		6.2.2.	Analysis by pollutant	342
		6.2.3.	Condensable component of PM ₁₀ and PM _{2.5}	
	6.3.	Major o	changes	
		•	egories analysis	
		Α.	Incineration (5C)	
		B.	Wastewater handling (5D)	
		C.	Other waste (5E)	
	6.5	Recalcu	· ·	262

	6.6.	Sector	improvements	380
7.	NA	TURAL	EMISSIONS (NFR 11)	.385
	7.1.	Sector	overview	385
	7.2.	Sector	analysis	385
		7.2.1.	Key categories	385
		7.2.2.	Analysis by pollutant	386
	7.3.	Major	changes	389
	7.4.	Activity	y analysis	389
		7.4.1.	Forest Fires (11B)	389
8.	RE	CALCUL	ATIONS AND PLANNED IMPROVEMENTS	.397
			ew	
	8.2.	Analys	is by pollutant	402
		8.2.1.		
		8.2.2.	NMVOC	
		8.2.3.	SOx	404
		8.2.4.	NH ₃	405
		8.2.5.	PM _{2.5}	406
		8.2.6.	PM ₁₀	407
		8.2.7.	TSP	408
		8.2.8.	BC	409
		8.2.9.	CO	410
		8.2.10.	Pb	411
		8.2.11.	Cd	412
		8.2.12.	Hg	413
		8.2.13.	As	414
		8.2.14.	Cr	415
		8.2.15.	Cu	416
		8.2.16.	Ni	417
		8.2.17.	Se	418
		8.2.18.	Zn	419
		8.2.19.	DIOX	420
		8.2.20.	PAH	421
		8.2.21.	HCB	422
		8.2.22.	PCB	423
	8.3.	Summa	ary of categories/pollutants recalculated in the reported period 1990-2018	424
	8.4.	Planne	d improvements	427
		8.4.1.	General/Cross-cutting	427
		8.4.2.	Energy (NFR 1A, 1B)	427
		8.4.3.	Industrial processes and other product use (NFR 2)	429
		8.4.4.	Agriculture (NFR 3)	429
		8.4.5	Waste (NFR 5)	429

9.	PR	OJECTI	ONS	435
	9.1.	Introd	luction	435
	9.2.	Institu	ıtional arrangements	436
		9.2.1.	Legal framework	436
		9.2.2.	Cross-cutting issues	436
	9.3.	Gener	al description of methodologies and models for estimating projector	ed emissions
				436
		9.3.1.	Step 0: setting the general framework for modelling	437
		9.3.2.	Step 1: modelling sectors, policies and measures	437
		9.3.3.	Step 2: estimation of emissions	439
		9.3.4.	Step 3: assessment of objectives, policies and measures	439
	9.4.	Policie		
	9.5.	Projec	ctions results	441
		9.5.1.	Projections by pollutant	443
	9.6.	Projec	tions editions comparison	456
		-	•	
11				
		•		
		-		ments 436 ork 436 issues 436 of methodologies and models for estimating projected emissions 436 ig the general framework for modelling 437 ling sectors, policies and measures 439 ation of emissions 439 ment of objectives, policies and measures 439 s 439 pollutant 444 pomparison 456 p EMISSIONS AND LPS 463 p EMISSIONS AND LPS 463 and prior to 2021 considered for compliance 473 and prior to 2021 considered for compliance 473 and prior to 2021 considered for compliance 474 and prior to 2021 considered for compliance 473 and prior to 2021 considered for compliance 474 and prior to 2021 considered for compliance 473 and prior to 2021 considered for compliance 473 and prior to 2021 considered for compliance 474
			•	
		•	•	
	11.6	New a	adjustment applications requested	479
A۱	INEX	1: KEY	CATEGORY ANALYSIS	485
A۱۱	INEX	. Introduction	532	
GL	OSSA	ARY		535
RE	FERE	NCES.		543

0. EXECUTIVE SUMMARY

CONTENTS

0.	EXECUTIVE SUMMARY	15
0.1.	General introduction	15
0.2.	Emissions coverage	15
0.3.	Geographical coverage	15
0.4.	Summary of main emissions	16
0.5.	Adjustments	16
0.6.	Compliance with National Ceilings	18
0.7.	Data analysis for year 2019	
0.8.	Key trends	21
0.9.	Inventory recalculations and summary of main differences since last Inventory edition	22
0.10.	Planned improvements	28
0.11.	Reporting of PM condensable component	28
0.12.	Implementation of EMEP/EEA Guidebook 2019	29
0.13.	Web-page and contact details	30

FIGURES

Figure 0.7.1	Distribution of emissions in year 2019 by main activity sectors	19
Figure 0.7.2	Distribution of main pollutants emissions in year 2019	20
Figure 0.8.1	Relative variation of air pollutants emissions (100% in 1990 or 2000 for PM and BC)	22
Figure 0.8.2	Relative variation of priority heavy metals and POPs emissions (100% in 1990)	22
TABLES		
Table 0.2.1	Pollutants emission data reported	15
Table 0.3.1	Geographical coverage under the different reporting obligations	15
Table 0.4.1	National (excluding Canary Islands) total emission data	16
Table 0.5.1	Adjustments applications by Spain	17
Table 0.5.2	Adjustments applied by Spain in 2021 Inventory edition	17
Table 0.6.1	NECD Ceiling compliance assessment	18
Table 0.6.2	Gothemburg Protocol Ceiling compliance assessment	18
Table 0.9.1	Summary of categories/pollutants estimated for first time in this Inventory edition	23
Table 0.9.2	Relative impact of recalculations in the National Totals (excluding Canary Islands)	23
Table 0.9.3	Explanations of recalculations for the most contributing categories to the total recalculation	
	(reported period 1990-2018)	24
Table 0.9.4	Explanations of recalculations for the most contributing categories to the total recalculation	
	(reported period 1990-2018)	25
Table 0.9.5	Summary of recalculations for NOx	26
Table 0.9.6	Summary of recalculations for NMVOC	26
Table 0.9.7	Summary of recalculations for SOx	27
Table 0.9.8	Summary of recalculations for NH ₃	27
Table 0.9.9	Summary of recalculations for PM _{2.5}	28
Table 0.12.1	Summary of implementation of updated chapters from EMEP/EEA GB 2019	29

0. EXECUTIVE SUMMARY

Chapter updated in March, 2021.

0.1. General introduction

The 2021 edition of the Informative Inventory Report (IIR) has been elaborated by the Spanish National Inventory System (SEI) within the Ministry for the Ecological Transition and the Demographic Challenge (MITERD) in accordance with its regulatory framework established by Law 34/2007 for air quality and atmosphere protection, and Royal Decree 818/2018.

This report is compiled to accompany the Spain's 2021 emissions inventory data submission under the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (CLRTAP), and under Directive (EU) 2016/2284 of the European Parliament and of the Council, on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. It contains detailed information on annual emission estimates of air quality pollutants by source in Spain for the EMEP domain (excluding the Canary Islands) from 1990 onwards.

0.2. Emissions coverage

Pollutants covered by the Inventory and for which emissions data are reported, are indicated in the following table.

Main Pollutants. SOx, NOx, NH₃, CO, NMVOC 1990-2019 Particulate Matter (PM), including condensable component. 2000-2019 PM_{2.5}, PM₁₀, TSP Pollutant's Heavy Metals (priority). Pb, Cd, Hg 1990-2019 coverage Heavy Metals (additional). 1990-2019 As, Cr, Cu, Ni, Se, Zn Black Carbon. ВС 2000-2019 Persistent Organic Pollutants (POPs). DIOX, PAHs, HCB, PCBs 1990-2019

Table 0.2.1 Pollutants emission data reported

0.3. Geographical coverage

The Spanish National Emission Inventory under Directive (EU) 2016/2284 and under CLRTAP covers the whole national mainland territory in the Iberian Peninsula, the archipelago of Balearic Islands and the cities of Ceuta and Melilla.

The Canary Islands are neither covered under Directive (EU) 2016/2284, according to its Article 2.2, nor by CLRTAP grid¹, and therefore, their emissions are neither included in this report, nor in the accompanying NFR reporting tables.

Table 0.3.1 Geographical coverage under the different reporting obligations

Report obligation	Emissions geographical coverage	Observations
NEC Directive 2016/2284	NEC Directive 2016/2284	Canary Islands excluded

http://www.ceip.at/ms/ceip_home1/ceip_home/new_emep-grid/

Report obligation	Emissions geographical coverage	Observations		
LRTAP Convention	EMEP grid domain	Canary Islands excluded		
UNFCCC Inventory for greenhouse gas emissions	Total National Territory	Including Canary Islands		

The different geographic coverage (including or excluding the Canary Islands) is the main reason for differences in reported emissions national totals under the respective reporting obligations (CO, NMVOC, NOx, SO₂ and NH3 are reported to UNFCCC as precursors of greenhouse gases).

Annex 4 includes the emissions corresponding to the entire national territory (Canary Islands included).

In addition, emissions of NOx and NMVOC pollutants from 1987 and 1988 are included in compliance with the Protocol concerning the Control of Emissions of Nitrogen Oxides and the Protocol concerning the Control of Emissions of Volatile Organic Compounds, respectively.

0.4. Summary of main emissions

National total emission data (excluding the Canary Islands) reported under Directive (EU) 2016/2284 and under CLRTAP in the 2021 edition of the National Inventory, excluding Memo items, are shown in the following tables for all covered pollutants.

Table 0.4.1 National (excluding Canary Islands) total emission data

Year	NOx (kt)	NMVOC (kt)	SOx (kt)	NH ₃ (kt)	PM _{2.5} (kt)	PM ₁₀ (kt	TSP (kt)	BC (kt)	CO (kt)
1990	1,334	1,026	2,039	466					3,907
2005	1,346	787	1,205	483	147	238	331	38	1,857
2018	690	610	196	475	136	198	264	30	1,639
2019	646	608	149	471	135	195	261	29	1,600

Year	Pb (t)	Cd (t)	Hg (t)	As (t)	Cr (t)	Cu (t)	Ni (t)	Se (t)	Zn (t)	DIOX (g I TEQ)	PAHs (t)	HCB (kg)	PCB (kg)
1990	2,586	29	11	15	28	100	165	7	333	432	88	381	26
2005	132	11	7	14	35	174	175	9	393	185	71	136	36
2018	93	8	4	14	27	154	49	7	455	173	69	13	27
2019	98	7	3	13	25	152	44	7	451	172	64	13	26

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI webpage WebTable.

0.5. Adjustments

Adjustment applications submitted so far by Spain and their corresponding status is listed in the following table.

Table 0.5.1 Adjustments applications by Spain

Pollutant	NFR Category	Adjustment submission year	CLRTAP status	NECD status	Included in 2021 Inventor y edition	Included for compliance in years
NOx	1A3bi – Passengers cars	2014	Accepted ¹	Accepted	Yes	2010-2012
NOx	1A3biii – Heavy-duty vehicles	2014	Accepted ¹	Accepted	Yes	2010-2012
NOx	3B – Manure management	2017	Accepted ²	Accepted ³	Yes	2010-2012
NH ₃	3D1a – Agricultural Soils- N-fertilisers	2017	Rejected⁴	Rejected ³	No	-
NH ₃	3B + 3Da2a + 3Da31a – Manure management	2017	Rejected⁴	Rejected ³	No	-

¹ Approved by the EMEP Steering Body September 2015 (ECE/EB.AIR/GE.1/2015/2–CE/EB.AIR/WG.1/2015/2).

In the 2021 Inventory edition, NOx approved adjustments have only been included in NFR reporting Annex I tables for years 2010-2012, where total national emissions exceeded the national ceiling. In IIR's Chapter 11 and reporting Annex VII the adjustment time series for the years 2010-2019 is reported in order to show completeness, consistency and transparency of the calculation across the full time series.

The following table shows the approved adjustments applied by Spain in its 2021 inventory edition (as reported in Annex VII reporting template).

Table 0.5.2 Adjustments applied by Spain in 2021 Inventory edition

Pollutant	Sector	NFR	2010	2011	2012
NOx	Road	1A3bi	-61.22	-58.72	-55.52
NOx	Transport	1A3biii	-81.28	-73.23	-63.70
NOx		3B1a	-0.80	-0.78	-0.82
NOx		3B1b	-1.11	-1.09	-1.07
NOx		3B2	-0.55	-0.44	-0.48
NOx		3B3	-0.33	-0.32	-0.30
NOx		3B4d	-0.43	-0.36	-0.37
NOx	Agriculture	3B4e	-0.19	-0.20	-0.19
NOx		3B4f	0.00	0.00	0.00
NOx		3B4gi	-0.60	-0.58	-0.51
NOx		3B4gii	-0.97	-0.99	-0.99
NOx		3B4giv	-0.45	-0.47	-0.47
TOTAL NO	κ		-147.8	-137.1	-124.3

In its 2021 Inventory edition, Spain submitted updated figures for years 2010-2019 using the same methods and criteria used for the calculation of emissions in the year the adjustments were approved and coherent with the 2021 Inventory edition emission data.

² Approved by the EMEP Steering Body September 2017 (ECE/EB.AIR/GE.1/2017/2-CE/EB.AIR/WG.1/2017/2).

³ Decision by the European Commission (Decision C(2018) 1565 of 12.03.2018.

⁴ Rejected by the EMEP Steering Body in its Fourth Joint Session of the EMEP Steering Body and the Working Group on Effects- ECE/EB.AIR/GE.1/2018/2 - ECE/EB.AIR/WG.1/2018/2.

0.6. Compliance with National Ceilings

2019

699

83%

National total emission data for compliance (including adjustments) are shown in the following tables and compared to the emission ceilings set by the NEC Directive and the CLRTAP's Gothenburg Protocol. Compliance percentages below 100% (marked in green) indicate compliance of the ceiling, while percentages higher than 100% (marked in red) identify ceiling exceedance.

NOx NMVOC **SOx** NH₃ **Ceiling NECD** (kt) 847 662 746 353 2010 95% 244 783 92% 629 33% 431 122% 2011 784 93% 605 91% 281 38% 418 118% 2012 746 88% 583 88% 284 38% 414 117% 2013 784 93% 568 86% 221 30% 421 119% 785 93% 439 124% 2014 572 86% 242 32% 94% 127% 2015 792 592 89% 259 35% 448 2016 746 88% 605 91% 216 29% 460 130% 2017 740 87% 618 93% 219 29% 479 136% 2018 698 82% 624 94% 197 26% 470 133%

Table 0.6.1 NECD Ceiling compliance assessment

Table 0.6.2 Gothemburg Protocol Ceiling compliance assessment

93%

198

471

133%

26%

625

Ceiling GP	N	Ох	NM	voc	S	Ох	N	H ₃	
(kt)	84	17	60	69	7.	74	353		
2010	783	92%	629	94%	244	32%	431	122%	
2011	784	93%	605	90%	281	36%	418	118%	
2012	746	88%	583	87%	284	37%	414	117%	
2013	784	93%	568	85%	221	29%	421	119%	
2014	785	93%	572	86%	242	31%	439	124%	
2015	792	94%	592	88%	259	33%	448	127%	
2016	746	88%	605	90%	216	28%	460	130%	
2017	740	87%	618	92%	219	28%	479	136%	
2018	698	82%	624	93%	197	25%	470	133%	
2019	699	83%	625	93%	198	26%	471	133%	

The emissions of NOx were below the ceiling set by the NEC Directive and the CLRTAP's Gothenburg Protocol (847 kt) for the years 2010-2019, taking into account the adjustments.

The emissions on Non-Methane Volatile Organic Compounds (NMVOC) were below the ceiling set by the NEC Directive and the Gothenburg Protocol (662 kt and 669 kt respectively) for years 2010-2019.

The emissions of sulphur oxides (SOx) were below the ceiling set by the NEC Directive and the Gothenburg Protocol (746 kt and 774 kt respectively) for years 2010-2019.

Ammonia (NH₃) emissions were above (+25% on average) the ceiling set by the NEC Directive and the Gothenburg Protocol for Spain (353 kt) since 2010. Spain considers that the ceiling is

clearly underestimated according to the applicable current methodologies. An adjustment for ammonia emission in the Agriculture sector was requested in 2018². However, this was rejected arguing that the application was not a valid case³. For more detailed information, please, refer to IIR Chapter 11 "Adjustments".

0.7. Data analysis for year 2019

The following chart shows relative emissions in the year 2019 broken down by main NFR categories, as well as relative reduction of emissions (in 2019 based on 1990 levels, or 2000 for the case of particulate matter and black carbon).

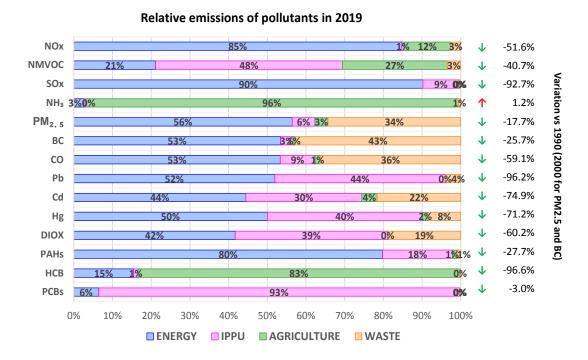


Figure 0.7.1 Distribution of emissions in year 2019 by main activity sectors

Energy activities (NFR 1) are the main contributors to most of the covered emissions. Industrial Processes and Product Use (IPPU) (NFR 2) are the main contributors for NMVOC and PCBs emissions. Agricultural activities (NFR 3) are responsible for the most part of NH₃ and HCB emissions. Finally, Waste sector (NFR 5) is a residual contributor to most of the pollutants, except for black carbon (BC), PM_{2.5} and CO.

Emissions of the five main pollutants in 2019 in Spain (excluding the Canary Islands) are graphically shown in the following chart, with the correspondence to the 12 aggregated sectors considered in this Chapter.

http://webdab1.umweltbundesamt.at/download/adjustments2017/ES AdjApp2017.zip?cgiproxy skip=1

Decision by the European Commission (Decision C(2018) 1565 of 12.03.2018.

Emissions of the different pollutants, expressed in kt, have been added up to fit to a single chart, this without presuming any comparability of their adverse effect on the environment and on human health.

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI webpage WebTable.

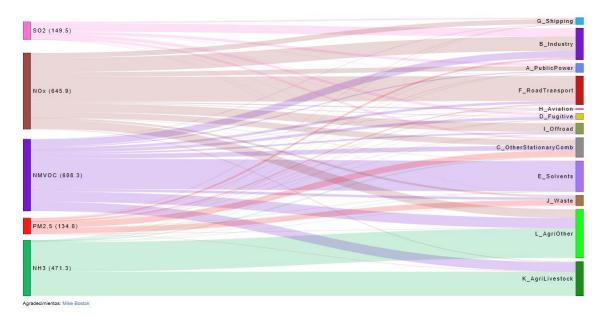


Figure 0.7.2 Distribution of main pollutants emissions in year 2019

In 2019, approximately 646 kt of nitrogen oxides (NOx), expressed as nitrogen dioxide, were released in Spain. The major contributors to NOx emissions were Road transport (33% of total NOx emissions), Industries (19%) and Off-road machinery (11%).

Approximately 608 kt of NMVOC were released in 2019. The major contributors were Solvents (42% of total NMVOC emissions. Agriculture is the following contributing activity generating 27% of the national NMVOC emissions.

SOx emissions in 2019 accounted for 149 kt with Industry (47%), Public power generation (15%), Fugitive emissions (16%) and Other stationary combustion (12%) as the main contributors to these emissions.

Approximately 471 kt of ammonia (NH₃) were released in Spain in 2019, being the agriculture activities the main sources of emissions. Animal manure applied to soils was the largest emitter representing 28% of total ammonia emissions, followed by Inorganic N-fertilizers accounting for 16%, Manure management – swine (16%) and Urine and dung deposited by grazing animals (8%).

Finally, approximately 135 kt of Fine Particulate Matter ($PM_{2.5}$) were emitted in Spain in 2019. Other stationary combustion was the largest contributing activity with 38% of total $PM_{2.5}$ emissions, and Open burning of waste (agricultural waste) with 33%.

0.8. Key trends

Reduction in emissions can be observed for all pollutants covered by the National Inventory between 1990 and 2019 (see figure 0.7.1 above), except for NH₃. More information is provided in Chapter 2 "Key trends" and in the corresponding sectorial sections of this IIR.

NOx emissions in 2019 decreased by -51.6% when compared to 1990 and continuing the trend with a -6.4% reduction compared to 2018. The most relevant reductions affected Road Transport, which dropped its NOx emissions by 62.4% since 1990 due to the introduction of EURO standards. Public electricity generation also experienced a decrease by 80.8% since 1990, driven by the progressive introduction of abatement techniques in thermal power plants and the shift to combined cycle gas plants.

NMVOC emissions in 2019 declined by -40.7% compared to 1990 and decreased by -0.3% compared to 2018. The historic emissions reduction is mainly related to reductions in road transport emissions (-94.0%) due to the introduction of EURO standards. The second driver is the drop of emissions under solvents (-29.9%) due to the entry into force of the legislation on paintings and painting installations. Finally, fugitive emissions dropped by -47% due mainly to the entry into force since 2000 of regulations on the distribution of oil products.

SOx emissions in 2019 decreased by -92.7% compared to 1990 and continuing the trend with a -23.8% reduction compared to 2018. Public electricity generation has reduced these emissions by -98.4% because of the progressive introduction of desulphurization abatement techniques in thermal power plants and the shift from coal power plants to combined cycle gas plants. Industry emissions also decreased by -83.6% driven by the progressive introduction of desulphurization abatement techniques and the shift towards fuels with less sulphur content.

 NH_3 emissions in 2019 increased by 1.2% compared to 1990 but decreased by -0.7% when compared to 2018. The trend is essentially ruled by the evolution of agriculture activities the largest contributing sector with respect to these emissions.

 $PM_{2.5}$ emissions in 2019 decreased by -17.7% compared to 2000, and by -0.9 compared to 2018. The most relevant reduction affected road transport, as its $PM_{2.5}$ emissions have dropped by -65.1% since 2000 mostly driven by the introduction of EURO standards

In the following graphs, relative variation of emissions since 1990 is shown for the main air pollutants, including BC and CO, priority heavy metals and POPs.

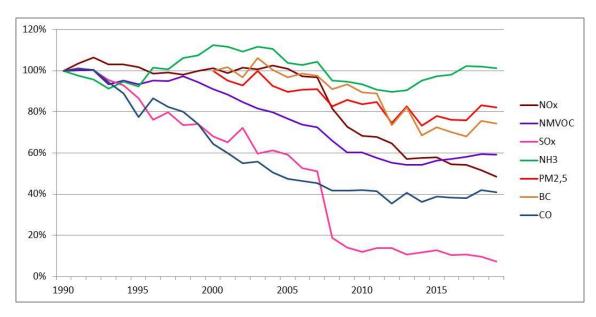


Figure 0.8.1 Relative variation of air pollutants emissions (100% in 1990 or 2000 for PM and BC)

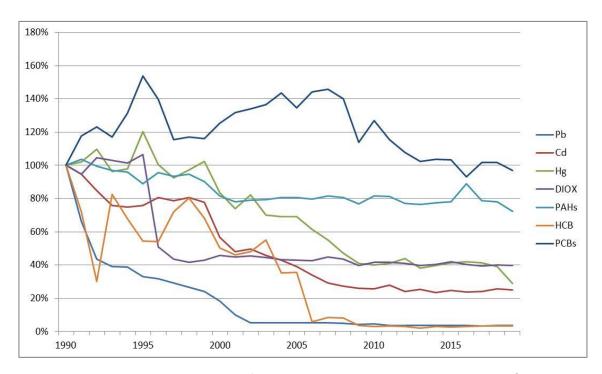


Figure 0.8.2 Relative variation of priority heavy metals and POPs emissions (100% in 1990)

0.9. Inventory recalculations and summary of main differences since last Inventory edition

Throughout the Spanish Inventory, emission estimates are updated annually across the fulltime series in response to new research and revisions to data sources, as well as error corrections and methodology changes or as a result of the implementation of reviews' recommendations. Main features regarding revised estimates are presented below:

In this edition of the Inventory, 74 categories⁴ (75% of the total accounting for the National Total) have been recalculated along with the reported period 1990-2018. Among them, for 3 categories recalculations consisted of new estimations for one or several pollutants⁵ for which no estimations had been provided in the last edition. Furthermore, for category 2C2 emissions estimates of CO have been replaced by a notation key. Regarding category 2C2, CO emissions have been replaced by NA notation key as these emissions do not occur. For details on completeness and use of notation keys, please refer to section 1.8. Of the total categories and pollutants with emissions estimates, the 25% has not been recalculated.

Table 0.9.1 Summary of categories/pollutants estimated for first time in this Inventory edition

NFR Category	Pollutant
1A1c	НСВ
1A3dii	Individual PAH: B(a)P and B(k)F
1A4ciii	Individual PAH: B(a)P and B(k)F

As a summary, the relative impact of recalculations in the National Totals of Emissions for pivot years is shown in the following tables.

Table 0.9.2 Relative impact of recalculations in the National Totals (excluding Canary Islands)

Year	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со
1990	1.1%	0.8%	0.0%	0.7%	-	-	-	-	1.8%
2000	1.1%	1.5%	0.1%	1.4%	0.7%	4.5%	3.3%	13.8%	4.3%
2005	0.9%	2.0%	0.1%	1.4%	0.6%	4.9%	3.5%	11.4%	7.1%
2018	1.2%	2.2%	0.3%	1.0%	8.6%	0.3%	0.8%	12.5%	0.5%
1990-2018	-1.3%	-1.3%	-0.1%	+1.1%	+0.8%	5.4%	3.8%	16.6%	4.6%

Year	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	PAHs	НСВ	РСВ
1990	0.0%	5.7%	1.0%	46.4%	9.7%	0.1%	3.6%	7.3%	21.6%	0.3%	36.2%	0.0%	0.4%
2000	0.3%	11.5%	0.9%	60.9%	9.4%	0.4%	5.3%	7.6%	21.8%	0.6%	46.4%	0.0%	1.3%
2005	1.4%	17.1%	1.1%	57.5%	10.9%	0.3%	8.9%	7.0%	20.7%	0.6%	43.4%	0.0%	0.3%
2018	3.5%	53.5%	3.3%	188.1%	15.6%	1.5%	21.3%	16.4%	45.9%	4.1%	51.0%	1.6%	0.9%
1990-2018	0.3%	14.7%	1.2%	75.7%	11.6%	0.5%	7.1%	9.1%	24.6%	0.3%	45.1%	0.0%	0.7%

Regarding major changes performed, when aggregated variations per category for the reported period 1990-2018 are listed and rated from the highest to the lowest absolute value, 12 categories account for the 95% of the accumulated contribution as a percentage of the recalculation over the total variation observed in absolute value (henceforth, contribution level or CL). As shown in the following table, recalculations in categories 2C2, 5C2 and 1A4bi are dominant in this Inventory Edition.

-

Only categories and pollutants with more than a ±0.00001% variation have been accounted for as a real recalculation. Minor variations could be found under this threshold due to rounding effects in the calculation process or minor error corrections performed.

New estimations have been performed in this inventory edition for individual PAH following the recommendation ES-0A-2019-0001 made by the TERT in the 2019 NECD.

Table 0.9.3 Explanations of recalculations for the most contributing categories to the total recalculation (reported period 1990-2018)

NFR	DESCRIPTION	Edition 2020
2C2	Ferroalloys production	Deletion of CO emissions according to a methodological update to EEA/EMEP 2019 Guidebook where no information for CO emission factor is provided.
5C2	Open burning of waste	Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) of EMEP/EEA 2019 and change due to correction of a match error in EF/AD units (from dry matter units to waste units). Recalculation of PAH emission due to changes of EF values (EMEP 2019 v.nov2020). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.
1A4bi	Residential: Stationary	Updated EF to EMEP/EEA GB 2019. Relocation of district heating emissions. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with two year lag compared with inventory report. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook and has replicated them into 2019. Furthermore, the list of crops that produce particulate matter emissions has been updated.
2C1	Iron and steel production	Relocation of CO from blast furnaces to category 1A2a, as well as update of the CO EF for basic oxygen furnaces, according to EMEP/EEA 2019 Guidebook.
2D3d	Coating applications	The source of information for the activity variable, has updated the procedure for calculating the amount of paint consumed in the construction and industrial sectors with retroactive effect.
1A4ai	Commercial/institutional: Stationary	Updated EF to EMEP/EEA GB 2019. Relocation of district heating emissions. Correction on emissions estimates in a single LPS. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.
3Da3	Urine and dung deposited by grazing animals	Recalculation due to completion of new zootechnical document implementation for goats with changes in grazing distribution and N-excretion. In addition, this edition has done a recalculation due to changes in NH3-EFs from EMEP/EEA Guidebook (2019) for grazing animals emission. Correction of different errors in population data also affect the calculation of this category.
1A4ciii	Agriculture/Forestry/Fishing: National fishing	Method improvement to T2 estimates (EMEP/EEA GB 2019) as application of recommendation ES-1A4ciii-2020-0002 (NECD Review 2020). Activity data updated.
3Da2a	Animal manure applied to soils	Recalculation due to completion of new zootechnical document implementation for goats, nitrogen balance (BNPAE) alterations and correction of different errors in population data. Recalculation due tu correction of nitrogen applied tu soils for the calculation of NOx emissions (change resulting from the 2020 NECD review).
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	Fuel balance recalculation for consistency with energy statistics, together with the reallocation of emissions from category 1A2gviii as a consequence of the correction of a mistake.
1A2gviii	Stationary combustion in	Fuel balance recalculation for consistency with energy statistics,

NFR	DESCRIPTION	Edition 2020
	manufacturing industries and construction: Other (please specify in the IIR)	together with the reallocation of emissions from category 1A2gviii as a consequence of the correction of a mistake.

In terms of impact on each pollutant, category 5C2 registers the biggest values of CL in more cases, followed by 1A4bi; to highlight as well category 1A4ai, besides with the 95% of Ni recalculation. On the contrary, other categories have impact only in one pollutant, but they are the main contribution on its recalculation: category 2C2 with 75% of CO recalculation, and category 2D3d with 66% of SOx recalculation.

Table 0.9.4 Explanations of recalculations for the most contributing categories to the total recalculation (reported period 1990-2018)

NFR	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	PAHs	нсв	PCBs
1A2f	2%	0%	45%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%
1A2gviii	1%	0%	45%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	1%	0%	0%	0%	0%	2%	0%
1A4ai	0%	0%	0%	0%	0%	0%	0%	10%	0%	10%	2%	11%	1%	29%	5%	95%	1%	2%	1%	0%	0%	27%
1A4bi	0%	2%	0%	1%	20%	4%	4%	1%	4%	48%	63%	76%	1%	66%	19%	2%	7%	60%	5%	1%	3%	0%
1A4ciii	21%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	13%	0%	0%	0%	0%	0%	0%	0%
2C1	0%	0%	0%	0%	1%	0%	0%	0%	14%	9%	0%	0%	0%	1%	1%	0%	0%	2%	1%	0%	0%	6%
2C2	0%	0%	0%	0%	0%	0%	0%	0%	75%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2D3d	0%	66%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3Da2a	27%	3%	0%	11%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3Da3	2%	0%	0%	65%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3Dc	0%	0%	0%	0%	14%	76%	71%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
5C2	45%	25%	9%	0%	60%	19%	22%	88%	7%	28%	32%	0%	98%	1%	38%	0%	86%	33%	31%	99%	0%	0%

In the IIR chapter 8 "Recalculations", a detailed analysis by pollutant is performed of which a summary is provided in the following tables.

Table 0.9.5 Summary of recalculations for NOx

NOx

In the 2021 inventory edition, 39 out of 60 categories estimated (65%) recalculated for reported year 2018.

For reported year 2018 recalculations implied a revised estimation of total emissions of -8.1 kt (-1.2%). On average, for the whole inventoried time series, revised emissions estimations were -1.3% lower.

Main contributor to the recalculation was category 5C2-Open burning of waste: Recalculation due to change in EF table used from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) of EMEP/EEA 2019 and change due to correction of a match error in EF/AD units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated 2018 according the yearbook, and has replicated them into 2019.

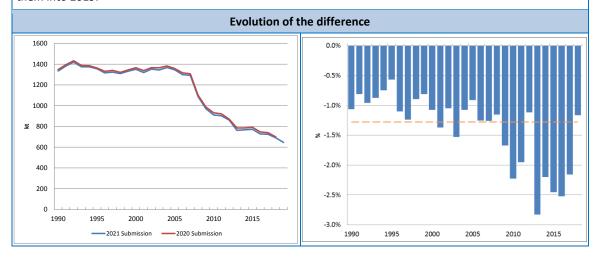


Table 0.9.6 Summary of recalculations for NMVOC

NMVOC

In the 2021 inventory edition, 50 out of 70 categories estimated (71%) recalculated for reported year 2018.

For reported year 2018 recalculations implied a revised estimation of total emissions of -13.8 kt (-2.2%) On average, for the whole inventoried time series, revised emissions estimations were -1.3% lower.

Main contributors to the recalculation was categories 2D3d-Coating applications: The source of information for the activity variable, has updated the procedure for calculating the amount of paint consumed in the construction and industrial sectors with retroactive effect.

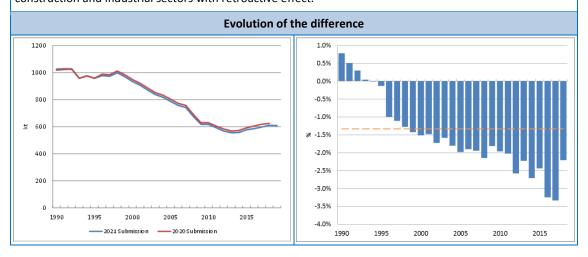


Table 0.9.7 Summary of recalculations for SOx

SOx

In the 2021 inventory edition, 30 out of 43 categories estimated (70%) recalculated for reported year 2018.

For reported year 2018 recalculations implied a revised estimation of total emissions of -0.25kt (-0.3%). On average, for the whole inventoried time series, revised emissions estimations were -0.1% lower.

Main contributor to the recalculation was category 1A2f-Stationary combustion in manufacturing industries and construction. It is due to fuel balance recalculation for consistency with energy statistics, together with the reallocation of emissions from category 1A2gviii as a consequence of the correction of a mistake

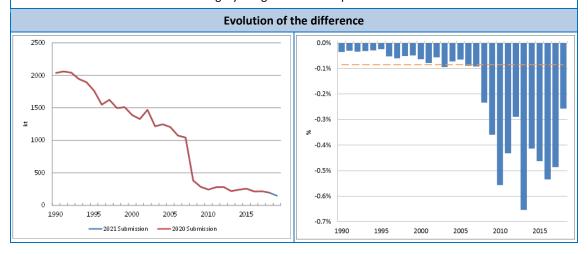


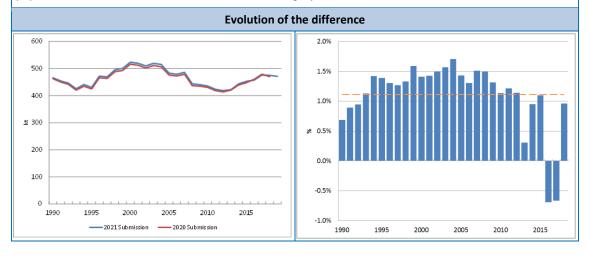
Table 0.9.8 Summary of recalculations for NH₃

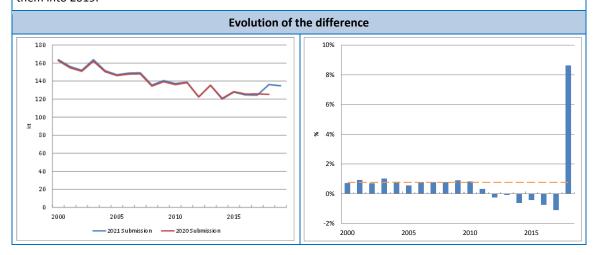
NH₃

In the 2021 inventory edition, 32 out of 49 categories estimated (65%) recalculated for reported year 2018.

For reported year 2018 recalculations implied a revised estimation of total emissions of 4.5 kt (1.0%). On average, for the whole inventoried time series, revised emissions estimations were +1.1% lower.

Main contributor to the recalculation was category 3Da3-Urine and dung deposited by grazing animals: Recalculation due to completion of new zootechnical document implementation for goats with changes in grazing distribution and N-excretion. In addition, this edition has done a recalculation due to changes in NH₃-EFs from EMEP/EEA Guidebook (2019) for grazing animals emission. Correction of different errors in population data also affect the calculation of this category.




Table 0.9.9 Summary of recalculations for PM_{2.5}

$PM_{2.5}$

In the 2021 inventory edition, 43 out of 72 categories estimated (60%) recalculated for reported year 2018.

For reported year 2018 recalculations implied a revised estimation of total emissions of 10.8 kt (+8.6%). On average, for the whole inventoried time series, revised emissions estimations were +0.8% higher.

Main contributor to the recalculation was category 5C2-Open burning of waste: Recalculation due to change in EF table used from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) of EMEP/EEA 2019. Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated 2018 according the yearbook, and has replicated them into 2019.

0.10. Planned improvements

Detailed information on planned improvements is included in IIR section 8.4., as well as in the sectorial IIR chapters. The following actions can be highlighted for the entire Inventory as planned improvements:

- Complete the implementation of the EMEP/EEA GB 2019.
- Harmonization of the Inventory with other registers (EU-ETS, E-PRTR, etc.).
- Continuing with the development of the external audit initiated in October 2017. See chapter 1, section 1.6.8 for details of the scheduled QA activities.
- Continue to improve the inventory quality management tool described in Chapter 1, Section 1.6.

0.11. Reporting of PM condensable component

The condensable component of Particulate Matter (PM_{10} and $PM_{2.5}$) is released as a gas but upon dilution and cooling it forms particles shortly after the release.

Within the CLRTAP, the Executive Body at its thirty-eight session formally requested that Parties describe their practices for reporting the condensable component of PM in their IIRs. (ECE/EB.AIR/142 para 18.f). The purpose is to provide transparent information that can easily be used by the modellers. To this end, information regarding the inclusion or not of the condensable component of PM in the reported emissions is provided in annex V and the

corresponding sector chapters of the IIR. Reporting of this issue has been done following the revised template for of Annex II_v2018 (Recommended Structure for Informative Inventory Report) available in <u>CEIP website</u>.

In general, according to current information available within the Inventory, particulate matter emissions in Energy industries (NFR 1A1) and Manufacturing industries and construction (NFR 1A2) exclude the condensable component. However, emissions from the Transport categories (NFR 1A3) include condensables. Within categories 1A4 there is a mixture of criteria depending on the fuel used. Finally, a general lack of information is found for Fugitive emissions (NFR 1B), IPPU (NFR 2), Agriculture (NFR 3) and Waste (NFR 5) sectors.

0.12. Implementation of EMEP/EEA Guidebook 2019

The table below shows the updated chapter of EMEP/EEA Guidebook 2019 indicating those for which implementation has been performed in this Inventory edition:

Table 0.12.1 Summary of implementation of updated chapters from EMEP/EEA GB 2019

NFR	Chapter title	Description of change	Status	Observation
General chapter	2. Key Category analysis and methodological choice	General update for calculating key categories	Partially implemented	Full implementation will be finished in the next edition
General chapter	8. Projections	Refinement and improved guidance and methodology to estimate projections (results from a DG ENV funded project)	Not implemented	To be assessed in the next Inventory edition
1.A.1.a	Public electricity and heat production	Emissions of PAHs for both Large Point Sources (LPS) and small power plants (Area Sources) in previous editions of the Inventory	Implemented	
1.A.1.c	Manufacture of solid fuels and other energy industries	Main Pollutants and Particulate Matter emissions. Heavy metals and POPs emissions	Implemented	
1.A.3.b	Road transport	Refinement in chapter structure and updated NH ₃ EF in Table 3-7	Not implemented	Implementation is foreseen in the next edition
1.A.3.b.v	Gasoline evaporation	Refinement and improvements		
1.A.3.d	National navigation	All pollutants	Implemented	
1.A.4	Small Combustion	The implementation of updated emission factors to EMEP/EEA Guidebook (2019) has continued in the present Inventory edition	Implemented	
1.B.1.b	Fugitive emission from solid fuels: Solid fuel transformation	Emission factors for CO under category 1B1b have been updated	Implemented	
1.B.2.c	Venting and flaring	New Tier 2 Emission Factors	Implemented	
2.A.5.a	Quarrying and mining	New methodology and new spreadsheet calculation tool	Not implemented	Implementation will be assessed in the next edition

NFR	Chapter title	Description of change	Status	Observation
2.C.1	Iron and steel production	Relocation of CO to category 1A2a, according to EMEP/EEA 2019 Guidebook	Implemented	
2.C.2	Ferroalloys production	Deletion of CO emissions according to EMEP/EEA 2019 Guidebook	Implemented	
2.C.6	Zinc production	Correction of the units for the Pb EF, according to EMEP/EEA 2019 Guidelines	Implemented	
2.D.3.a	Domestic solvent use of fungicides	Removed Hg EF from Table 3-1 and Table 3-6	Not applicable to Spain's Inventory	Spain uses a country-specific EF for Hg, so no changes to methodology have been applied
2.D.3.g	Chemical products	New PAH EF in Table 3-8, 3-9 and 3-10	Not applicable to Spain's Inventory	Asphalt blowing does not occur in Spain, so no changes are deemed necessary in this category
2.D.3.i, 2.G	Other solvent and product use	New table 3-12 (deicing) and table renumbering	Not implemented	Implementation will be assessed in next Inventory edition
3.D.a.3	Urine and dung deposited by grazing animals	Updating NH ₃ -EFs from EMEP/EEA Guidebook (2019) for grazing animals emission	Implemented	
3.F	Field burning of agricultural residues	PAHs EFs update from EMEP/EEA Guidebook (2019)	Implemented	

0.13. Web-page and contact details

Further information can be consulted at the Spanish Inventory National Systems webpage:

https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable

Contact:

Inventories Unit

Spanish Ministry for Ecological Transition and the Demographic Challenge Ministerio para la Transición Ecológica y el Reto Demográfico Pza. San Juan de la Cruz, s/n

28071 Madrid

Email: <u>Buzon-inv_emisiones@miteco.es</u>

1. INTRODUCTION

CONTENTS

L.		INTRODUCTION	35
	1.1.	National Inventory background	.35
	1.2.	Institutional arrangements	.36
	1.3.	Inventory preparation process	.39
	1.3.1	Key categories analysis	.39
	1.3.2	Choice of methods	.40
	1.3.3	Data collection	.40
	1.3.4	Data processing	.41
	1.3.5	Submission of results for approval	.41
	1.3.6	Preparation of reports	.42
	1.4.	Methods and data sources	.43
	1.4.1	Selection of methods	.43
	1.4.2	Consideration of the effect of abatement techniques	.45
	1.4.3	General Reference to Information sources on Activity Variables	.46
	1.4.4	Geographical distribution of data	.50
	1.5.	Key categories	.51
	1.6.	Quality Assurance and Quality Control (QA/QC) and verification	.54
	1.6.1	The QA/QC system	.54
	1.6.2	The QA/QC plan	.54
	1.6.3	Quality objectives	.55
	1.6.4	Roles and responsibilities	.56
	1.6.5	Timeline	.57
	1.6.6	Quality control and documentation	.58
	1.6.7	Quality control and documentation tools	.60
	1.6.8	Quality assurance system	.63
	1.6.9	Verification	.64
	1.6.1	D. Confidentiality handling	.65
	1.6.1	1. Main features from QC activities	.65
	1.7.	General uncertainty evaluation	.66
	1.7.1	Quantitative Assessment of the Uncertainty	.66
	1.7.2	Qualitative assessment of the uncertainty	.66
	1.8.	General Assessment Completeness	.69
	1.8.1	Sources not estimated (NE)	.70
	1.8.2	Sources included elsewhere (IE)	.76
	Append	x 1: QA Audit certificate	.78

ES – IIR – 2021 1. INTRODUCTION

FIGURES

Figure 1.2.1	SEI's organisation	37
Figure 1.3.1	Evolution of data collection (edition 2021)	40
Figure 1.3.2	Evolution of data processing	41
Figure 1.3.3	Copy of 2021 Emission Inventory approval resolution	42
Figure 1.3.4	Diagram of the annual cycle of activities for the inventory	43
Figure 1.4.1	Approximate NOx emissions for the year 2019 in the form of heatmaps for interurban and	
	rural road transport and circle maps for the currently identified point sources	
Figure 1.6.1	Timeline for the Inventory compilation process	
Figure 1.6.2	Examples of screenshots of the DRDB	
Figure 1.6.3	Appearance of the Data import tool (left), list of import errors (middle) and QC report (right)	
Figure 1.6.4	Appearance of the QC excel tool	62
Figure 1.6.5	Appearance of the Inventory quality management tool	63
Figure 1.6.6	Appearance of the recalculation analysis tool	
Figure 1.6.7	QA audit schedule (X=in-depth review; x=review of selected key points)	64
TABLES		
Table 1.1.1	Main features of Spanish IIR 2021	35
Table 1.2.1	Composition of the SEI	37
Table 1.2.2	SEI's National Focal Points Network	38
Table 1.3.1	Milestones of Inventory preparation (edition 2021)	39
Table 1.4.1	Main activities with direct measures for main pollutants, TSP and CO	43
Table 1.4.2	Most important activity data IIR 2021	
Table 1.4.3	Information provided from the focal points	
Table 1.5.1	Assignation of KC	
Table 1.6.1	General and specific objectives from the QA/QC plan	
Table 1.6.2	Main international emission inventory reporting requirements to be met by the SEI	
Table 1.6.3	Key QC activities included in the QA/QC plan	
Table 1.6.4	Main features from QC activities in the 2021 edition	
Table 1.7.1	Emissions Uncertainties	
Table 1.7.2	System adopted for the composition of the emissions quality label: "DATA ATTRIBUTE	
	RATING SYSTEM"	67
Table 1.7.3	Mean quality levels (labels) of emissions	
Table 1.8.1	Evolution of the number of categories notated as NE	
Table 1.8.2	Share reasons for using NE	
Table 1.8.3	Distribution of reasons for using NE	
		-

ES – IIR – 2021 1. INTRODUCTION

1. INTRODUCTION

Chapter updated in March, 2021.

1.1. National Inventory background

The 2021 edition of the Informative Inventory Report (IIR) has been elaborated by the Spanish National Inventory System (SEI) within the Ministry for the Ecological Transition and the Demographic Challenge (MITERD).

This report is compiled to accompany the Spain's 2021 emissions inventory data submission under:

- Directive (EU) 2016/2284 of the European Parliament and of the Council, on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC, and
- United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (CLRTAP).

It contains detailed information on annual emission estimates of air quality pollutants by source in Spain for the EMEP domain (excluding the Canary Islands) from 1990 onwards.

Main features of the Spanish IIR and emissions data included in the 2021 edition are summarised in Table 1.1.1.

Table 1.1.1 Main features of Spanish IIR 2021

Title	Spanish Inventory Informative Report (IIR)			
Edition	2021			
Formal internal national approval	22.12.2012 – Resolution of the General Director of Environmental Quality and Assessment of the MITERD			
Submission Emission Data (NFR tables)	v1.0 (29.01.2021)		REPDAB run: yes	
Date of release- IIR	15.03.2021			
Time series	1990-2019			
Pollutant's	Main Pollutants	SOx, NOx,	NH ₃ , CO, NMVOC	1990-2019
coverage	Particulate Matter	TSP, PM ₁₀ , PM _{2.5} , Black Carbon (BC)		2000-2019
	Heavy Metals (priority)	Pb, Cd, Hg		1990-2019
	Heavy Metals (additional)	As, Cr, Cu, Ni, Se, Zn		1990-2019
	Persistent Organic Pollutants	DIOX, PAHs, HCB, PCBs		1990-2019
Geographical scope	Spanish territory under the EMEP domain: including the Balearic Islands and Ceuta and Melilla autonomous cities, and excluding the Canary Islands			
Emission data reported	Emissions data reported in this IIR refer to the Spanish territory excluding the Canary Islands. Annex I NFR tables rows 14-141 show emissions from Spain excluding the Canary Islands.			
Reporting guidelines	Guidelines for reporting emissions and projections data under the CLRTAP Convention (ECE/EB.AIR/125 - 13 March 2014).			
Reporting Nomenclature	NFR-2019. Annex I: Emissions reporting template (revised version, 18.11.2019) approved by EMEP SB during its 5th Joint Session. Annex II: Recommended structure for IIR including a table for reporting information on the condensable fraction of PM. Annexes III to VI of the UNECE Reporting Guidelines: https://www.ceip.at/ms/ceip_home1/ceip_home/reporting_instructions/annexes_to_guidelines/			

ES – IIR – 2021 1. INTRODUCTION

Numeric format used	English standard numeric format is used in the report (comma to separate groups of thousands and point to indicate the decimal place).		
Latest Reviews	2020. Review of National Air Pollutant Emission Inventory Data 2020 under Directive 2016/2284 (National Emission reduction Commitments Directive). 2020. Review of emission data reported under the LRTAP Convention.		
Adjustments	NOx for Road Transport (1A3bi and 1A3biii) between 2010 and 2019 ¹ . NOx for Agriculture (3B) between 2010 and 2019 ^{2,3} .		
Emissions Sources	LPS Emission for the 298 Large Point Sources identified by the Inventory the year 2019 are included, independently of their emission level or s		
	Air traffic	Emissions from domestic and international aviation during the landing and take-off included. Cruise emissions reported separately as memorandum items.	
	International navigation	Emissions from domestic maritime shipping included. Emissions from international maritime shipping reported separately as memorandum items.	
	Natural sources	Emissions from natural sources (volcanoes, forest fires, etc.) reported separately as memorandum items.	
Record keeping	Official data, documentation and information are kept (both electronic or in paper format) at the offices of the Spanish National Inventory System.		
Inventory Database System	Spanish National Inventory System Database is based on Oracle.		
Projections	Emissions projections for Main Pollutants (SOx, NOx, NH $_3$, NMVOC) and Particulate Matter (PM $_{2.5}$) to be reported in 2021.		
Gridded data	Gridded data in the EMEP 0.1 x 0.1 degree (GNFR-14) to be reported in 2021.		

1.2. Institutional arrangements

The Directorate-General for Environmental Quality and Assessment (DGCEA), at the Ministry for the Ecological Transition and the Demographic challenge (MITERD), is the competent authority of the Spanish Inventory System (SEI). The DGCEA is also the competent authority for the elaboration of the national emissions projections, a task which is also performed within the SEI.

The Subdirectorate-General for Clean Air and Industrial Sustainability (SGALSI), within the DGCEA, is the body in charge of the SEI management and the annual delivery of the National Inventory of Emissions. The Inventory Unit within the SGALSI acts as the executive body of the SEI.

The National System for the elaboration of Emissions Inventories and Projections is set and ruled by the following legal framework:

- Law 34/2007, of November 15, on air quality and protection of the atmosphere, establishes in article 27.3 the Spanish Emissions Inventory and Projections System (SEI).
- Royal Decree 818/2018, of July 6, on measures for the reduction of national emissions
 of certain atmospheric pollutants sets in article 10 the rules of functioning of the
 Spanish Emissions Inventory and Projections System.

36

¹ Approved by the EMEP Steering Body September 2015 (ECE/EB.AIR/GE.1/2015/2–CE/EB.AIR/WG.1/2015/2).

² Approved by the EMEP Steering Body September 2017 (ECE/EB.AIR/GE.1/2017/2–CE/EB.AIR/WG.1/2017/2).

³ Decision by the European Commission (Decision C(2018) 1565 of 12.03.2018.

 Royal Decree 500/2020, of April 28, which develops the basic organic structure of the Ministry for the Ecological Transition and the Demographic Challenge, designates, in article 7.f), the Directorate General of Environmental Quality and Assessment as competent authority of the Spanish Emissions Inventory and Projections System.

• Emission Inventories are considered a statistic operation within the National Statistic Plans 2017-2020 and 2021-2024 (statistic operation numbers 7105 for plan 2017-2020 and 8105 for plan 2021-2024) and according to Law 12/1989, it is compulsory to provide the necessary information for its development.

The SEI structure can be summarized in the following figure:

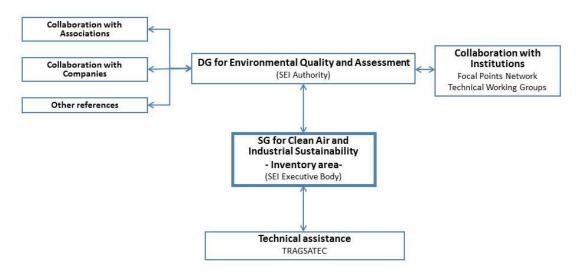


Figure 1.2.1 SEI's organisation

Within the Directorate-General for Environmental Quality and Assessment (DGCEA) of the MITERD, the Emissions Inventory Area manages the ordinary function of the SEI. Additionally, the DGCEA as National Authority of the SEI awarded in 2017 the public society TRAGSATEC a contract for the technical assistance in the management, maintenance and updating of the SEI until 2022.

Altogether, the SEI is formed by 24 specialists in total as detailed in the following table:

Name	Role	Organization
María José Alonso Moya	Unit coordinator	IU
Carmen Ramos Schlegel	Inventories coordinator and sector expert-Waste	IU
Fco. Javier Pérez-Ilzarbe Serrano	Projections coordinator and sector expert-IPPU and Energy	IU
Katia Juarez Carreño	Sector expert-Agriculture and IPPU	IU
Ángel Roldán Martínez	Sector expert-LULUCF	IU
Cristina Álvarez Rodríguez	Technical assistance manager	Ttec
Elena López Martín	Technical assistance	Ttec
Juan Carlos Cano Rego	IT manager	Ttec
Iván José Díaz Rey	IT expert	Ttec
Germán Méndez Magaña	Technical assistance coordinator and QA/QC	Ttec
Máximo Oyágüez Reyes	Sector expert-Energy	Ttec
José Luis Llorente Montoro	Sector expert-Energy and cross-cutting issues	Ttec

Table 1.2.1 Composition of the SEI

Name	Role	Organization
Sara Torre Sales	Sector expert-Transport	Ttec
Sonia Lázaro Navas	Sector expert-Transport	Ttec
José Ángel Gil Gutiérrez	Sector expert –Energy and IPPU	
Mª Ángela Haro Maestro	Ángela Haro Maestro Sector expert-IPPU	
Olalla González Fontaíña	zález Fontaíña Sector expert-IPPU	
Anselmo Espinosa Vergara	nselmo Espinosa Vergara Sector expert-IPPU	
Fco. Javier Flores Sanz Sector expert -Agriculture		Ttec
Mª del Mar Esteban García	Sector expert -LULUCF	Ttec
Nuria Escudero Aguado	Sector expert –Waste	Ttec
Mario Fernández Barrena	Sector expert-Projections and cross-cutting issues	Ttec
Miguel García Rodríguez	Cross-cutting issues	Ttec
David Sánchez Vicente	Sector expert-Projections	Ttec

IU: Inventory Unit-DGCEA; Ttec: TRAGSATEC

Additionally, the functional structure of the SEI relies on national ministries and other public institutions articulated by the SEI's National Focal Points Network with the representation of the relevant departments. On an annual basis, the SEI's National Focal Points Network meets in the headquarters of the Inventory Unit in order to enhance interdepartmental cooperation and coordination.

Table 1.2.2 SEI's National Focal Points Network

Name	Unit						
Ministry of Defence	D.G. for Infrastructure						
Ministry of Home Affairs	D.G. for Traffic						
Ministry of Transport, Mobility and Urban Agenda	D.G. for Roads						
	State Air Safety Agency						
	D.G. Merchant Navy						
	State Ports Authority						
	D.G. for Economic Programming and Budget						
	D.G. for Road Transport						
	S.G. for Infrastructure Planning and Transport						
	D.G. National Geographic Institute						
Ministry of Health, Consumer Affairs and Social Welfare	Spanish Agency of Medicines and Health-Care Products						
Ministry of Economic Affairs and Digital Transformation	National Statistical Institute						
Ministry for the Ecological Transition and the	Secretariat of State for Energy						
Demographic Challenge	D.G. for Environmental Quality and Assessment						
	D.G. for Water						
	Spanish Office for Climate Change						
	State Meteorological Agency						
	D.G. for Biodiversity, Forests and Desertification						
Ministry of Agriculture, Fisheries and Food	National Agency for Agricultural Insurance (ENESA)						
	D.G. for Agricultural Production Health						
	D.G. for Production and Agricultural Markets						
	S.G. for Analysis, Coordination and Statistics						
	D.G. for Food Industry						
	D.G. for Fisheries and Aquaculture Management						

Working groups have been set within the SEI framework in various thematic contexts.

The SEI's structure is completed by the collaboration links established with private companies and sectoral associations. These stakeholders actively participate by providing data on production or emissions, as well as expertise for the elaboration of the National Inventories.

Finally, a contact group of regional administrations linked to emission inventories was created whose main purpose is the share of information. The activity of this group is mainly via email and meets once a year.

1.3. Inventory preparation process

The Inventory preparation process is managed by the Inventory Area of the SEI, together with the technical assistance of TRAGSATEC.

The milestones of Inventory preparation are the following:

Date Milestones 26-Mar-2020 Official start of Edition 2021 of the Inventory 5-May-2020 Start of data collection 11-Jun-2020 Start of data processing 4-Dec-2020 End of data processing 11-Dec-2020 Submission of data for internal national approval 22-Dec-2020 Internal national approval by the DGCEA-MITERD 8-Jan-2021 Start of reports' preparation 29-Jan-2021 First Submission of NFR tables 29-Jan-2021 Submission of Adjustments 15-Mar-2021 Submission of IIR

Table 1.3.1 Milestones of Inventory preparation (edition 2021)

The main stages and features in the elaboration process are:

1.3.1. Key categories analysis

The analysis of the key categories identified in the previous edition of the Inventory constitutes the starting point for assigning the priorities in order to improve the Inventory and accomplish the remaining activities. A review of the improvement plan is performed at this stage in order to identify priority areas for improvement. At the beginning of the edition 2021, a total of 23 recommendations from previous review processes were still not fully resolved (16 not resolved and 7 addressing). Furthermore, 63 internal points of improvements of different relevance had been identified. Additionally, recommendations contained in the Final Review Report from the review pursuant to the Directive (EU) 2016/2284 (NECD) were included. The result of the alignment of key categories analysis with the improvement plan conditioned the following steps of the Inventory preparation process.

1.3.2. Choice of methods

This stage may include the initial selection of methods for categories not previously considered in the Inventory, as well as the revision of the selected methods for categories where a methodological change is proposed.

1.3.3. Data collection

This phase entails the collection of the necessary data and information for applying the selected methods to each different activity (activity parameters and variables; algorithms and emission factors; measured or estimated emissions). This stage started on the 5th of May 2020 with the submission of requests for information via email to the different data providers and collaborators. Preparation of the questionnaires, letters, emails and forms to request for information was done during the previous weeks. Two main groups of data providers can be distinguished in the process: the private sector, with the deadline for submitting information by 12th of June 2020 and the public sector with the deadline by 20th July 2020.

In this stage, a total of 121 requests of information were delivered containing 262 questionnaires. For the data collection process an Access database is used to manage all the contact details, create emails to data providers and register delivery and reception dates of the requests (for details on the data request database, please refer to section 1.6.7 of this document). Data collection is completed with information available on the Internet, such as yearbooks, annual reports, statistics, etc.

The evolution of the data collection process is presented in the figure below. As shown, by mid-July, 70% of the total pieces of information requested had been received. It must be highlighted how the proximity of the 12th June deadline accelerates the reception of information. The 39% of data providers answered after the deadlines, of which a 54% needed a second request (remainder mail). It is worth mentioning that despite COVID-19 crisis, the data collection process was developed at a relatively normal pace.

At the end of the data collection phase, 100% of the requests sent to private data providers were answered. Regarding the public data providers, 87% of the information requested was sent. Some of the missing information was secondary information not essential for the estimation of emissions, and in cases where information was essential, the extrapolation splicing technique was used.

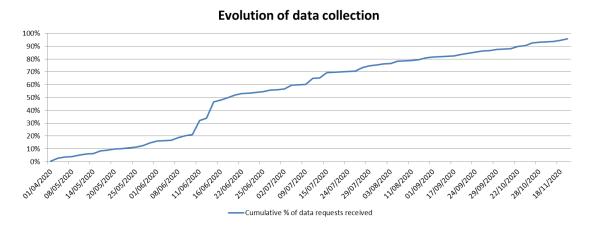


Figure 1.3.1 Evolution of data collection (edition 2021)

In summary, taking into account, both private and public data providers, 95.65% of total pieces of information requested were received.

1.3.4. Data processing

The object of this phase is the integration of the collected data in order to feed the Core Inventory Emissions Database (CIEDB) with the necessary activity data, emission factors and parameters to estimate emissions. This stage goes from May up to the beginning of December and comprises two simultaneous activities: data processing as such and quality checks. With the arrival of the official energy statistics by the end of November and some other pieces of information due, 100% of data processed could be reached by the 4th December 2020. Following data processing, sector experts and the QA/QC coordinator performs quality checks with an evolution line similar to data processing but showing a certain time lag.

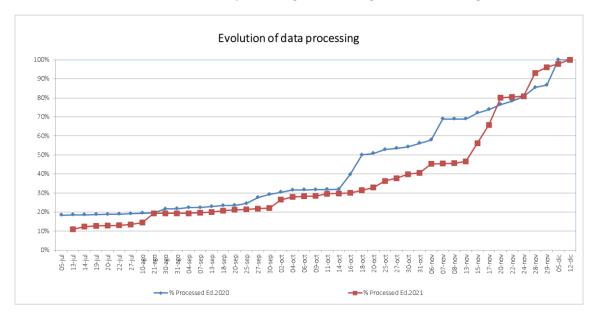


Figure 1.3.2 Evolution of data processing

1.3.5. Submission of results for approval

Emissions data must be approved by the Directorate General of Environmental Quality and Assessment (DGCEA) of the MITERD, as established in the Royal Decree 818/2018 on measures for the reduction of national emissions of certain atmospheric pollutants (art. 10.5). Data was submitted for approval on the 11th December 2020 and was finally approved on the 22th December 2020 by the Resolution available for consultation on this <u>link</u>.

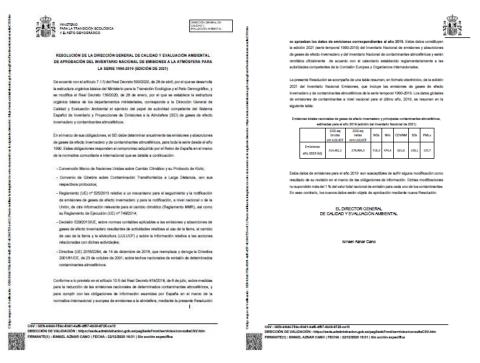


Figure 1.3.3 Copy of 2021 Emission Inventory approval resolution

Once the inventory has been approved, the Inventory Unit elaborates, publishes and sends all the required reports and information —in the format required for each case— to the international bodies.

1.3.6. Preparation of reports

At this stage, reports and tables of results for air pollutant emissions required by the different bodies to which the SEI reports, are prepared in accordance with the established format, content and time periods. Preparation of reports is based in the performed analysis of key categories and improvement plan, and includes the revision of the notation keys used in the corresponding reporting tables.

A drafting committee has been set within the SEI at the beginning of this stage in order to establish a work timetable, to share duties and responsibilities and to agree on contents, format and style of the reports. This committee, integrated by the members of the SEI and representatives of the technical assistance, met regularly after the kick-off meeting on the 19nd January 2021.

The calendar for the development of these stages is schematised in the following figure.

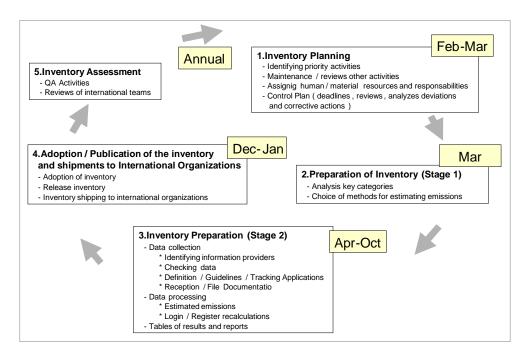


Figure 1.3.4 Diagram of the annual cycle of activities for the inventory

1.4. Methods and data sources

1.4.1. Selection of methods

The emission estimation methods applied in the Inventory depend on the nature of the activity being considered and the availability of basic data. Based on the availability of information on the emissions themselves, two major categories can be differentiated:

- I. Methods based on observed emission data. Based on direct observation of the variable of interest, i.e. the emission itself. Two types can be distinguished between these methods:
 - a. Continuous measurement.
 - b. Measurement at regular intervals.

In this Inventory edition, methods based on direct observation have mainly been used in connection with the Large Point Sources, excluding airports. Data is frequently available from these sources due to their environmental importance and the size of the activity involved, whose authorization normally includes the need to measure and report certain pollutants. This information is collected from the plants themselves through individualized questionnaires.

Activities and pollutants where direct measurements have been used are included in the next table:

Table 1.4.1 Main activities with direct measures for main pollutants, TSP and CO

Activity	NOx	NMVOC	SOx	NH ₃	TSP	со
Thermal power plants	Х	Х*	Х	-	Χ*	Х
Oil refineries	Х	Х	Х	-	Х	Х
Integrated steel plants	Х*	Х*	Х*	Х*	Х*	Х*

Activity	NOx	NMVOC	SOx	NH₃	TSP	со
Coke oven furnaces	Х*	X*	Х*	Х*	X*	Х*
Car manufacturing	Х	Х	Х	-	Х	Х
Aluminium	-	-	Х	-	Х	-
Paper pulp	Х*	-	Х*	-	Х*	Х*
Sulphuric acid	-	-	Х*	-	Х*	-
Nitric acid	Х*	-	-	Х*	Χ*	-
Ammonia	Х*	-	-	Х*	X*	-
Urea	Х*	-	-	X* X*		-
Ammonium phosphate	-	-	Х*	Х	-	-
NPK fertilizers	Х*	-	Х*	Х*	-	-
Soda ash	-	-	-	-	-	-
Carbon black	Х	-	Х	-	Х	-
Waste incineration	Χ*	Х	Х	-	-	Х

^{*} Partially covered: only available for some plants and in certain years

- Other pollutants in all those point sources for which it has been possible to collect direct data. This is the case in:
 - Coal-fired thermal power plants (1995-1998) for cadmium, mercury and lead.
 - Urban waste incinerators, mainly with respect to heavy metals and dioxins.
 - Industrial waste incinerators, mainly with respect to heavy metals and dioxins.
 - Chlorine production (years 1998-2017) for mercury emissions.
- II. <u>Methods based on calculation procedures</u>. This category can be split into procedures based on:
 - a. Simple balance of materials. This method has been applied for the estimation of sulphur dioxide in combustion facilities where information is available regarding the amount of sulphur present in the various fuels used and the retention coefficients for ash and specific parts of the combustion facilities. In installations with desulphurisation units where information was available on emission abatement techniques, the estimation of potential emissions has been corrected, where necessary, with a reduction coefficient. This procedure was also used to estimate lead emissions and other heavy metals in internal combustion engines in vehicles for road transport and mobile machinery. This has been also the approach adopted for estimating NMVOC emissions from painting lines at automobile manufacturing plants.
 - b. Complete balance. This method comprises the determination of all inputs and outputs of different chemical elements (using data on the types of process and facilities as well as the amounts of materials and the elements in their composition), although it was not, in fact, possible to apply it effectively in the estimation of pollutants emissions due to its complexity. In any case, it has been retained as a reference method for validating atypical estimates.
 - c. Methods based on functional statistical models: Modelling-correlation. This method is based on the results of earlier works into the estimation of functional relationships or correlations between certain physical and chemical variables and emissions from certain activities. This kind of simulation models has been applied to estimate

emissions of some pollutants in categories 1A3a Air transport and 1A3b Road transport.

d. Methods based on emission factors: activity factors and variables. This method has been the most generally used in preparing the Inventory and applied when no other more precise option was available to estimate the emissions for an activity.

1.4.2. Consideration of the effect of abatement techniques

One point of great importance for the correct application of the estimation methods based on algorithms is the consideration of the efficiency of the abatement which is assumed in the functional relationships and in the emission factors used in this group of methodologies. For this purpose, the appropriate corrections were applied to take into account the degree of application of emission abatement techniques in the various emitting activities included in the Inventory. The following examples, among others, can be given as important illustrations of this criterion:

- Heavy metal emission factors at coal-fired thermal power plants depending on whether or not gas desulphurisation techniques in addition to particulate control techniques are used or not (please refer to table 31, Chapter B111, EMEP/CORINAIR Guidebook (2007)).
- SOx emission factors at primary zinc and copper production plants when there is an
 associated sulphuric acid production plant capable of reducing the emissions from the
 first plants by between 90% and 99%. Furthermore, in SOx emissions at the refineries,
 the number of sulphur recovery phases in Claus plants has been taken into account so
 as to select the most representative factor in those cases where no direct estimation
 was provided by the plants themselves.
- Regarding incineration plants, the emission factors have been updated to 2019 EMEP/EEA Guidebook. For the period 1996-2019, each plant has its own abatement techniques but the control technique "Particle abatement + acid gas abatement" has been considered as a minimum and thus the values shown in table 3-1 (Chapter 5C1a) have been adopted. For the period 1990-1995, it was assumed only "particle abatement", so values from table 3-2 have been applied. In the case of particle matter and heavy metals (except mercury), table 3-1 values were considered more appropriate. Finally, abatement efficiency has been applied to PCBs and dioxin values (table 3-3).
- In cases where point sources report direct measures of TSP emissions together with the implementation of particulate abatement techniques in their facilities (including especially dry electrostatic precipitators, whose effectiveness exceeds 99% reduction and fabric filters), this information has been used for the selection of the appropriate PM_{2.5}/TSP or PM₁₀/TSP ratio for the estimation of PM_{2.5} and PM₁₀. In these cases, the possible existence of control measures has been used to evaluate the appropriate level of abatement and its comparison with the four abatement levels indicated by the CEPMEIP, for each unit, and this parameter determines the emission factor assigned.
- Emission factors for conventional pollutants (SOx, NOx, NMVOC and CO), heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) and particles (TSP) in the manufacture of cement (clinker) according to the estimated rate of penetration of emission control techniques

in the sector in the sub-periods 1990-2000 and 2001-2004. From 2005, country-specific emission factors are used based on average measured values.

• Emission factors for mercury in the manufacture of chlorine according to the estimated rate of penetration of emission control techniques in the sector and the implementation of less polluting processes during the 1998-2011 sub-period.

1.4.3. General Reference to Information sources on Activity Variables

The most important references to activity variables are listed in the following table.

Table 1.4.2 Most important activity data IIR 2021

NFR Code	Activity	Main Source of information on activity data
1A1a	Public electricity and heat production	Individualized questionnaire + Energy international statistics by the Secretariat of State for Energy of the Ministry for the ecological transition and demographic challenge (MITERD) + EU ETS data
1A1b	Petroleum refining	Individualized questionnaire + EU ETS data
1A1c	Manufacture of solid fuels and other energy industries	Individualized questionnaire + statistics by MITERD
1A2	Stationary combustion in manufacturing industries and construction.	Individualized questionnaires from plants + information from the main business associations + Energy international statistics by MITERD+ EU ETS Data
1A3ai(i)	International aviation LTO (civil)	EUROCONTROL
1A3aii(i)	Domestic aviation LTO (civil)	EUROCONTROL + Energy international statistics by MITERD
1A3b	Road transportation	National Statistics of Road Traffic by Ministry of Transport, Mobility and Urban Agenda + Energy international statistics by MITERD + "General Statistical Yearbook" published by the DGT (Spanish Traffic Department) of the Ministry of Home Affairs
1A3c	Railways	Individualized questionnaire + Energy international statistics by MITERD
1A3dii	National navigation (shipping)	Energy international statistics by MITERD
1A3ei	Pipeline transport	Individualized questionnaire
1A4a	Commercial/institutional	Energy international statistics by MITERD
1A4bi	Residential	Energy international statistics by MITERD
1A4bii	Residential: Household and gardening (mobile)	Energy international statistics by MITERD
1A4ci	Agriculture/Forestry/Fishing: Stationary	Ministry of Agriculture and Fishing and Food (MAPA) Statistics
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	Energy international statistics by MITERD + Expert judgement
1A4ciii	Agriculture/Forestry/Fishing: National fishing	Energy international statistics by MAPA Statistics
1A5b	Other, Mobile (including military, land based and recreational boats)	Energy international statistics by MITERD + Ministry of Defence
1B1a	Fugitive emissions from solid fuels: Coal mining and handling	MITERD Statistics
1B1b	Fugitive emissions from solid fuels: Solid fuel transformation	Individualized questionnaire + Energy international statistics by MITERD
1B2	Fugitive emissions Oil & Natural Gas	Individualized questionnaire + Energy international statistics by MITERD + National energy balances (IEA and EUROSTAT) + information from the main business associations + State agency of meteorology (AEMET)

NFR Code	Activity	Main Source of information on activity data
2A1	Cement production	Main business association
2A2	Lime production	Main business association + Individualized questionnaire
2A3	Glass production	Main business association + Individualized questionnaire
2A5a	Quarrying and mining of minerals other than coal	Geological and Mining Institute of Spain (IGME) + Mining statistic by MITERD
2A5b	Construction and demolition	National Statistical Data (INE) + Ministry of Transport, Mobility and Urban Agenda
2A5c	Storage, handling and transport of mineral products	Spanish State ports agency
2A6	Other mineral products: Batteries manufacturing	Industry production statistics by the Ministry of Industry, Trade and Tourism
2B1	Ammonia production	Individualized questionnaire
2B2	Nitric acid production	Individualized questionnaire + Main business association + Ministry of Industry, Trade and Tourism
2B5	Carbide production	Individualized questionnaire
2B6	Titanium dioxide production	Information from the main business association
2B7	Soda ash production	Individualized questionnaire
2B10a	Other chemical industry: Processes in organic and inorganic chemical industry except for adipic acid	Individualized questionnaire + information from the main business associations
2C1	Iron and steel production	Individualized questionnaire + information from the main business association
2C2	Ferroalloys production	Individualized questionnaire
2C3	Aluminium production	Individualized questionnaire
2C5	Lead production	Individualized questionnaire + information from the main business association
2C6	Zinc production	Individualized questionnaire + international statistics yearbooks
2C7a	Copper production	Individualized questionnaire + information from the main business association + international statistics yearbooks
2D3a	Domestic solvent use including fungicides	National Statistical Data (INE)
2D3b	Road paving with asphalt	Information from the main business association
2D3c	Asphalt roofing	National Statistical Data (INE) + Information from the main business associations
2D3d	Coating applications	National Statistical Data (INE) + Information from the main business associations
2D3e	Degreasing	Individualized questionnaire
2D3f	Dry cleaning	National Statistical Data (INE)
2D3g	Chemical products	Information from the main business associations
2D3h	Printing	Information from the main business associations
2D3i	Other solvent use	National Statistical Data + Individualized questionnaire
2G	Other product use	EUROSTAT
2H1	Pulp and paper industry	Individualized questionnaires + Information from the main business associations
2H2	Food and beverages industry	National Statistical Data (INE) + MITERD Statistics
21	Wood processing	FAOSTAT
2L	Other production, consumption, storage, transportation or handling of bulk products: NH ₃ Consumption in Refrigeration and Air conditioning	Information from the main producers of NH₃ for refrigeration and air conditioning

NFR Code	Activity	Main Source of information on activity data
3B	Manure management	MAPA Statistics + Husbandry Surveys + Livestock Farm Registry (REGA) + Animal Individual Identification Registry (RIIA)
3D	Agricultural Soils	MAPA Statistics + Husbandry Surveys
3F	Field burning of agricultural residues	MAPA Statistics + Nitrogen and Phosphorous Balance in Spanish Agriculture (BNyPAE)
5A	Biological treatment of waste - Solid waste disposal on land	Individualized questionnaire + MITERD Statistics
5B1	Biological treatment of waste - Composting	MITERD Statistics
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities	Individualized questionnaire + MITERD Statistics
5C1a	Municipal waste incineration	Individualized questionnaire + MITERD Statistics
5C1biv	Sewage sludge incineration	MITERD Statistics
5C1bv	Cremation	Estimation based on National Statistical Data (INE) + Information from the main business associations
5C2	Open burning of waste	MAPA Statistics
5D1	Domestic wastewater handling	Expert Assessment-Ministry of Transport, Mobility and Urban Agenda + National Statistical Data (INE)
5D2	Industrial wastewater handling	Estimation based on National Statistical Data (INE)
5D3	Other wastewater handling	EUROSTAT
5E	Other waste	Madrid City Council statistics + MAPFRE foundation

The most important information required from the National Focal Points is listed in the following table.

Table 1.4.3 Information provided from the focal points

Ministry	Department	Information required
Ministry of Defence	D.G. for Infrastructure	- Fuel consumption in military tactical equipment. - Breakdown of consumption grouped by multilateral and unilateral operations.
Ministry of Home Affairs	D.G. for Traffic	 Registration and de-registration of vehicles in the fleet. Characteristics of registered vehicles (propulsion system). Vehicle fleet distribution by type of vehicle, fuel and age. Historical technical inspection of vehicles data information.
Ministry of Transport, Mobility and Urban Agenda	D.G. for Roads	 Distances travelled by vehicles (broken down by institution responsible for the road). Map of roads. Historical information on running fleet. Kilometres of roads by type of road and pavement.
	State Air Safety Agency	- Statistics on movements of civil aircraft
	D.G. for Merchant Navy State Ports Authority	 Statistics on movements of vessels, lengths of stay and port entry and departure times. National / international shipping traffic. Register of vessels. Cartographic information on routes.
	D.G. for Economic Planning and Budget D.G. for Road Transport	- Permanent survey on haulage of goods by road.
	S.G. for Infrastructure, Planning and Transportation	- Passenger and freight mobility by means of transport.

Ministry	Department	Information required
	D.G. National Geographic Institute	- Soil maps (1:1.000.000).
Ministry of Health, Consumer Affairs and Social Welfare	Spanish Agency of Medicines and Health-Care Products	- Medicinal N₂O consumption data.
Ministry of Economic Affairs and Digital Transformation	National Statistical Institute	- Industrial survey of companies and products Industrial production index National accounts.
Ministry for the Ecological Transition and the Demographic Challenge	Secretariat of State for Energy	 IEA and Eurostat international questionnaires: Heat and electricity. Natural gas. Oil-based products. Coals. Renewable energies and waste. Other energy-related statistics. Service stations. Institute for the Diversification and Saving of Energy (IDAE): cogeneration, biomass and activity variables in RC&I sector and in combustion plants with a thermal capacity lower than 50 MWth. NOTE: This source also edits the publication entitled "La Energía en España" (Energy in Spain) used as background information on energy.
	D.G. for Environmental Quality and Assessment	 Incinerators of waste oil. Information of the National Sludge Register. Generation/treatment balance of waste. Composition of waste landfilled. Managed landfills. Unmanaged landfills. Municipal waste composting plants. Update of the survey entitled "Estimation of sewage sludge production and treatment at wastewater treatment plants" provided by CEDEX. Information on chlor-alkali sector.
	D.G. for Water	- Information on wastewater.
	Spanish Office for Climate Change	 - Basic information for the drafting of the CO₂ verification reports from the plants subject to the emissions trading regime. - Information on the accounting of Kyoto Protocol units. - Information on the national register. - Information on Article 3, paragraph 14 of the Kyoto Protocol.
	State Meteorology Agency	- Temperature (air and land) wind speed and wind direction, cloudiness, precipitation and insolation.
	D.G. for Biodiversity, Forests and Desertification	 Estimation of living biomass in afforestation and reforestation. Wildfires statistics. Controlled burning statistics. Estimation of living biomass in forest land remaining as such. Forest Statistics Yearbook. Carbon stocks in dead wood and the detritus of forest land remaining as such.
Ministry of Agriculture and Fishing and	National Agency for Agricultural Insurance (ENESA)	- Accident claims information due to fire in insured agricultural and forestry productions.
Food	D.G. for Agricultural Production Health	- Information of biomethanization plants (slurry).

Ministry	Department	Information required
	D.G. for Production and Agricultural Markets	 Surface, yield and production of crops. Burning of agricultural residues. Consumption of synthetic fertilizers. Application of fertilizers. Consumption of pesticides and phytosanitary products. Fleet on self-propelled mobile farm machinery. Stationary combustion plants. Functions and parameters for the estimation of the growing biomass function in woody crops.
	S.G. for Analysis, Coordination and Statistics	 - Crop transitions including, at least, a woody crop. - Soil conservative management practices. - Censuses/Surveys of cattle breeding assets. - Statistics on husbandry production (milk, meat, etc.). - Transitions of areas that can be exploited by grazing and / or harvesting to feed livestock.
	D.G. for Food Industry	- Diet (protein content).
	D.G. for Fisheries and Aquaculture Management	- Statistics on the operational fishing fleet Database on the fishing fleet.

1.4.4. Geographical distribution of data

The present 2021 IIR edition uses the updated grid put forward at the 36th session of the EMEP Steering Body. The EMEP grid domain applied includes the Balearic Islands and Ceuta and Melilla autonomous cities, and excludes the Canary Islands. As a consequence, the geographical coverage of CLRTAP and NEC Directive reports fully matches.

All emission data reported in this IIR refer to the Spanish territory excluding the Canary Islands. National emissions data, including the Canary Islands, are provided in Annex 4 for information purposes only.

The Inventory team is currently working on the update and improvement of geo-location of emissions in Spain. In this light, important efforts are being carried out to widen the number of installations identified as punctual emissions sources, aiming at closing the gap between inventory LPS and installations reporting under ETS and PRTR systems. Similarly, the Inventory team is actively working in improving the estimative geo-location of other emissions, such as those related to transport activities and those occurring in urban areas.

In this light, new emissions maps are being developed. The following example shows the latest approximate NOx emissions for the year 2019 in the form of heatmaps for interurban and rural road transport and circle maps for the currently identified point sources. These two groups of NOx emissions sources imply jointly up to 52.5% of the national total reported emissions of this pollutant under de EMEP domain (the Canary Islands excluded).

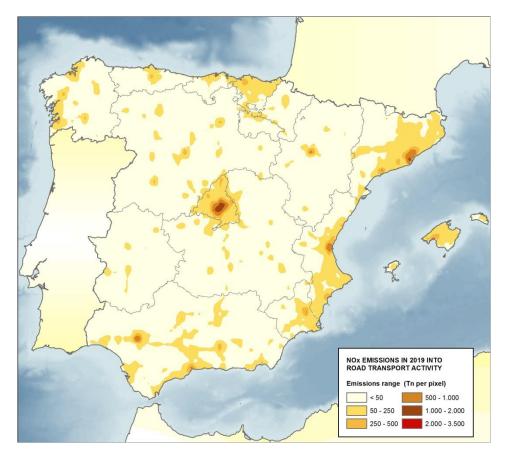


Figure 1.4.1 Approximate NOx emissions for the year 2019 in the form of heatmaps for interurban and rural road transport and circle maps for the currently identified point sources.

1.5. Key categories

The Spanish Inventory System applies a Tier 1 approach to calculate the Key Categories, by level (Level Assessment) and trend (Trend Assessment) following the EMEP/EEA Guidebook (2016). EMEP/EEA Guidebook (2019) implementation will be finished on the next edition.

The identification of the key sources has been calculated for the main pollutants (NOx, NMVOC, SOx, NH₃ and CO), Particulate Matter (TSP, PM₁₀, PM_{2.5} and Black Carbon), Priority Heavy Metals (Pb, Cd and Hg) and POPs (DIOX, PAHs and PCBs).

For *Level Assessment*, a threshold of 95% is defined for the cumulative distribution function of the emissions according to the activities in the Inventory. All activities included in the cumulative distribution function can be considered within that threshold to account for approximately 90% of the overall inventory uncertainty.

For *Trend Assessment*, Tier 1 also specifies a threshold of 95% but defined in this case with regard to the contribution of the activities to the trend metrics⁴.

The results obtained in the identification of key categories by pollutant are shown in a summary table below. It is indicated by pollutants and the identification for level (L) or trend (T).

For further details per pollutant and NFR sector are provided in Appendix 1 "Key category analysis".

$$(1) L_{x,t} = \frac{E_{x,t}}{E_t}$$

(2)
$$T_{x,t} = L_{x,t} \times \left[\left(E_{x,t} - E_{x,0} \right) / E_{x,0} - \left(E_t - E_0 \right) / E_0 \right]$$

where:

 $L_{x,t}$ is the level assessment for category x in year t.

 $T_{x,t}$ is the trend assessment for category x in year t.

 $E_{x,t}$ and $E_{x,0}$ are the emission estimations for category x in year t and 0, respectively.

0 is the base year (i.e. 1990 for main pollutants, metals and persistent organic pollutants; and 2000 for particulate matter).

The respective metrics for the level and trend are calculated by the following formulae:

ES – IIR – 2021

Table 1.5.1 Assignation of KC

NFR	NFR Category	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	ВС	со	Pb	Cd	Hg	DIOX	PAHs	НСВ	PCBs
1A1a	Public electricity and heat production	L-T	Т	L-T	-	L-T	L-T	L-T	-	L	-	L	L-T	Т	L-T	L-T	-
1A1b	Petroleum refining	L	-	L-T	-	-	-	-	-	-	-	L	L	-	-	-	-
1A1c	Manufacture of solid fuels and other energy industries	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A2	Manufacturing Industries and Construction	L-T	L	L-T	-	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L	L-T	L	Т
1A3a	Aviation LTO (civil)	L-T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3b	Road transport	L-T	L-T	T	T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	-	L-T	-	-
1A3c + 1A3e + 1A5	Other transport	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3d	Navigation	L	-	L-T	-	L	L-T	-	-	-	-	-	-	-	-	-	-
1A4a + 1A4b	Commercial/institutional/residential	L-T	L-T	L-T	-	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T
1A4c	Agriculture/Forestry/Fishing	L-T	-	-	-	L-T	L-T	L-T	L-T	L	-	-	-	-	-	-	-
1B	Fugitive Emissions from Fuels	-	L	L-T	-	-	-	-	-	-	-	-	-	-	-	-	-
2A	Mineral products	-	-	-	-	L	L-T	L-T	-	-	L-T	L-T	-	-	-	-	-
2B	Chemical industry	T	L-T	L	T	-	-	L	-	-	-	-	Т	-	-	T	-
2C	Metal production	-	-	L-T	-	-	L-T	L	-	L-T	L-T	L-T	L-T	L-T	L-T	-	L-T
2D	Solvents use	-	L-T	-	-	-	-	-	-	-	-	-	L	-	-	-	-
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	-	L-T	L-T	-	-	-	-	-	-	-	-	-	-	-	-	-
3B	Manure management	-	L-T	-	L-T	L	L-T	L-T	-	-	-	-	-	-	-	-	-
3D	Crop production and agricultural soils	L-T	L-T	-	L-T	-	L-T	L-T	-	-	-	-	-	-	-	L-T	-
3F	Field burning of agricultural wastes	Т	-	-	T	L-T	Т	Т	Т	Т	-	L-T	Т	-	T	-	-
31	Agriculture other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5A	Biological treatment of waste: Solid waste disposal on land	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5B	Biological treatment of waste	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C	Incineration	L-T	L-T	-	-	L-T	L-T	L-T	L-T	L-T	L	L-T	L-T	L-T	-	-	Т
5D	Wastewater handling	-	-	-	Т	-	-	-	-	-	-	-	-	-	-	-	-
5E	Other waste	-	-	-	-	L	-	-	-	-	-	-	-	L-T	-	-	-
6A	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

L-Level; T-Trend

1.6. Quality Assurance and Quality Control (QA/QC) and verification

This section provides an overview of the Spanish Inventory QA/QC system, including verification and treatment of confidential issues. The system has been designed following the guidance provided in the 2006 IPCC Guidelines and the 2019 EMEP/EEA Guidebook. The European Commission Staff Working Document SWD(2013)308⁵ has also been used as a reference.

As stated in section 1.2 Institutional arrangements, the Spanish Inventory System (SEI) is in charge of the compilation and maintenance of both the Air Pollutant and the Greenhouse Gas Emissions Inventories, as well as in the elaboration of the national emissions projections. A complex network of data providers allows the Inventory gathering the necessary data for inventory compilation (national focal points, organizations, sectoral associations, companies). Despite most of these partners having their own QA/QC systems ensuring high-quality raw data, the Inventory System coordinates and complements QA/QC activities in order to meet quality objectives.

Since the Spanish Inventory System is responsible for the compilation and reporting of both GHG and Air Pollutants Inventories, the QA/QC system follows an integrated approach, covering both Inventories. For this reason, references to the GHG Inventory may appear in this document.

1.6.1. The QA/QC system

The Inventory QA/QC system constitutes the general framework for QA/QC planning, QA/QC implementation, documentation and archiving activities. Spanish Inventory QA/QC is well balanced against time and resources availability, and uses the widely known PDCA cycle approach (plan-do-check-act). As good practice suggests, the system consists of the following elements:

- A QA/QC and verification coordinator, also functioning as Inventory compiler.
- A QA/QC plan.
- QC procedures: both general and category-specific procedures.
- QA/QC system interaction with uncertainty analyses.
- Verification activities.
- Reporting, documentation and archiving procedures.

All these elements are included and properly described in the QA/QC Inventory plan, which is revised and implemented throughout the different stages of the annual Inventory compilation and reporting cycle.

1.6.2. The QA/QC plan

The plan is conceived as an internal tool for organising verification and QA/QC activities in order to ensure the continuous improvement of the Inventory and the fulfilment of its

⁵ Commission Staff Working Document "Elements of the Union greenhouse gas inventory system and the Quality Assurance and Control (QA/QC) programme", available in SWD(2013)308.

objectives. The plan affects all stages of the Inventory's development and is periodically reviewed to ensure that includes all the changes occurring in activities and inventory processes detected by the Inventory's working group and the recommendations of external review teams.

The QA/QC plan has 6 main purposes:

- 1. To set general and specific goals for the quality of the Inventory emission estimates and outputs.
- 2. To set roles and responsibilities within the Inventory system.
- 3. To set general and category-specific QC activities and a scheduled time frame for its application.
- 4. To set QA procedures.
- 5. To assure that key outputs of QA procedures underpins the improvements plan.
- 6. To provide general procedures for reporting, documentation and archiving.

1.6.3. Quality objectives

The Inventory QA/QC system seeks to respond to Spain's reporting obligations in a timely, transparent, consistent, comparable, complete and accurate manner. Furthermore, the QA/QC system intends to contribute to the improvement of quality of the Inventory. Specific quality objectives are established in order to provide concrete and measurable indicators to assess the quality of the Inventory system. These have been organized around general objectives of: timeliness, transparency, consistency, completeness, comparability and accuracy and inventory improvement:

Table 1.6.1 General and specific objectives from the QA/QC plan

General objectives	Specific objectives
Timeliness	To meet all the internal stage-specific deadlines during inventory compilation.
	To meet all the Inventory reporting obligations on time.
Transparency	To provide transparent information in the report, including procedures applied for gap filling.
	To provide background information on activity data and methodologies.
	To include reasonable descriptions and justifications of trends in the report.
	To use notation keys in accordance to 2006 IPCC GL and 2016 EMEP/EEA GB reporting guidelines.
	To provide transparent explanations for the use of NE and IE notation keys.
	To transparently include detailed explanations for recalculations in the report.
	To assure that Inventory review recommendations related to transparency are addressed, to the extent possible, in the subsequent inventory edition.
	To include information on QA/QC in the report.
Consistency	To assure a consistent time-series of emissions, activity data and implied emission factor.
	To assure internal consistency for emissions aggregations.
	To assure that inventory review recommendations related to consistency are addressed, to the extent possible, in the subsequent Inventory edition.
	To assure consistency among final emission estimates submitted to different reporting obligations, taking into account reasonable differences in geographical scope, categories, etc.
	To use, where possible, same methodologies and datasets along the time-series.

General objectives	Specific objectives
	To assure that estimation methods are consistent with the methodological guidance provided by 2006 IPCC GL and 2016-2019 EMEP/EEA GB.
	To assure consistency between data reported in reporting tables and data included in reports.
Completeness	To assure that all categories and gases/pollutants have been estimated. Should a category/gas/pollutant is not estimated, the appropriate explanation and notation key has been used (transparency).
	To assure that inventory review recommendations related to completeness are addressed, to the extent possible, in the subsequent inventory edition.
	To assure that all reporting tables provide an emission estimate or a notation key.
	To assure that information on completeness is included in the report.
	To assure that a summary of changes related to completeness is provided in the report.
	To assure the notation keys NE, NO, NA and IE are correctly used.
	To assure that all the information due is included in the submission to meet all the reporting obligations.
Comparability	To assure that IPCC and EMEP/EEA guidance is followed concerning selection of activity data, methods, use of notation keys and allocation of emissions into the difference categories.
	To assure the use of the latest reporting templates and nomenclature consistently with reporting requirements.
	To assure that inventory review recommendations related to comparability are addressed, to the extent possible, in the subsequent Inventory edition.
	To adequately implement decisions adopted in workshops and expert meetings addressing comparability (e.g. WG I, TFEIP, etc.).
Accuracy	To assure that category-specific emission factors are used when category-specific activity data is available.
	To assure that quantitative uncertainty assessment is performed.
	To assure that tier 2 or higher tier methods are used for estimating emissions from key categories.
	To assure that high uncertainty key categories are prioritised for methodological reviews and planned improvements.
	To assure that inventory review recommendations related to accuracy are addressed, to the extent possible, in the subsequent Inventory edition.
	To minimize transcription and unit conversion errors.
Inventory	To contribute to improving the overall quality of the Inventory.
improvement	To assure that review recommendations are prioritized and implemented.

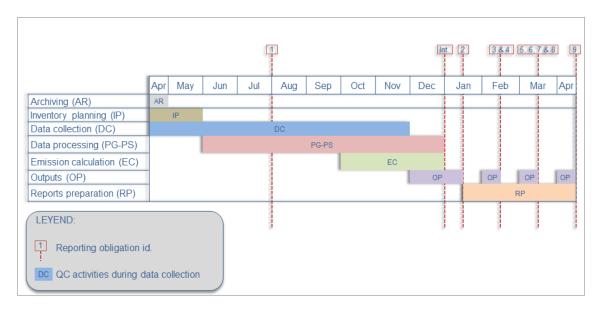
1.6.4. Roles and responsibilities

The DGCEA of the MITERD, as the competent authority of the Spanish Inventory System (SEI), is the body responsible for the Inventory's QA/QC system, acting as QA/QC manager, and has the support of specific technical assistance for undertaking the tasks required by this system.

The main responsibilities of the QA/QC manager are:

- To coordinate QA/QC activities for the SEI.
- To collect and reference the internal procedures for QA/QC used by the information providers and other organisations which cooperate with the SEI.
- To ensure the development and application of the QA/QC plan.

1.6.5. Timeline


Throughout the annual Inventory cycle, Spain has to meet an important number of international reporting obligations, starting by the end of July with the submission to European Commission of the Proxy GHG estimates and ending the 15th April with the submission to the UNFCCC of GHG emissions estimates and NIR, or later in May if gridded and LPS emission data are to be submitted under LRTAP Convention or EU NECD. In the middle, a number of submissions are due in compliance with the LRTAP Convention, the EU NECD and the EU Regulation and Decision for the reporting of GHG emissions. In addition to these international obligations, Spain has to meet formal internal and other informal and ad-hoc data requests.

The Spanish QA/QC system takes into account this condensed sequence of reporting obligations, stablishing internal deadlines for the different stages of the Inventory cycle. Furthermore, QA/QC activities are scheduled accordingly.

Table 1.6.2 Main international emission inventory reporting requirements to be met by the SEI

Id	Obligation	Organization	GAS/POLLUTANTS	Deadline
1	Approximated greenhouse gas inventories.	European		July, 31st
2	Greenhouse gas inventories - Regulation (EU) No 525/2013 (MMR). CRF tables.	European Commission (EC)	GHG	January, 15th
3	LRTAP Convention. NFR tables.	UNECE		
4	National Emission Ceiling Directive (NECD) - Directive (EU) 2016/2284. NFR tables.	European Commission (EC)	All Air Pollutants	February, 15th
5	LRTAP Convention. NFR tables + IIR.	UNECE	All All Pollutants	
6	National Emission Ceiling Directive (NECD) - Directive (EU) 2016/2284. NFR tables + IIR.			Mauah 15th
7	Greenhouse gas inventories - Regulation (EU) No 525/2013 (MMR). CRF tables + NIR.	European Commission (EC)		March, 15th
8	Decision No 529/2013/EU.		GHG	
9	Greenhouse gas inventories - UNFCCC. CRF tables + NIR.	UNFCCC		April, 15th
10	Gridded and LPS emission data under the National Emission Ceiling Directive (NECD) and LRTAP Convention.	European Commission (EC) UNECE	Air Pollutants	May, 1st

The next figure shows the main reporting obligations and quality checks throughout the Spain inventory compilation process.

Figure 1.6.1 Timeline for the Inventory compilation process

1.6.6. **Quality control and documentation**

Throughout the Inventory cycle, different quality control activities and procedures are performed and properly documented. The next table includes key QC activities organized by the stage of the Inventory cycle where they occur, with details of the target quality objective and the checking and documentation tool used for their performance.

Table 1.6.3 Key QC activities included in the QA/QC plan

Inventory stage	ID	QC actions	Target quality objective ⁶	Checking and documentation tools
Inventory	IP.01	Review of reporting obligations.	TIM	-
planning (IP)	IP.02	Prioritisation of improvements (general and sector-specific) based on results from QA activities (reviews and audits), uncertainty analysis, timeliness and resources.	TIM, ACC, IMP	Improvement plan
	IP.03	Development of a timeline of individual tasks, with checkpoints for the preparation of the different stages.	TIM	-
	IP.04	Review of methodologies for new key categories appeared in two consecutive Inventory editions.	IMP	Key categories analysis tool
Data collection	DC.01	Update of contact details, data format, data contents and deadlines for every data provider.	TIM, CON, COM, COP	DRDB
(DC)	DC.02	Check for relationships between every data set and the corresponding CRF/NFR activities.	сом, сор	
	DC.03	Second-person reviewing of every draft data request prior to submitting.	ACC	
	DC.04	Second-person tracking of data requests: dates of request and delivery, state of delivery, deadlines, etc.	TIM, COP	
	DC.05	Completeness and consistency checks on receipt of every data set delivered.	CON, COP	

TIM: Timeliness; TRA: Transparency; CON: Consistency; COM: Completeness; COP: Comparability; ACC: Accuracy;

IMP: Inventory improvement.

Inventory stage	ID	QC actions	Target quality objective ⁶	Checking and documentation tools
Data processing - General (PG)	PG.01	Review of methodologies applied and comparison with methodological guidance provided by 2006 IPCC GL and 2016/2019 EMEP/EEA GB.	CON	Methodological guidelines
	PG.02	Checks of data processing spreadsheets: calculations, units, conversions.	ACC	Data processing spreadsheets
	PG.03	An uncertainty value is provided for every category at the key categories aggregation level.	ACC	Inventory emissions
	PG.04	Embedded QC checking queries and constraints in the Inventory emissions database for integrity assurance.	database	
	PG.05	Automated data import routines.	ACC	Data import tool
	PG.06	Record date of data processing completed for every data request processed.	TIM, COM	DRDB
	PG.07 - PG.15	Source-level completeness, consistency and recalculation checks (activity data, emission factors and emission estimates).	TIM, CON, COM	QC report generating tool
	PG.16	Documentation of any change concerning methodology or activity data from previous years.	TRA	Inventory quality management tool
	PG.17	Second review of data: source-level completeness, consistency and recalculation checks.	CON, COM	QC excel tool
	PG.18 -	Consistency checks for point sources data loading into the CIEDB.	Inventory emissions	
	PG.24			database
Data processing - Category	PS.01	Inventory fuel balance vs national fuel statistics.	CON, COM, ACC	
specific (PS)	PS.02	Comparison between reference and sectoral approach for fuel consumption.	CON, COM	Spreadsheet
(5)	PS.03	Product/input ratios: - Transformation of energy Production energy requirements (quantity of energy per unit of product) Agricultural or livestock production Generation and processing of wastes.	CON	Source-specific spreadsheets
	PS.04	Composition of materials evolution: - Density - Carbon content - Carbonates content - VOC contents		
	PS.05	Composition of fuels evolution: - Molar gas composition - Carbon content - Net calorific values		
	PS.06	Correlation between fuel mix evolution, climatology and energy price.		
	PS.07	Mass balance checks.		
	PS.08	Correlation between different data sources for air traffic (EUROCONTROL vs AENA) PS.09 See category-specific chapters for detailed information.		
Emission Calculation (EC)	EC.01	Verification that the estimation algorithms operate correctly.	ACC	Inventory emissions database
	EC.02	Overall completeness check: estimates for all categories, subcategories, gases/pollutants and years.	СОМ	QC excel tool

Inventory stage	ID	QC actions	Target quality objective ⁶	Checking and documentation tools
	EC.03	Overall IEF trend checks: outliers detection.	CON	
Outputs (OP)	OP.01	Database lockage.	TIM, CON	Inventory emissions database
	OP.02	Draft outputs generation for second-person review before submitting.	CON, COM	-
	OP.03	Total emissions cross-check: by sector and by gas/pollutant.	CON	QC excel tool
	OP.04	Checks on the correctness of emissions aggregation and allocation.		
	OP.05	Time-series consistency checks.	CON	
	OP.06	Version checks: current outputs are cross-checked with last edition outputs. Any changes must be explained.	TRA, CON	Recalculation analysis tool Inventory quality management tool
	OP.07	Geographical coverage checks.	СОР	Inventory emissions database
	OP.08	Consistency check between Inventory and ETS GHG emissions.	COP, ACC	Annex V Reporting format (Art.10- Reg. (EU) No 749/2014
	OP.9	Notation keys checks: completeness and harmonisation.	TRA, COM, COP	Inventory notation keys database
	OP.10	Embedded database queries for consistency assurance between data exported from the Inventory database and data entered into reporting tools (CRF Reporter, NFR tables, etc.).	CON	Inventory emissions database
	OP.11 Automated data transfer between the Inventory emission database and the official reporting tools (CRF reporter/NFR) to minimize transcription errors.		CON, ACC	Data transfer tool
	OP.12	Running of the official reporting tools' built-in checks (CRF Reporter and RepDab).	CON, COM	Official reporting tools
Report Preparation	RP.01	QC checklist for reports preparation.	TRA, CON, ACC	Chapter-specific QC checklist
(RP)	RP.02	Second-person review of every draft chapter generated.	TRA, CON, ACC	-
Archiving (AR)	AR.01	Archiving of database files, spreadsheet files, source data, manuals, reports.	-	Inventory folder system
	AR.02	Update of the National Inventory System webpage ⁷ with all the information submitted during the Inventory cycle. Additional information on emissions at different aggregation levels and a set of methodological fact sheets are included as well.	TRA	MITERD Website

1.6.7. Quality control and documentation tools

A short overview of the five main QC tools used by the Inventory is provided below.

https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/default.aspx

1.6.7.1. Data request database (DRDB)

Overall management of data collection and registry of QC results during data processing is carried out with the Data Request Database (DRDB). This database includes two different operating modules:

- 1. The contacts database connected with the data requests tracking system.
- 2. A QC module for the registration of the progress in data processing and all the issues raised during the performance of QC activities.

Figure 1.6.2 Examples of screenshots of the DRDB

1.6.7.2. Data import tool

An Excel-based file with embedded macros allows uploading data into the CIEDB. This tool first checks for data integrity and data structure before uploading. If integrity is not assured, an error message pops-up and a list of errors to solve are provided. Once integrity checks have been successfully passed, data are automatically imported into the database. After importing, the tool automatically executes the necessary compiling and calculating processes and produces a QC report. This report consists of a spreadsheet showing time-series for current and past edition for activity data, emission factors and emissions. Warning messages appear in the QC report if recalculations, outliers on implied emission factors or inconsistencies among particulate matter fractions are detected. In his inventory edition, the tool has been improved automating consistency and integrity checks for load of large pollutant sources (LPS). The report is checked by the sector expert, if results are satisfactory, the activity is registered as uploaded and checked in the QC module of the DRBD. If the results are unsatisfactory, corrective measures take place.

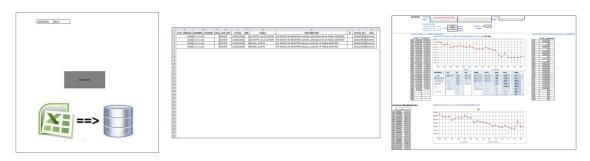


Figure 1.6.3 Appearance of the Data import tool (left), list of import errors (middle) and QC report (right)

1.6.7.3. QC excel tool

Once the emission calculation stage starts, CIEDB calculating procedures are run on a weekly basis. Resulting emissions and activity data are exported to an excel spreadsheet specially designed for QC and review purposes. With the use of pivot tables, filters and graphs, Inventory compilers are able to check emissions, activity data and IEF trends and recalculations. Checks can be performed at different levels of aggregation (sector, subsector, activity, etc.) and nomenclatures (SNAP, NFR and CRF). Furthermore, an automatic outliers' detector is included as well as annual variations ratio.

This tool, together with the QC report above mentioned, constitutes the main checking tools used in the Inventory for completeness and consistency assurance.

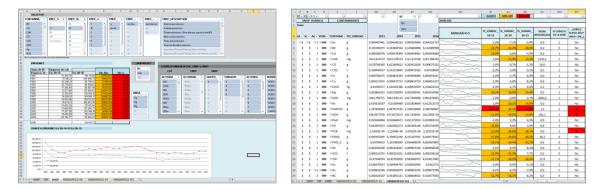


Figure 1.6.4 Appearance of the QC excel tool

1.6.7.4. Inventory quality management database (IQMDB)

The Inventory uses an Inventory quality management database (IQMDB) to allow the inventory compilers and QA/QC coordinator to register all aspects related to quality management: inventory compilation progress, improvement plan, quality checks and event log. It also allows producing different types of reports.

The current functioning of the IQMDB focuses on the event log module. This module allows registering any event or incident occurred during the data processing stage, being the recording of any change with associated recalculations of priority interest for the Inventory. For every revised estimate occurred in the Inventory, sector expert register details on the plant, category, pollutants, fuel (if any), years affected and impact. Furthermore, connections with the Inventory improvement plan can be established in order to quickly identify that certain revised estimates were due to a planned improvement. Recalculations can be classified by its origin: activity data, emission factors or other. For every origin, a range of options for details is available: error correction, updated methodology, updated activity data by the source, etc. A set of reports are also included in the event log module which presents data in different ways and levels of aggregation. In this edition of the Inventory, a total of 130 events were registered of which 123 (94.6%) with associated recalculations.

Figure 1.6.5 Appearance of the Inventory quality management tool

1.6.7.5. Recalculation analysis tool

This tool compares current edition against the past edition of the Inventory for every pollutant or gas estimated, and provides the user with valuable information on the variation of emissions, main categories recalculated, interannual changes, the number of categories recalculated, etc.

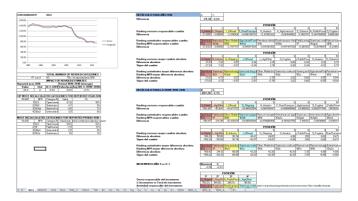


Figure 1.6.6 Appearance of the recalculation analysis tool

1.6.8. Quality assurance system

The QA system includes a number of activities conducted by third parties, not directly involved in the Inventory development process, intended to verify compliance with reporting requirements and to assess the effectiveness of the QC system.

A number of specific QA activities and procedures are detailed next:

- Annual Inventory reviews conducted by UNFCCC, UNECE and the EU: on an annual
 basis (excepting Stage 3 UNECE Review), reviews of the Spain GHG and Air Pollutants
 Inventories submitted under different information obligations are performed. The
 main outcome of these reviews is a list of issues and recommendations which feed
 into the Inventory improvement plan.
- Independent QA audit (2017-2021): since October 2017, a QA audit is being performed by an independent consultancy firm. The audit plan envisages a four-year programme of work (see schedule below). The outcome of this audit is a set of checklists where every item checked is scored using a 0 to 3 scale. Additionally, suggested actions and recommendations are included. All these work is intended to feed into the Spain Inventory improvement plan. Furthermore, an audit certificate is issued, where the external auditor confirms the audit result and validate, where appropriate and according to the agreed criteria, the data and information contained

in the latest available edition of the National GHG and Air Pollutant Emissions Inventory. As planned, a comparison of a selection of countries and an in-depth review of the Inventory system and the Waste sector was performed in 2018. In 2019, a selection of checks was reviewed for the Inventory system and the Waste sector, as well as an in-depth review of the IPPU sector. In 2020, a selection of checks was reviewed for the Inventory system, the Waste and the IPPU sector, as well as an indepth review of the Energy sector. In 2021 audit is planned after this report, as explained in appendix 1 of this chapter.

						ACTIVITIES / S	ECTORS					
Task	Description	Year	Month	Audit Plan	Audit Plan Review	Inventory System	Waste	IPPU	Energy	AFOLU		
T1	SEI Quality Assurance Audit Plan definition	2017	November	х								
T2	SEI Quality Assurance Audit execution	2018	February			Х	Х					
	Comparability analysis between countries		2018	2018					х	X	Х	х
Т3	SEI Quality Assurance Audit Plan review		November		х							
T4	SEI Quality Assurance Audit execution		February			Х	х	Х				
Т5	SEI Quality Assurance Audit Plan review	2019	November		x							
Т6	SEI Quality Assurance Audit execution		February			х	х	х	Х			
Т7	SEI Quality Assurance Audit Plan review	2020	November		x							
Т8	SEI Quality Assurance Audit execution	2021	May			х	х	х	х	х		

Figure 1.6.7 QA audit schedule (X=in-depth review; x=review of selected key points)

• **Inventory users' feedback**: every year, the Inventory receives feedback, consultations and comments from regional authorities, research organizations such as CIEMAT and governmental bodies not directly related to the Inventory compilation. All these contributions help to enhance estimates and to strengthen the QA/QC system.

1.6.9. Verification

As part of the QA/QC system, two main verification activities are performed, one considered as a QC activity and another one as a QA activity.

- Comparison between Inventory and EU ETS (QC): discrepancies are clarified with plant operators or the national EU ETS authority.
- Comparison between National Inventory data at the regional level and data from regional inventories (QA): some regional governments have their own emission estimates which are compared against data allocated by the Inventory to their region.

Discrepancies may allow the Inventory checking its estimates or the approach used for the spatial distribution of emissions.

Furthermore, in the 2020 edition, initial comparisons between the Inventory and PRTR were performed as a new QC activity. The Inventory and the Spanish PRTR authority has enhanced

its collaboration in order to share and cross-check data on emission and activity data (when available).

1.6.10. Confidentiality handling

The air pollutant emission inventories are considered to be statistics for State purposes. They are performed on the basis of the exclusive responsibility of the State and follow the rules of statistical secrecy in accordance with the provisions of the 2021-2024 National Statistical Plan.

As a general criterion, emissions data in the SEI are not considered to be confidential. However, some information on activity data related to companies or installations subject to confidentiality is not made public in the Inventory. Data on emission factors are also considered to be confidential whenever it is possible to infer data on activity variables at the company or plant level by using these emissions factors and the information on emissions. The activity variables or emission factors which are subject to confidentiality restrictions are identified with label "C".

Confidentiality is observed when less than three economic agents operate or provided data for any item in the Inventory (activity variable, general socio-economic data, technological data, etc.).

The list of categories in the Inventory cross-referenced with the emitted substances which are considered confidential is revised annually based on the variation in the number of economic agents which are considered for an item in the Inventory in each edition.

On an annual basis, the economic agents providing information of a confidential nature for the Inventory are asked by means of a specific form whether they wish to lift the confidentiality restrictions on the information that they consider sensitive.

1.6.11. Main features from QC activities

Main features and results from a selection of QC activities are presented below:

Table 1.6.4 Main features from QC activities in the 2021 edition

ID	QC actions	MAIN RESULTS
IP.01	Review of reporting obligations.	10 international obligations.
DC.04	Second-person tracking of data requests: dates of request and delivery, state of delivery, deadlines, etc.	96% of the requests to private data providers answered, of which51% delivered information after the deadline. 18% of providers needed a reminder mail. For request not answered, secondary sources of information were used.
PG.07 - PG.15	Source-level completeness, consistency and recalculation checks (activity data, emission factors and emission estimates).	321 QC reports reviewed.
PG.16	Documentation of any change concerning methodology or activity data from previous years.	123 registries documenting recalculations in the Inventory quality management database.
PG.18 - PG.30	Consistency and integrity checks for load of large pollutant sources (LPS)	Automation of checks included in the data import tool.
OP.06	Version checks: current outputs are cross- checked with last edition outputs. Any changes must be explained.	75% of emitting NFR source categories recalculated.

1.7. General uncertainty evaluation

The Spanish Inventory System applies in the uncertainty assessment of the Inventory two different approaches to all the activities:

- i. a quantitative approach referring to main pollutants (SOx, NOx, NMVOC and NH₃)
- ii. a qualitative approach, referring to the rest of pollutants

The uncertainty assessment and classification of data quality labels for activity variable and emission factors observe the "General Guidance Chapters", Chapter 5 "Uncertainties", in the 2019 EMEP/EEA Guidebook.

1.7.1. Quantitative Assessment of the Uncertainty

In the current Inventory edition, the Spanish Inventory System has implemented a quantification of the uncertainty associated to the estimated emissions of the main pollutants based on Approach 1 of 2019 EMEP/EEA GB.

Some relevant particularities for Spain have been considered when quantifying the uncertainty of emission factors and activities variables.

The following tables show the central values and their 95% confidence intervals of SOx, NOx, NH₃ and NMVOC emissions both for level (2019) and trend evolution (2019with respect to the central value of 1990). The following conclusions can be drawn from their analysis:

- i. The 95% confidence interval for the emissions level ranges between 15% and 51% for 2019, depending on the considered pollutant; whereas the trend has a more limited confidence interval (between 1.2% and 38%) depending on the pollutant.
- ii. In view of these results, it can be said that the uncertainty in the inventory for 2019 is lower for SOx and NOx than for NH_3 and NMVOC, in accordance with previous IIR trends.

The results of the Approach 1 uncertainty analysis are presented in detail in Annex 3. The results can be summarised as follows:

Pollutant	Emission (Gg)	Uncertainty in 2019 (%)	Trend Uncertainty 1990-2019 (%)
NOx	645.9	16.2	5.7
NMVOC	608.3	51.9	16.6
SOx	149.5	18.6	1.2
NH ₃	471.3	41.6	37.8
PM _{2.5}	134.8	78.6	37.3

Table 1.7.1 Emissions Uncertainties

1.7.2. Qualitative assessment of the uncertainty

The procedure for the qualitative determination of the uncertainty, based on quality label allocation, is described below.

1.7.2.1. Quality label allocation criteria

The allocation of quality labels to the emissions estimates is based on the labels associated with the Inventory's basic data (activity variables and emission factors) classified from A (the most precise) to E (the least precise).

Using quality labels for activity variables and emission factors, the Spanish Inventory System has assigned its emissions quality labels, in accordance with the attribution system "DATA ATTRIBUTE RATING SYSTEM", specified in the table below. This attribution system has been adopted by the Inventory Team as it is considered to be the most appropriate for the context of the Spanish Inventory.

Table 1.7.2 System adopted for the composition of the emissions quality label: "DATA ATTRIBUTE RATING SYSTEM"

Labels of the activity variables and emission factor	Label of the emissions variable	Labels of the activity variables and emission factor	Label of the emissions variable
E-E	Е	C-C	С
E-D	E	D-A	D
E-C	E	C-B	С
D-D	D	C-A	С
E-B	E	B-B	В
E-A	Е	B-A	В
D-C	D	A-A	A
D-B	D		

1.7.2.2. Quality label allocation procedure

In the present Inventory edition, the Spanish Inventory System has made the qualitative diagnosis of uncertainty by attributing quality labels to emission factors and activity variables. The allocation of a particular quality label from the range of options A-E was established by applying the following criteria:

For emissions:

The classification of quality of emissions is based on the classification, using the same categories (A-E), of their activity variables and the estimation methods (mostly emission factors), and on a composition method using the hypothesis of the independence of the quality level (label) in both data inputs (activity variables and emission factors).

For emissions factors:

The following general criteria have been applied initially for the assignment of quality labels to emission factors:

"A" for those derived from measured observations (SOx and NOx) and for those based on materials balance (CO_2) in combustion processes.

"B" for those derived from the methods for the balance of materials, basically SOx, Pb and CO₂, if they have not been classified with a better quality label as described in the previous paragraph.

"B", "C" and "D" for those based on default emission factors in highly anthropogenic sectors if these have not been classified with a better label as described in the previous paragraphs.

"C", "D" and "E" for those based on emission factors and on correlation functions with agriculture and livestock sectors and natural sectors if these have not been classified with a better label as described in the previous paragraphs.

For activity variables:

The following general principles have been applied for the assignment of quality labels to the activity variables:

"A" for the data collected from the questionnaires sent by Large Point Sources, as well as the data from the Population Censuses and the Statistical Yearbooks on Registration.

"B" for sector-based statistics based on questionnaires sent to activity centres.

"B", "C" and "D" for the "Inferred" Statistical Yearbooks (e.g. statistics in the Agricultural Statistical Yearbook from the MAPA).

"C", "D" and "E" for the diagnoses based on expert opinions.

1.7.2.3. Quality labels assigned to the emissions estimates

The following table shows the quality labels associated with the estimated emissions by NFR sector. These labels have been derived using the procedure described in Section 1.7.2.1. The information in the table can be considered representative for the whole of the period in the Inventory.

Table 1.7.3 Mean quality levels (labels) of emissions

NED	OTHER	PARTICULATE MATTER				POPs		
NFR	со	PM _{2.5}	PM ₁₀	TSP	вс	НСВ	DIOX	PAHs
1A1a	В	С	С	В	С	D	D	D
1A1b	В	С	С	В	С	-	D	-
1A1c	В	С	С	В	С	-	D	D
1A2	D	D	D	С	D	-	Е	D
1A3a	С	С	С	В	С	-	-	Е
1A3b	D	С	С	В	В	-	Е	E
1A3c + 1A3e + 1A5	С	С	С	В	С	-	Е	E
1A3d	С	С	С	В	С	E	Е	E
1A4a + 1A4b	E	E	E	D	D	-	Е	E
1A4c	С	С	С	В	E	E	Е	E
1B	D	D	D	С	D	-	-	D
2A	-	-	-	-	-	-	-	-
2B	D	D	D	С	D	D	-	-
2C	D	D	D	С	D	D	D	D
2D	D	-	-	-	-	-	-	Е
2G + 2H + 2I + 2J + 2K + 2L	D	D	D	С	D	-	-	-
3B	-	E	Е	D	-	-	-	-

NED	OTHER	PARTICULATE MATTER				POPs		
NFR	со	PM _{2.5}	PM ₁₀	TSP	ВС	НСВ	DIOX	PAHs
3D	-	-	Е	D	-	-	-	-
3F	D	E	Е	D	E	-	E	E
31	-	-	-	-	-	-	-	-
5A	Е	D	D	С	-	-	-	-
5B	Е	D	D	С	-	-	-	-
5C	Е	D	D	С	С	D	В	D
5D	Е	D	D	С	-	-	-	-
5E	-	-	-	-	-	-	-	-
6A	-	-	-	-	-	-	-	-

NED				HE	AVY MET	ALS				
NFR	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn	
1A1a	D	D	D	D	D	D	D	D	D	
1A1b	D	D	D	D	D	D	D	D	D	
1A1c	D	D	D	D	D	D	D	D	D	
1A2	D	D	D	D	D	D	D	D	D	
1A3a	-	D	D	D	-	D	-	D	D	
1A3b	-	Е	Е	Е	-	Е	Α	D	E	
1A3c + 1A3e + 1A5	-	D	D	D	D	D	-	D	D	
1A3d	D	D	D	D	D	D	С	D	D	
1A4a + 1A4b	D	D	D	D	D	D	D	D	D	
1A4c	D	D	D	D	D	D	С	D	D	
1B	-	-	-	-	-	-	-	-	-	
2A	-	D	-	-	-	-	D	-	-	
2B	-	D	-	-	С	-	-	- C	-	
2C	D	D	D	С	С	С	D		D	
2D	-	-	-	-	-	-	-	-	-	
2G + 2H + 2I + 2J + 2K + 2L	-	-	-	-	-	-	-	-	-	
3B	-	-	-	-	-	-	-	-	-	
3D	-	-	-	-	-	-	-	-	-	
3F	-	-	-	-	-	-	-	-	-	
31	-	-	-	-	-	-	-	-	-	
5A	-	-	-	-	-	-	-	-	-	
5B	-	-	-	-	-	-	-	-	-	
5C	D	D	D	D	D	D	D	D	D	
5D	-	-	-	-	-	-	-	-	-	
5E	-	-	-	-	-	-	-	-	-	
6A	-	-	-	-	-	-	-	-	-	

1.8. General Assessment Completeness

In this section, detailed explanations are provided on the notations keys reported for categories and pollutants where no emission data could be provided in the Spanish Inventory.

1.8.1. Sources not estimated (NE)

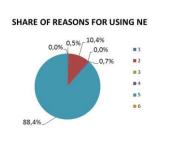
Since 2015 Inventory edition, completeness has been increasingly improved, with a substantial reduction of categories notated as NE, and hence, more emissions estimates have been provided since then. The table below shows this evolution.

Edition (year of submission)	Number of categories with NE	% of the total number of categories with at least one NE
2021	57 out of 127	45%
2020	59 out of 127	46%
2019	57 out of 127	45%
2018	59 out of 127	46%
2017	63 out of 127	50%

Table 1.8.1 Evolution of the number of categories notated as NE

Spain ensures full adherence to the revised guidelines for reporting emissions and projections data under the LRTAP Convention (ECE/EB.AIR/125) in the use of notation keys. The apparently high number of NE used by Spain is mainly due to the fact that the 2016 EMEP/EEA GB states NE for each combination category/pollutant.

For clarity reasons, identifications and explanations for NE are presented in a matrix where any NE is identified by a blue cell and the explanation is codified with a number. In order to reduce the length of this document, only categories with NE are presented.


Descriptions of the codes used are the following:

- 1. Despite being emission factors available in the 2016/2019 EMEP/EEA GB, the Inventory has not been able to estimate these emissions yet.
- 2. Emission factors are not available in the methodological guidelines.
- 3. No studies are available on possible traces of metals contained in coal or in its adjacent strata and those are emitted in the mining processes or in the subsequent manipulation of coal in the gaseous or particulate state.
- 4. There is no information on traces of sulphur originally contained in the hydrocarbons or subsequently incorporated into them in the treatment phase for SOx emissions; so it has not been possible to estimate these emissions, but it is presumed to be of very low importance to the total Inventory.
- The Inventory uses NE notation key for categories and pollutants that 2016/2019 EMEP/EEA GB included under the "Not estimated" section of every emission factor table.
- Emissions are considered negligible. A national expert judgement confirms no emissions of NMVOC in Spanish mines. However, following recommendation ES-1B1a-2017-0001 made by the ERT in the 2017 NECD review, the Spanish Inventory System has used NE notation key instead of NA.

Overall, the main reason for using NE is ID=5, as shown in table and figure below. Priority for Inventory improvements would be the reduction of ID=1 which currently represents the 0.7% of total reported NE.

Table 1.8.2 Share reasons for using NE

Reason ID	TIMES NE IS USED	
1	2	SHARE OF REAS
2	42	0,0%_\
3	0	
4	3	
5	357	
6	0	88,4%_
TOTAL	404 out of 3302 categories x pollutants (12.2%)	

ES – IIR – 2021

Table 1.8.3 Distribution of reasons for using NE

																				PAHs						
NFR Code	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PM ₁₀	TSP	ВС	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se Zn	DIOX	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	indeno (1,2,3-cd) pyrene	Total 1-4	НСВ	PCBs	
1A1a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A1b	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A1c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A2a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A2b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A2c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A2d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A2e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A2f	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A2gvii	-	-	-	-	-	-	-	-	-	2	-	2	2	-	-	-	-	-	2	-	-	-	-	-	-	-
1A2gviii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3ai(i)	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-
1A3aii(i)	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-
1A3bi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3bii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3biii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3biv	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3bv	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3bvi	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3bvii	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	-	2	2	2	2	2	-	-
1A3c	-	-	-	-	-	-	-	-	-	2	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3di(ii)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3dii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3ei	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3eii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A4ai	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A4aii	-	-	-	-	-	-	-	-	-	-	-	5	5	-	-	-	-	-	5	-	-	-	-	-	-	-
1A4bi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A4bii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A4ci	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A4cii	-	-	-	-	-	-	-	-	-	2	-	2	2	-	-	-	-	-	2	-	-	-	-	-	-	-
1A4ciii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

ES – IIR – 2021

																				PAHs						
NFR Code	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PM ₁₀	TSP	ВС	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	indeno (1,2,3-cd) pyrene	Total 1-4	НСВ	PCBs
1A5a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A5b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1B1a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1B1b	-	-	-	-	-	-	-	5	-	5	5	5	5	5	5	5	5	5	-	-	5	5	5	-	-	-
1B1c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1B2ai	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-
1B2aiv	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1B2av	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-
1B2b	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-
1B2c	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	-	-
1B2d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A1	5	5	5	5	-	-	-	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	-
2A2	5	5	5	-	-	-	-	-	5	5	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A3	5	-	5	-	-	-	-	-	5	-	-	-	-	-	-	-	-	-	5	5	5	5	5	5	5	-
2A5a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A5b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A5c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2B1	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2B2	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2B3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2B5	5	5	5	-	-	-	-	-	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	-
2B6	-	5	-	5	-	-	-	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
2B7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2B10a	-	-	-	-	-	-	-	-	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
2B10b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2C1	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2C2	5	5	5	5	-	-	-	-	-	-	-	5	-	-	-	-	5	-	5	-	-	-	-	-	-	-
2C3	-	-	-	5	-	-	-	-	-	5	5	5	5	5	5	-	5	-	-	-	-	-	-	-	-	-
2C4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2C5	5	5	-	5	-	-	-	5	5	-	-	5	-	5	5	5	5	-	-	5	5	5	5	5	5	-
2C6	5	5	-	5	-	-	-	5	5	-	-	-	-	5	5	5	5	-	-	5	5	5	5	5	5	-
2C7a	5	5	-	5	-	-	-	-	5	-	-	-	-	-	-	-	5	-	-	5	5	5	5	5	5	-

ES – IIR – 2021

																				PAHs						
NFR Code	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PM ₁₀	TSP	ВС	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	indeno (1,2,3-cd) pyrene	Total 1-4	НСВ	PCBs
2C7b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2C7c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2C7d	-	-	-	-	5	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3a	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3b	5	-	5	-	-	-	-	-	5	-	-	-	-	-	-	-	-	-	5	5	5	5	5	5	5	-
2D3c	5	-	-	-	-	-	-	-	-	5	5	5	-	-	-	-	-	-	5	5	5	5	5	5	5	-
2D3d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3e	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3f	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3g	5	-	5	5	5	5	-	5	5	5	-	5	-	-	5	-	-	5	5	-	-	-	-	-	5	5
2D3h	-	-	-	-	5	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3i	5	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	-	-	-	-	-	5	-
2G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-	-	-	5	5
2H1	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	5	5	5	5	5	-
2H2	-	-	-	-	5	5	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2H3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21	5	5	5	5	5	5	-	5	5	-	-	-	5	-	5	-	-	-	-	-	-	-	-	-	-	-
2J	5	5	5	5	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	5
2K	-	-	-	-	-	-	-	-	-	5	5	5	5	5	5	5	5	5	-	-	-	-	-	-	5	5
2L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B1a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B1b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4e	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4f	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4gi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4gii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4giii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4giv	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4h	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

ES – IIR – 2021

																					PAHs					
NFR Code	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PM ₁₀	TSP	ВС	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	benzo(a) pyrene		benzo(k) fluoranthene	indeno (1,2,3-cd) pyrene	Total 1-4	НСВ	PCBs
3Da1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da2a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da2b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da2c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da4	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Db	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Dc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Dd	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3De	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Df	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5A	-	-	-	5	-	-	-	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5B1	5	5	5	-	5	5	5	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5B2	-	5	5	-	-	-	-	5	-	5	5	5	-	5	-	-	-	5	5	5	5	5	5	5	5	5
5C1a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C1bi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C1bii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C1biii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C1biv	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C1bv	-	-	-	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C1bvi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C2	-	-	-	5	-	-	-	-	-	-	-	5	-	-	-	5	-	-	-	-	-	-	5	-	5	-
5D1	-	-	-	5	-	-	-	5	-	5	5	5	5	5	5	5	5	5	-	-	-	-	-	-	-	-
5D2	-	-	-	5	-	-	-	5	-	5	5	5	5	5	5	5	5	5	-	-	-	-	-	-	-	-
5D3	-	5	-	-	5	5	5	5	-	5	5	5	5	5	5	5	5	5	-	-	-	-	-	-	-	-
5E	5	-	5	-	-	-	-	-	5	-	-	-	-	-	-	5	5	5	-	5	5	5	5	5	5	5
6A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

ES – IIR – 2021 1. INTRODUCTION

1.8.2. Sources included elsewhere (IE)

1.8.2.1. **General**

Following the recommendation ES-0A-2019-0001 made by the TERT in the 2019 NECD review⁸ (pursuant to Directive (EU) 2016/2284), the Spanish Inventory has finalized its works for reporting emissions on the individual PAHs what has significantly reduced the number of IE reported in this inventory edition.

1.8.2.2. Energy

- 1A4bii Residential: household and gardening (mobile): emissions are included within
 the category related to the stationary source (1A4bi) since no information is available
 to distinguish consumption between stationary and mobile, being assumed that
 stationary is predominant. Planned improvements focus on separate emissions
 reported under 1A4bi.
- 1A5a Other stationary (including military): consumption rates allocated to military activities (fixed facilities) are included within the categories related to the stationary sources of their respective sector (1A4ai).

1.8.2.3. Industrial Processes and other Product Uses

The emissions of some activities from NFR sector 2 are estimated within the corresponding combustion activities associated with these production processes in Energy (NFR 1).

- 2A1 Cement production: for PM, the Inventory estimates emissions applying a mixed Tier 2/Tier 3 approach, using a national emission factor based on measurements, provided by the main business association (OFICEMEN). These emissions are allocated under the corresponding combustion activity associated with this production process (1A2f).
- 2B1 Ammonia production: NOx emissions have been reallocated under 1A2c category due to impossibility of splitting emissions between combustion and process. The upgrading of the chemical sector by addition of information from the chemical plants via individual questionnaire has drawn up new estimations according to measures from the plants.
- 2B10b Storage, handling and transport of chemical products: for PM_{2.5}, PM₁₀ and TSP, according to sections 3.2.2 and 3.3.2 from chapter 2.B of 2019 EMEP/EEA Guidebook, it is assumed that emissions from the storage and handling of chemical products are included in the process emissions, both for Tier 1 and 2.

1.8.2.4. Agriculture

3B4giii Manure management-Turkeys: historical information available from MAPA's
 Statistical Yearbook does not split "Other poultry" category into different species. As a
 consequence, turkeys are currently included under "Other Poultry" category (3B4iv).

Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

ES – IIR – 2021 1. INTRODUCTION

1.8.2.5. Waste

 5C1a Municipal waste incineration: Since 2004 emissions are reported under 1A1a as all incineration facilities have undertaken incineration with energy recovery.

- 5C1bi Industrial waste incineration: Emissions are reported under 1A1a as all incineration facilities have undertaken incineration with energy recovery.
- 5C1biii Clinical waste incineration: Since 2006 emissions are reported under 1A1a as no incineration without energy recovery takes place.

ES – IIR – 2021 1. INTRODUCTION

Appendix 1: QA Audit certificate

The audit certificate is not available at the date of this report. This is because the audit will take place precisely after this report is completed, thus giving the widest possible coverage of the audit.

2. EXPLANATION OF KEY TRENDS

CONTENTS

2.	EX	XPLANATION OF KEY TRENDS	83
	2.1. Aı	nalysis by pollutant	83
	2.1.1.	Nitrogen Oxides (NOx)	84
	2.1.2.	Non-Methane Volatile Organic Compounds (NMVOC)	86
	2.1.3.	Sulphur Oxides (SOx)	89
	2.1.4.	Ammonia (NH ₃)	91
	2.1.5.	Fine Particulate Matter (PM _{2.5})	94
	2.1.6.	Carbon Monoxide (CO)	97
	2.1.7.	Lead (Pb)	98
	2.1.8.	Cadmium (Cd)	100
	2.1.9.	Mercury (Hg)	102
	2.1.10.	Dioxins and Furans (PCDD/F)	103
		Polycyclic Aromatic Hydrocarbons (PAHs)	
	2.2. Aı	nalysis by activity category	
	2.2.1.	Energy (NFR 1)	
	2.2.2.	Industrial Processes and Product Use (NFR 2)	109
	2.2.3.	Agriculture (NFR 3)	110
	2.2.4.	Waste (NFR 5)	111

FIGURES

Figure 2.1.1	Distribution of main pollutants emissions in year 2019	83
Figure 2.1.2	Distribution of NOx emissions in year 2019	
Figure 2.1.3	Evolution of NOx emissions by category and distribution in year 2019	85
Figure 2.1.4	Distribution of NMVOC emissions in year 2019	87
Figure 2.1.5	Evolution of NMVOC emissions by category and distribution in year 2019	88
Figure 2.1.6	Distribution of SOx emissions in year 2019	89
Figure 2.1.7	Evolution of SOx emissions by category and distribution in year 2019	
Figure 2.1.8	Distribution of NH ₃ emissions in year 2019	
Figure 2.1.9	Evolution of NH ₃ emissions by category and distribution in year 2019	93
Figure 2.1.10	Distribution of PM _{2.5} emissions in year 2019	
Figure 2.1.11	Evolution of PM _{2.5} emissions by category and distribution in year 2019	96
Figure 2.1.12	Evolution of CO emissions by category and distribution in year 2019	98
Figure 2.1.13	Evolution of Pb emissions by category and distribution in year 2019	100
Figure 2.1.14	Evolution of Cd emissions by category and distribution in year 2019	101
Figure 2.1.15	Evolution of Hg emissions by category and distribution in year 2019	103
Figure 2.1.16	Evolution of PCCD/F emissions by category and distribution in year 2019	105
Figure 2.1.17	Evolution of PAHs emissions by category and distribution in year 2019	106
Figure 2.2.1	Relative emissions of pollutants (Energy vs. total emissions, excluding Canary Islands) in 2019	9108
Figure 2.2.2	Relative variation of emissions in Energy (2019 vs. base year, excluding Canary Islands)	108
Figure 2.2.3	Relative emissions of pollutants (IPPU vs. total emissions, excluding Canary Islands) in 2019	109
Figure 2.2.4	Relative variation of emissions in IPPU (2019 vs. base year, excluding Canary Islands)	109
Figure 2.2.5	Relative emissions of pollutants (Agriculture vs. total emissions, excluding Canary Islands) in 2019	
Figure 2.2.6	Relative variation of emissions in Agriculture (2019 vs. base year, excluding Canary Islands)	110
Figure 2.2.7	Relative emissions of pollutants (Waste vs. total emissions, excluding Canary Islands) in 2019	111
Figure 2.2.8	Relative variation of emissions in Waste (2019 vs. base year, excluding Canary Islands)	111
TABLES		
Table 2.1.1	NOx emissions by sector (kt)	
Table 2.1.2	NMVOC emissions by sector (kt)	87
Table 2.1.3	SOx emissions by sector (kt)	90
Table 2.1.4	NH ₃ emissions by sector (kt)	92
Table 2.1.5	PM _{2.5} emissions by sector (kt)	
Table 2.1.6	CO emissions by sector (t)	
Table 2.1.7	Pb emissions by sector (t)	
Table 2.1.8	Cd emissions by sector (t)	101
Table 2.1.9	Hg emissions by sector (t)	
Table 2.1.10	PCDD/F emissions by sector (g i-TEQ)	104
Table 2.1.11	PAHs emissions by sector (t)	106

2. EXPLANATION OF KEY TRENDS

Chapter updated in March, 2021.

2.1. Analysis by pollutant

This section analyses and discusses the latest estimates of the emissions of the major primary pollutants, as well as the trends in these emissions along the studied time series (1990-2019).

Emissions of the five main pollutants in 2019 in Spain (excluding the Canary Islands) are graphically shown in the following figure, with the split to the 12 aggregated GNFR sectors considered in this Chapter.

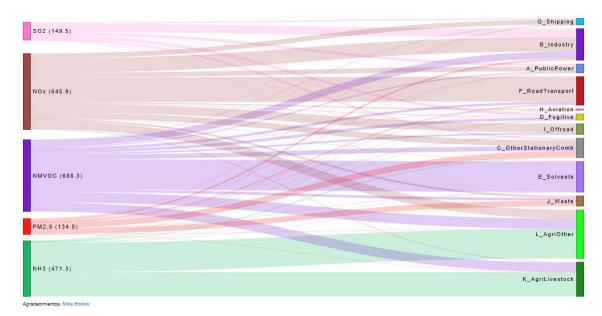


Figure 2.1.1 Distribution of main pollutants emissions in year 2019

Emissions of the different pollutants, expressed in kilotonnes (kt), have been summarised to a single chart, this without presuming any comparability of their adverse effect on the environment and on human health.

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

In the next pages, separate analyses of the following pollutants are included:

Nitrogen Oxides (NOx)	– Carbon Monoxide (CO)
– Non-Methane Volatile Organic	– Lead (Pb)
Compounds (NMVOC)	– Cadmium (Cd)
– Sulphur Oxides (SOx)	– Mercury (Hg)
– Ammonia (NH₃)	– Dioxins and Furans (PCDD/F)
Fine Particulate Matter (PM_{2.5})	– Polycyclic Aromatic Hydrocarbons (PAHs)

2.1.1. Nitrogen Oxides (NOx)

In 2019, 645.9 kt of nitrogen oxides (NOx), expressed as nitrogen dioxide, were emitted in Spain (excluding the Canary Islands).

NOx emissions in 2019 decreased by -51.6% when compared to 1990, and also decreased by -6.4% compared to 2018.

The GNFR¹ aggregated sectors contributing to NOx emissions were:

- Road transport (F RoadTransport) was the first contributing activity with 32.7% of total NOx emissions, with Passenger cars (1A3bi) and Heavy duty vehicles and buses (1A3biii) accounting respectively for 19.4% and 9.4% of the total value.
- Industries (B_Industry) were the second contributing activities, accounting for 18.8% of total NOx emissions.
- The emissions from <u>A_PublicPower</u> in 2019 accounted only for 6.2% of NOx emissions.
- The rest of sources accounted for the remaining 42.4% of emissions, led by: <u>I Offroad transport</u>, with a share of 11.4% of the total, followed by <u>L AgriOther</u> emissions (11.3%) and <u>C OtherStationaryCombustion</u> (7.8% of the total NOx emissions).

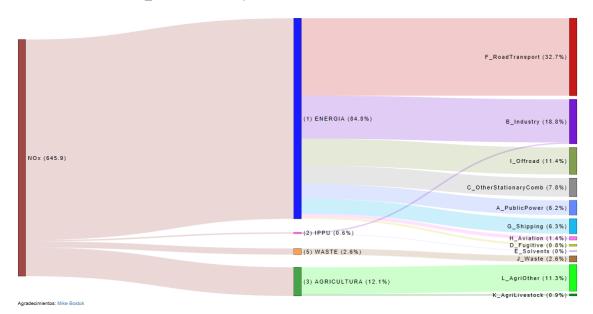


Figure 2.1.2 Distribution of NOx emissions in year 2019

Table 2.1.1 NOx emissions by sector (kt)

	1990	2005	2010	2015	2018	2019
A_PublicPower	208.0	293.4	84.4	124.0	61.2	39.9
B_Industry	187.5	190.1	157.1	114.3	119.6	121.2
C_OtherStationaryComb	36.7	52.7	56.4	51.3	52.9	50.6
D_Fugitive	6.3	4.5	4.1	4.8	5.0	5.0

Share 2019	2019/ 1990	2019/ 2018
6.2%	-80.8%	-34.8%
18.8%	-35.4%	1.3%
7.8%	37.9%	-4.4%
0.8%	-21.5%	-0.4%

¹ NFR aggregation for reporting of gridded data and Large Point Sources is used. GNFR for each NFR category is provided in column A of NFR tables.

	1990	2005	2010	2015	2018	2019	,
E_Solvents	0.0	0.2	0.1	0.1	0.1	0.1	
F_RoadTransport	561.4	489.1	361.3	270.1	228.7	211.2	
G_Shipping	86.1	53.6	31.3	13.5	37.6	40.8	
H_Aviation	2.8	6.8	7.1	7.0	8.6	8.9	
I_Offroad	141.4	170.6	122.4	95.7	80.8	73.5	
J_Waste	9.5	9.5	12.9	13.1	16.6	16.6	
K_AgriLivestock	5.2	5.8	5.3	5.2	5.5	5.5	
L_AgriOther	88.6	69.5	68.1	73.0	73.5	72.7	
Total (Canary Islands not included)	1333.7	1346.0	910.6	772.3	690.3	645.9	1

Share 2019	2019/ 1990	2019/ 2018
0.0%	256.0%	-6.7%
32.7%	-62.4%	-7.7%
6.3%	-52.6%	8.4%
1.4%	215.5%	2.5%
11.4%	-48.0%	-9.1%
2.6%	75.0%	0.0%
0.9%	5.2%	-0.4%
11.3%	-18.0%	-1.1%
100.0%	-51.6%	-6.4%

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

2.1.1.1. Trend assessment

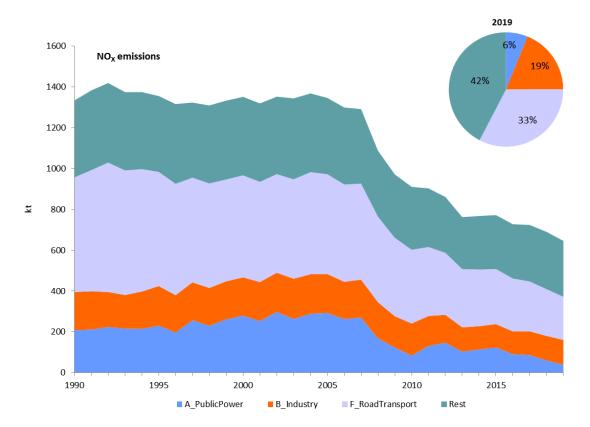


Figure 2.1.3 Evolution of NOx emissions by category and distribution in year 2019

Nitrogen Oxides emissions have clearly decreased since 1990 (-51.6%), with almost every sector showing emission reductions.

The most relevant quantitative NOx emission reductions affected F_RoadTransport, which dropped its emissions by -62.4% since 1990. This marked decline has been caused by the introduction of EURO standards in gasoline Passenger cars (1A3bi) since 1993 (Euro 1-91/441/EEC) and in Heavy duty vehicles and buses (1A3bii) since 2000 (Euro III).

The most relevant qualitative reductions are those from A_PublicPower (1A1a), which decreased by -80.8% since 1990. The reduction is driven by the progressive introduction of renewable energies, the introduction of abatement techniques in thermal power plants and the shift to combined cycle gas plants. For example, the drastic drop observed in 2008 (-38% compared to previous year) was due to the closure of the main brown coal mine in Spain in 2007 and the necessary retrofitting in 2008 of the adjacent thermal plant.

Although the behaviour among the different industries varies, the reduction of NOx emissions from B_Industry by -35.4% in 2019 compared to 1990 is mainly due to the reduction by -52.4% in the Combustion in Non-metallic minerals manufacturing industries (1A2f). This drop is due to the progressive introduction of abatement techniques in industrial plants and the shift from liquid fuels to natural gas.

On the other hand, NOx emission from C_OtherStationaryCombustion increased by 37.9% since 1990, reflecting the increase of fuel consumption in the Residential, Commercial and Institutional (RCI) sector.

The period with stronger reductions of total NOx emissions is between 2008 and 2013 (-29.9%) due to the economic downturn in Spain. After this period, in spite of economic recovery, the reduction in NOx emissions continues but with a lower slope.

When comparing 2019 with 2018 emissions, the decline of -6.4% is mainly linked to decreases in F_RoadTransport (-7.7%) and in A_PublicPower (1A1a) (-34.8%).

Power generation emissions (A_PublicPower) decreased in 2019 due to an increase in the share of renewables in the Spanish energy pool, and the reduction of -69,4% of the use of coal in electricity production with respect to 2018 (which has been substituted by natural gas combined cycle plants).

In a similar way, F_RoadTransport emissions decreased in 2019 with respect to 2018, as a consequence of the technological improvement of the average Spanish vehicle fleet.

2.1.2. Non-Methane Volatile Organic Compounds (NMVOC)

In 2019, the emissions of Non-Methane Volatile Organic Compounds (NMVOC) in Spain (excluding the Canary Islands) were estimated to be 608.3 kt.

NMVOC emissions in 2019 declined by -40.7% compared to 1990, and slightly decreased by -0.3% when compared to 2018.

The analysis of GNFR aggregated sectors contributing to NMVOC:

- Solvents (E Solvents) was the largest contributing activity with 42.3% of the total NMVOC emissions, with Coating applications (2D3d) as the main emitting sector, with 10.4% of total NMVOC emissions, followed by Domestic solvent use (2D3a) with 10.4%, and Chemical products (2D3g) with 9.9%.
- F RoadTransport, which was a large contributor in the past, in 2019 only accounted for 3.3% of the total NMVOC emissions.
- Emissions from <u>D Fugitive</u> activities accounted for 3.8% of the total of NMVOC emissions.

The remaining sources, accounting for 50.6% of NMVOC emissions, are mainly composed by: L_AgriOther (14.2% of the total), K_AgriLivestock (12.9%), B_Industry (9.6%, where the Food and beverages industry -2H2- accounted for 3.4% of the total), and C_OtherStationaryComb, with residential combustion of solid fuels (1A4bi) accounting for 5.9% of the total ofl NMVOC emissions.

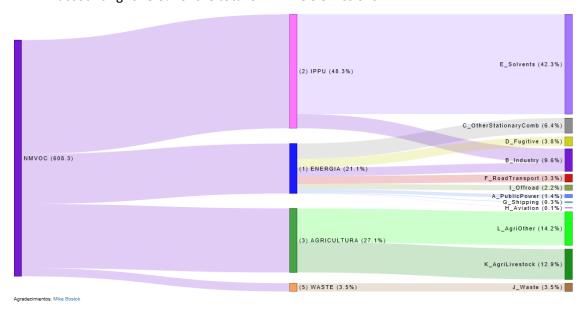


Figure 2.1.4 Distribution of NMVOC emissions in year 2019

Table 2.1.2 NMVOC emissions by sector (kt)

	1990	2005	2010	2015	2018	2019	Share 2019	2019/ 1990	2019/ 2018
A_PublicPower	0.8	2.0	2.1	7.6	8.5	8.4	1.4%	1007.0%	-0.9%
B_Industry	54.6	63.6	50.4	50.8	54.4	58.3	9.6%	6.8%	7.2%
C_OtherStationaryComb	34.2	33.9	41.7	39.5	39.4	38.8	6.4%	13.4%	-1.4%
D_Fugitive	43.8	25.4	21.4	23.5	24.0	23.2	3.8%	-47.0%	-3.2%
E_Solvents	366.8	360.7	272.2	245.6	261.7	257.1	42.3%	-29.9%	-1.8%
F_RoadTransport	334.8	107.2	46.6	23.2	21.9	20.2	3.3%	-94.0%	-8.0%
G_Shipping	3.6	2.8	1.7	0.7	1.7	1.8	0.3%	-49.2%	6.4%
H_Aviation	0.3	0.6	0.8	0.7	0.8	0.8	0.1%	185.2%	-1.9%
I_Offroad	22.7	16.7	10.6	10.2	12.3	13.6	2.2%	-40.1%	10.4%
J_Waste	14.5	14.0	17.6	17.7	21.2	21.2	3.5%	45.9%	-0.1%
K_AgriLivestock	70.5	76.6	72.6	75.1	78.3	78.5	12.9%	11.4%	0.2%
L_AgriOther	79.4	83.7	79.2	82.6	86.2	86.4	14.2%	8.8%	0.3%
Total (Canary Islands not included)	1025.9	787.2	616.8	577.2	610.3	608.3	100.0%	-40.7%	-0.3%

2.1.2.1. Trend assessment

Figure 2.1.5 Evolution of NMVOC emissions by category and distribution in year 2019

The decrease in NMVOC emissions by -40.7% since 1990 is mainly related to reductions in F_RoadTransport emissions (-94.0%), secondarily to the drop of emissions under E_Solvents (-29.9%) and, to a lesser extent, to D Fugitive emissions (-47.0%).

Emissions from F_RoadTransport accounted for 32.6% of NMVOC emissions in 1990, and have been reduced by 94% in 2019 owing to the introduction of the EURO standards for road vehicles since 1996, and to the shift towards a diesel predominant car fleet in Spain. Between 1990 and 2019, NMVOC emissions from passenger cars (1A3bi) dropped by 97.2%. Besides, the introduction of techniques to reduce evaporation of gasoline (1A3bv), with the first technologies EURO (1 and 2) from 1992, together with a drop in gasoline consumption, reduced the NMVOC emissions from this subcategory by 97.8%.

NMVOC emissions in 2019 for E_Solvents categories have decreased by -29.9% when compared to 1990 emissions. The drop since 2003 is a result of the entry into force of different legislation on paintings and painting installations (RD 117/2003 and RD 227/2006, transposition of Directives 1999/13 and 2004/42 respectively). These lead to a fall of emissions under Coating applications (2D3d) by -54% between 2007 and 2019. Also the economic downturn has also had a noticeable effect on the contraction of the activity data (consumption of paintings). The decreasing trend stopped by 2012, and from then a steady trend in emissions is observed, with minor fluctuations.

NMVOC emissions under D_Fugitive dropped by -47% between 1990 and 2019. The reduction in emissions is mainly related to the Distribution of oil products (1B2av), due to the entry into force since 2000 of regulations on the distribution of oil products (RD 2102/1996, RD 1437/2002, RD 2102/1996 and RD 455/2012). The adoption of regulations relating to tanks,

distribution of gasoline and gas recovery (Phase II), together with a drop in gasoline consumption, has resulted in a reduction of -87.8% in emissions of NMVOC in 1B2av sector compared to 1990.

NMVOC emissions in 2019 for E_Solvents categories decreased by -1.8% when compared to 2018, although 2019 was a year in which the Spanish GDP increased.

2.1.3. Sulphur Oxides (SOx)

In 2019, 149.5 kt of sulphur oxides (SOx), expressed as sulphur dioxide, were emitted in Spain (excluding the Canary Islands).

SOx emissions in 2019 decreased by -92.7% compared to 1990 and showed a -23.8% decrease when compared to 2018.

The major GNFR aggregated sectors contributing to SOx emissions were:

- Industries (B Industry) were the first contributing activity, accounting for 47.1% of emissions, with combustion in manufacturing industries and construction, in Nonmetallic minerals (1A2f) and in Chemicals (1A2c) being the 14.8% and 4.5% of the total, respectively.
- Fugitive emissions (D_Fugitive) were the next contributing activities, representing 15.9% of total SOx emissions, with Fugitive emissions from oil refining and storage (1B2aiv) accounting for 13.8% of the total.
- Public power generation (A_PublicPower) which in the first years of the time series was the largest contributor, in 2019 accounted for 15.0% of total SOx emissions.
- The rest of sources accounted for the remaining 22% of emissions, with Other Stationary Combustion (1A4) accounting for 12.5% of total emissions, and Shipping (national navigation, 1A3dii) accounting for 7.9%.

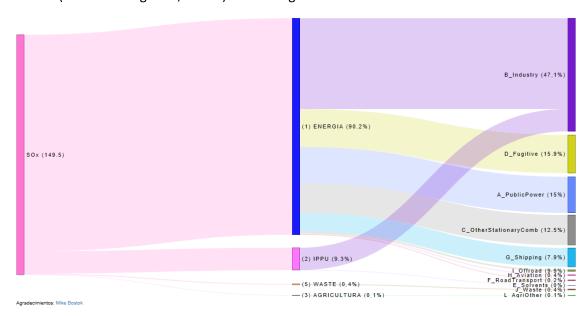


Figure 2.1.6 Distribution of SOx emissions in year 2019

Share 2019/ 2019/ 1990 2005 2010 2015 2018 2019 2019 1990 2018 A_PublicPower 1407.4 914.6 59.7 129.1 61.3 22.4 -98.4% -63.4% 15.0% **B_Industry** 428.7 195.2 124.3 80.4 74.5 70.4 47.1% -83.6% -5.4% C_OtherStationaryComb 26.2 32.0 25.4 18.3 22.7 18.7 12.5% -28.7% -17.7% 24.9 **D** Fugitive 63.1 39.6 23.0 25.1 23.7 15.9% -62.4% -5.7% **E Solvents** 0.0 0.0 0.0 0.0 0.0 0.0 0.0% 122.8% -1.9% F_RoadTransport 52.7 2.2 0.4 0.3 0.3 0.3 0.2% -99.4% -0.8% **G_Shipping** 34.1 8.9 3.3 2.4 10.2 11.7 7.9% -65.5% 15.4% 0.5 **H** Aviation 0.2 0.4 0.4 0.5 0.5 0.4% 187.8% 2.7% I_Offroad 20.9 11.3 5.8 1.2 0.9 0.9 0.6% -95.6% 2.5% J_Waste 0.7 0.3 0.5 0.5 0.5 0.5 0.4% -24.4% -0.5% **K_AgriLivestock** 0.0 0.0 0.0 0.0 0.0 0.0% 0.0 L_AgriOther 4.6 0.2 0.1 0.2 0.2 0.2 0.1% -96.4% 0.0%

Table 2.1.3 SOx emissions by sector (kt)

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

242.9

257.7

196.2

149.5

100.0%

-92.7%

-23.8%

2.1.3.1. Trend assessment

Total (Canary Islands not included) | 2038.6 | 1204.9

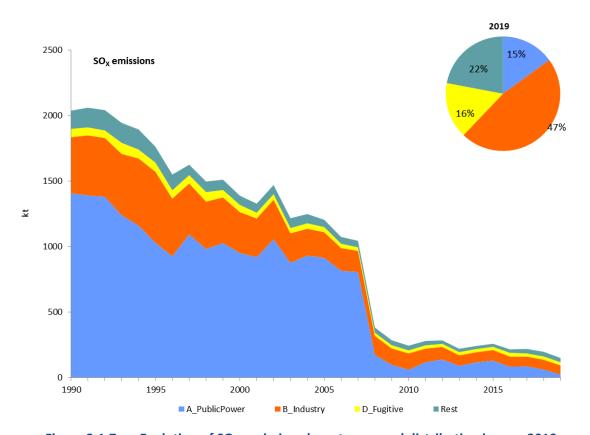


Figure 2.1.7 Evolution of SOx emissions by category and distribution in year 2019

Sulphur Oxides emissions in Spain have experienced a drastic drop (-92.7%) since 1990, due to the substantial reduction of SOx emissions in the three main contributing activities:

- A_PublicPower (1A1a) has reduced SOx emissions by -98.4% since 1990. The reduction has been caused by the progressive introduction of desulphurization abatement techniques in thermal power plants and the shift from coal power plants to combined cycle gas plants. The sharp drop observed in 2008 (-78.6% compared to previous year) was due to the closure of the main brown coal mine in Spain in 2007 and the necessary retrofitting in 2008 of the adjacent thermal plant.
- SOx emission in B_Industry also decreased by 83.6% since 1990. This drop is mainly linked to reductions in Petroleum refining sector (1A1b) by 97.8%, followed by Stationary combustion in the chemical industry (1A2c) (-85.7%) and Combustion in the non-metallic minerals industry (1A2f) (-75.1%). Similarly to Public Power production, the reduction of SOx emissions from the Stationary combustion in industries is directly linked to the progressive introduction of desulphurization abatement techniques and the shift towards fuels with less sulphur content.
- D_Fugitive emissions have been reduced by 62.4%, in which Fugitive emissions from refining and storage of oil (1B2aiv) and from oil/gas venting and flaring (1B2c) dropped by -47.1% and -87.4% respectively, linked to the reductions observed in the Petroleum refining sector (1A1b).

Another driver in the SOx emissions' reduction since 1990 has been F_RoadTransport, whose emissions were almost completely removed (-99.4%) as a result of the reduction of the sulphur content in road fuels since 1994, due to the effect of the Directive 93/12/EEC relating to the sulphur content of certain liquid fuels.

After the closure of the brown coal mine in 2007, the total SOx emissions still showed a global decrease of -60.9% between 2008 and 2019, due to the decline in the consumption of solid fossil fuels with high sulphur content, but with yearly fluctuations, due to the different share of coal in the Spanish energy mix.

When comparing the years 2018 and 2019, total SOx emissions showed a marked reduction of -23.8%, linked to decreases of -63.4% in A_PublicPower and -17.7% in C_OtherStationaryCombustion emissions, both due to the reduction of coal consumption.

This decrease in Power generation emissions (A_PublicPower) in 2019 is a result of the huge reduction of -69.4% of the use of coal in electricity production with respect to 2018 (which has been substituted by natural gas) and the increase of renewables in the Spanish energy pool.

2.1.4. Ammonia (NH_3)

In 2019, approximately 471.3 kt of ammonia (NH₃) were emitted in Spain (excluding the Canary Islands).

This estimated NH_3 emissions in 2019 are an increase by 1.2% compared to 1990 and a decrease by -0.7% when compared to 2018.

The major GNFR aggregated sectors contributing to NH₃ emissions were:

- Agriculture (L AgriOther) was the largest contributing activity with 52.8% of total emissions. In more detail, Animal manure applied to soils (3Da2a) was the largest emitter representing 28.3% of total Ammonia emissions, followed by Inorganic N-fertilizers including urea (3Da1) accounting for 15.7% and Urine and dung deposited by grazing animals (3Da3) accounting for 7.8% of total NH₃ emissions.

- Livestock (K_AgriLivestock) was the second contributing activity, accounting for 43.5% of Ammonia emissions, with Manure management-Swine (3B3) accounting for 15.5%, followed by Manure management-Non-dairy Cattle (3B1b) accounting for 8.2%. Categories Manure management-Dairy cattle (3B1a) represented 6.1% and Manure management-Broilers (3B4gii) represented 5.1% of NH₃ emissions.
- <u>C OtherStationaryComb</u> were the next-largest contributing activity, representing only 1.6% of the total NH₃ emissions, and in which residential sector (1A4bi) is the only contributor.

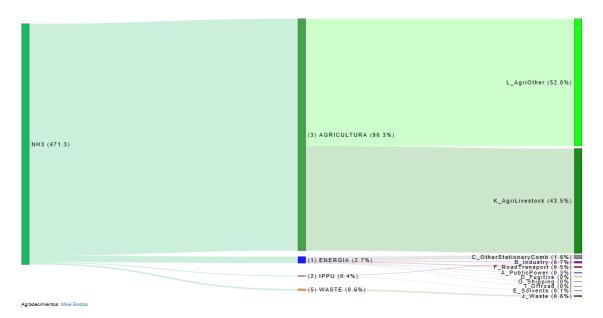


Figure 2.1.8 Distribution of NH₃ emissions in year 2019

Table 2.1.4 NH₃ emissions by sector (kt)

	1990	2005	2010	2015	2018	2019	Sha 20
A_PublicPower	0.0	0.1	0.2	1.1	1.3	1.3	0
B_Industry	5.2	4.4	4.0	2.5	2.8	3.1	0
C_OtherStationaryComb	6.4	6.3	7.6	7.5	7.4	7.4	1
D_Fugitive	0.0	0.0	0.0	0.0	0.0	0.0	0
E_Solvents	0.1	0.4	0.3	0.3	0.3	0.3	0
F_RoadTransport	0.3	5.9	3.8	2.6	2.3	2.2	0
G_Shipping	0.0	0.0	0.0	0.0	0.0	0.0	0
H_Aviation	0.0	0.0	0.0	0.0	0.0	0.0	0
I_Offroad	0.0	0.0	0.0	0.0	0.0	0.0	0
J_Waste	20.6	8.3	2.6	3.2	3.0	3.1	0
K_AgriLivestock	184.2	217.4	186.4	191.8	204.7	205.0	43
L_AgriOther	248.8	240.3	230.5	243.7	252.9	248.9	52
Total (Canary Islands not included)	465.7	483.1	435.5	452.7	474.7	471.3	100

Share 2019	2019/ 1990	2019/ 2018
0.3%	-	3.2%
0.7%	-40.3%	12.1%
1.6%	14.7%	-0.8%
0.0%	93.2%	175.4%
0.1%	257.8%	-6.8%
0.5%	538.5%	-4.3%
0.0%	-48.6%	6.6%
0.0%	-	-
0.0%	26.6%	0.7%
0.6%	-85.2%	0.6%
43.5%	11.3%	0.1%
52.8%	0.0%	-1.6%
100.0%	1.2%	-0.7%

2.1.4.1. Trend assessment

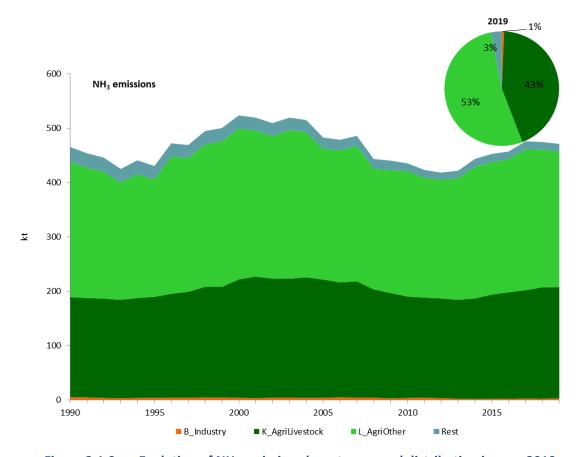


Figure 2.1.9 Evolution of NH₃ emissions by category and distribution in year 2019

The trend of Ammonia emissions is essentially ruled by the evolution of Agriculture activities, the largest contributing sector to these emissions.

Total NH₃ emissions in 2019 have increased by 1.2% when compared to 1990 level. Even with no sharp variations in the time series, four different periods can be distinguished:

- The decline observed in the first six years (-7.5% when comparing 1995 with 1990) is related to a significant economic recession in Spain together with a period of drought (the fact that fertilization intensifies drought stress implies a decrease in the fertilizer market during poor rainfall periods).
- From 1996 onwards, the trend grows steadily until reaching maximum levels in 2000-2004 (between 9.4% and 12.4% in NH₃ emissions with respect to 1990). During these years, the number of heads of non-dairy cattle had increased significantly compared to 1990, as well as the white swine population. As a consequence, Ammonia emissions from K_AgriLivestock increased between 18.2% and 21.4% in that period compared to 1990. The growing evolution of the livestock is also reflected in Soil fertilization activities under L_AgriOther, and thus Ammonia emissions derived from Animal manure applied to soils (3Da2a) rose between 17.9% and 22.2% during 2000-2004 compared to 1990.
- From 2005, the trend decreases moderately until 2012. This reduction of emissions is likely due to a combination of factors: a second period of drought (2005-2008), followed by a second economic downturn in Spain (as of 2007), caused a decrease in

the inorganic N-fertilizers use (decline in 3Da1 emissions, which in 2012 were -32.3% lower than in 1990). Additionally, the introduction of fertilization practices with measures for abatement of NH₃ emissions from 2004 onwards reinforces this reduction. Ammonia emissions from K_AgriLivestock also experiences an important decrease between 2003 and 2012 (-16.1%), mainly due to a reduction in non-dairy cattle (3B1b), and the progressive introduction of abatement techniques in white swine manure management (3B3), improvements in animal feed formulations, as well as the enforcement of animal welfare legislation affecting laying hens since 2010.

• Finally, in the last period of Ammonia emission evolution, total NH₃ emissions have increased by +12.6% in 2019 compared to 2012. This rise is driven by increases in both fertilizing activities (synthetic nitrogen fertilizers -3Da1- emissions aumented +18.1% in 2019 compared to 2012 and Animal manure applied to soils -3Da2a- augmented by 13.1%) and Livestock practices (Manure management: Non-dairy cattle -3B1b-increased by 26.3% and Manure management: Swine -3B3- increased by 17.8%).

Ammonia emissions decreased by -0.7% in 2019 with respect to 2018, due to a -1.6% decrease in L_AgriOther emissions, mainly caused by a decrease in the use of inorganic N-fertilizers (3Da1) of -5.8%.

2.1.5. Fine Particulate Matter ($PM_{2.5}$)

In 2019, 134.8 kt of Fine Particulate Matter (PM_{2.5}: particles with an aerodynamic diameter equal to or less than 2.5 micrometres) were emitted in Spain (excluding the Canary Islands).

 $PM_{2.5}$ emissions in 2019 decreased by -17.7% compared to 2000, the base year for particulate matter, and by -0.9% compared to 2018.

The analysis of GNFR aggregated sectors contributing to PM_{2.5} emissions is:

- Small Stationary Combustion (C_OtherStationaryComb) was the largest contributing activity with 37.5% of total PM_{2.5} emissions, with Residential stationary combustion (1A4bi) accounting for 35.5% of the total.
- Industries (B Industry) accounted for 10.8% of total PM_{2.5} emissions.
- <u>F RoadTransport</u>, a former important contributor, represents 6.6% of the total emissions.
- The rest of sources accounted for the remaining 45.1% of the total PM_{2.5} emissions, among them Waste (J Waste) was responsibe for 34.3% of the total of fine particulate emissions, with the Open burning of waste (5C2) accounting for 33.1% of the total.

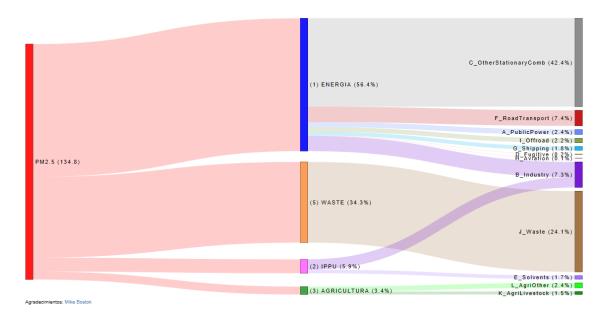


Figure 2.1.10 Distribution of PM_{2.5} emissions in year 2019

Table 2.1.5 PM_{2.5} emissions by sector (kt)

	2000	2005	2010	2015	2018	2019	Share 2019	2019/ 2000	2019/ 2018
A_PublicPower	10.2	10.0	2.4	5.2	3.7	2.9	2.1%	-72.0%	-22.8%
B_Industry	19.9	21.7	15.1	12.5	13.5	14.6	10.8%	-26.9%	7.7%
C_OtherStationaryComb	43.8	45.4	53.3	51.3	51.4	50.6	37.5%	15.5%	-1.5%
D_Fugitive	0.5	0.4	0.4	0.3	0.3	0.2	0.2%	-48.2%	-22.5%
E_Solvents	0.7	3.0	2.3	2.1	2.2	2.1	1.5%	177.8%	-6.3%
F_RoadTransport	25.4	23.5	17.7	11.4	9.5	8.9	6.6%	-65.1%	-6.5%
G_Shipping	1.6	1.3	0.9	0.5	1.9	2.2	1.6%	41.0%	13.4%
H_Aviation	0.1	0.1	0.1	0.1	0.1	0.1	0.0%	15.1%	1.6%
I_Offroad	10.0	8.6	5.5	3.5	3.0	2.6	1.9%	-74.2%	-14.0%
J_Waste	31.0	27.6	36.1	36.4	46.0	46.3	34.3%	49.0%	0.7%
K_AgriLivestock	1.9	1.8	1.6	1.7	1.8	1.7	1.3%	-7.8%	-1.0%
L_AgriOther	18.7	3.6	1.8	2.9	2.8	2.8	2.1%	-85.0%	0.0%
Total (Canary Islands not included)	163.8	147.0	137.2	127.8	136.1	134.8	100.0%	-17.7%	-0.9%

2.1.5.1. Trend assessment

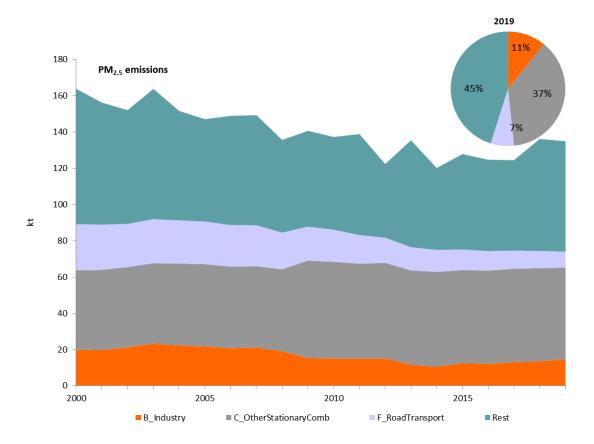


Figure 2.1.11 Evolution of PM_{2.5} emissions by category and distribution in year 2019

Fine Particulate Matter (PM_{2.5}) emissions have decreased by -17.7% since 2000.

The most relevant reduction affected F_RoadTransport, as its $PM_{2.5}$ emissions have dropped by -42.9% since 2000. Reductions are mostly driven by the introduction of EURO standards in passenger cars (1A3bi). This has forced a reduction of $PM_{2.5}$ by -74.5% since 2000 in this subcategory. A more marked effect can be observed in Heavy duty vehicles and buses (1A3biii), which showed a reduction in their $PM_{2.5}$ emissions by -89.6% since 2000.

Since the year 2000, $PM_{2.5}$ emissions coming from C_OtherStationaryComb have risen by 15.5%, mainly due to the increase in biomass consumption within the residential sector (1A4bi).

On the contrary, $PM_{2.5}$ emissions from B_Industry have decreased by -23.9% since 2000, mainly motivated by the activity drop as from 2008 caused by the economic downturn in the country, the shift from fossil liquid fuels to a more predominant gas consumption, and the installation of abatement techniques. A_PublicPower (1A1a) has had a similar evolution to B_Industry and has reduced its $PM_{2.5}$ emissions by -72% since 2000.

J_Waste sector shows an increase of 49% in PM_{2.5} emissions since 2000, whilst L_AgriOther experienced a fall of -85% of its emissions, due to the abandonment of the practice of field burning (3F), restricted by forest fire prevention legislation.

Comparing 2018 to 2019, $PM_{2.5}$ emissions experienced a decrease of -22.8% in A_PublicPower category, because of the drop of coal use for electricity generation.

2.1.6. Carbon Monoxide (CO)

In 2019, approximately 1,599.7 kt of carbon monoxide (CO) were emitted in Spain (excluding the Canary Islands).

CO emissions in 2019 decreased by -59.1% compared to 1990 and also decreased by -2.4% compared to 2018.

The GNFR aggregated sectors which were the major contributors to CO emissions:

- Small Stationary Combustion (C OtherStationaryComb) accounted for 26.7% of total CO emissions, with Residential sector (1A4bi) as the principal contributor with 25.9% of total CO emissions.
- Industries (B Industry) contributed with a 20.1% of CO total emissions, with Iron and steel production (2C1) and Combustion in Non-metallic minerals (1A2f) accounting respectively for 5.4% and 3.2% of the total.
- F_RoadTransport, which used to be the main contributor to CO emissions, in 2019 accounted for a 9.7% of the total. In a parallel way, <u>L_AgriOther</u> activities have reduced their contribution to 1.4% of the total.
- The rest of sources accounted for the remaining 42.1% of emissions, mainly due to <u>J Waste</u> sector, that contributed with a 36.3% of the total CO emissions, with the Open burning of waste (5C2) accounting tor a 36.2% of the total CO emissions.

Table 2.1.6 CO emissions by sector (t)

	1990	2005	2010	2015	2018	2019	Share 2019	2019/ 1990	2019/ 2018
A_PublicPower	6.6	15.4	14.2	24.3	30.9	23.9	1.5%	261.9%	-22.5%
B_Industry	434.1	408.3	340.0	347.0	344.5	322.0	20.1%	-25.8%	-6.5%
C_OtherStationaryComb	427.6	400.3	468.0	440.0	432.3	426.9	26.7%	-0.2%	-1.3%
D_Fugitive	2.7	2.6	2.2	2.2	2.1	2.0	0.1%	-24.5%	-4.7%
E_Solvents	1.1	5.7	4.2	3.9	4.1	3.8	0.2%	256.2%	-6.8%
F_RoadTransport	2035.2	596.3	301.0	174.1	163.9	154.9	9.7%	-92.4%	-5.5%
G_Shipping	9.5	7.4	4.4	1.9	4.6	4.9	0.3%	-48.6%	6.6%
H_Aviation	2.9	5.6	5.6	4.8	6.0	6.2	0.4%	112.2%	3.0%
I_Offroad	61.2	51.3	37.0	39.4	47.8	52.3	3.3%	-14.5%	9.4%
J_Waste	310.5	333.1	454.2	457.0	580.6	580.6	36.3%	87.0%	0.0%
K_AgriLivestock	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	-	-
L_AgriOther	615.8	31.2	9.8	22.8	22.1	22.1	1.4%	-96.4%	0.0%
Total (Canary Islands not included)	3907.2	1857.1	1640.7	1517.4	1639.0	1599.7	100.0%	-59.1%	-2.4%

1990

1995

B_Industry

2019 4500 20% **CO** emissions 4000 42% 27% 3500 10% 3000 2500 ₹ 2000 1500 1000 500 0

2.1.6.1. Trend assessment

Figure 2.1.12 Evolution of CO emissions by category and distribution in year 2019

2005

F_RoadTransport

2010

■ L_AgriOther

2015

2000

C_OtherStationaryComb

Carbon Monoxide emissions have decreased by -59.1% since 1990, this drop being essentially driven by the reductions in F_RoadTransport which dropped by -92.4% along the time series. Reductions were ruled by the introduction of EURO standards, that since 1993 (EURO 1-91/441/EEC) resulted in a global reduction of CO emissions from passenger cars (1A3bi) (-96.5% in 2019 with respect to 1990).

Particular mention deserves the CO emissions from L_AgriOther, which drastically decreased in 2000 due to the abandonment of the practice of field burning (3F), restricted by forest fire prevention legislation (-96.4% reduction as from 1990).

Regarding CO emissions in B_Industry, a sharp decrease in 2009 can be observed, linked to the economic downturn in Spain. When comparing 2019 to 1990, a -25.8% decline in the CO emissions is perceived.

J_Waste sector has increased its emissions by 87% since 1990. On the contrary, C_OtherStationaryComb CO emissions remain steady (-0.2% reduction since 1990.

2.1.7. Lead (Pb)

In 2019, 98.5 t of lead (Pb) were emitted in Spain (excluding the Canary Islands).

Pb emissions in 2019 decreased by 96.2% compared to 1990 and increased by 5.9% compared to 2018.

The major GNFR aggregated sector contributing to Pb emissions was <u>Industries (B_Industry)</u>, accounting for 54.6% of total Pb emissions, with Iron and steel production (2C1) with a 33.9% of the total of emissions, Glass production emissions (2A3) with 8.4%, and Combustion in Iron and steel (1A2a) with 7.6%. <u>(F_RoadTransport)</u> was the second contributing activity, accounting for 35.4% of lead emissions in 2019.

Table 2.1.7 Pb emissions by sector (t)

	1990	2005	2010	2015	2018	2019	Share 2019	2019/ 1990	2019/ 2018
A_PublicPower	2.9	4.4	1.6	2.3	1.7	0.7	0.7%	-74.5%	-57.0%
B_Industry	81.4	65.3	60.8	61.8	55.2	53.8	54.6%	-33.9%	-2.5%
C_OtherStationaryComb	5.9	5.3	5.3	4.3	4.8	4.4	4.5%	-25.3%	-7.7%
D_Fugitive	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	13.7%	-7.9%
E_Solvents	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	122.8%	-1.9%
F_RoadTransport	2491.6	53.9	47.1	23.9	26.7	34.8	35.4%	-98.6%	30.2%
G_Shipping	0.2	0.1	0.1	0.0	0.1	0.1	0.1%	-42.8%	8.3%
H_Aviation	0.7	0.6	0.5	0.3	0.3	0.3	0.3%	-54.1%	13.8%
I_Offroad	0.7	0.3	0.2	0.2	0.3	0.3	0.3%	-52.6%	25.1%
J_Waste	2.1	2.3	3.1	3.1	3.9	3.9	4.0%	91.3%	0.0%
K_AgriLivestock	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	-	-
L_AgriOther	1.0	0.1	0.0	0.0	0.0	0.0	0.0%	-96.4%	0.0%
Total (Canary Islands not included)	2586.4	132.3	118.8	96.1	93.0	98.5	100.0%	-96.2%	5.9%

2.1.7.1. Trend assessment

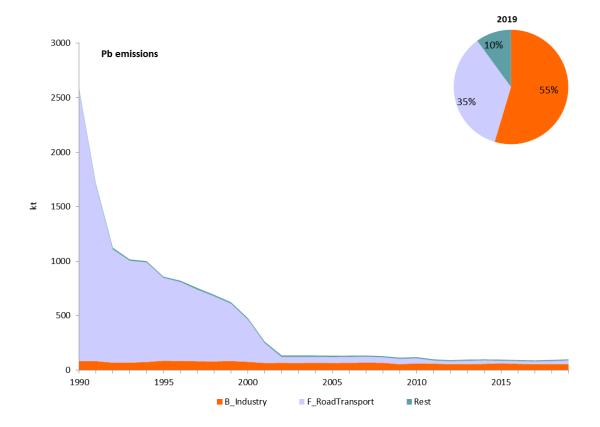


Figure 2.1.13 Evolution of Pb emissions by category and distribution in year 2019

The trend of Pb emissions in Spain is driven by the paramount decrease of emissions from F_RoadTransport (-98.6%) since 1990. This is due to the introduction of non-leaded petrol for gasoline Passenger cars (1A3bi) since 1989 and the implementation in 2000 of the fully ban of supply of leaded petrol (Directive 98/70/CE). Remaining Pb emissions in F_RoadTransport in 2016 are linked to Automobile tyre and brake wear abrasion (1A3bvi) and to some residual fleet of old passenger cars under 1A3bi.

2.1.8. **Cadmium (Cd)**

In 2019, approximately 7.4 t of Cadmium (Cd) were emitted in Spain (excluding the Canary Islands).

Cd emissions in 2019 decreased by -74.9% compared to 1990 and decreased by -2.2% compared to 2018.

The major GNFR aggregated sector contributing to Cd emissions was <u>B Industry</u>, accounting for 40.4% of total Cd emissions, with Iron and steel production (2C1) accounting for 18.4% of the total. <u>J Waste</u> and <u>C OtherStationaryComb</u> were largest contributing activities, representing 21.6% and 20.2% of Cd total emissions, respectively. <u>L AgriOther</u> and <u>Public Power generation (A PublicPower)</u> represented each a 4% of total emissions

Share 2019/ 2019/ 1990 2005 2010 2015 2018 2019 2019 1990 2018 -41.2% A_PublicPower 1.2 2.1 0.5 0.5 0.5 0.3 3.7% -78.1% **B_Industry** 17.6 5.9 3.4 3.0 2.9 3.0 40.4% -83.1% 1.9% C_OtherStationaryComb 1.2 1.2 1.4 1.5 1.5 1.5 20.2% 25.3% -0.5% 0.0 **D** Fugitive 0.0 0.0 0.0 0.0 0.0 0.0% 13.7% -7.9% **E Solvents** 0.1 0.6 0.4 0.4 0.4 0.4 5.0% 257.8% -6.8% F_RoadTransport 0.2 0.3 0.3 0.3 0.3 0.3 4.5% 68.6% 0.9% **G_Shipping** 0.0 0.0 0.0 0.0 0.0 0.0 0.1% -35.4% 10.0% **H_Aviation** 0.0 0.0 0.0 0.0 0.0 0.0 0.0% 184.9% 2.7% I_Offroad 0.0 0.0 0.0 0.0 0.0 0.0 0.5% 11.6% 1.0% 0.9 21.6% 90.3% J_Waste 0.8 1.3 1.3 1.6 1.6 0.1% 0.0 0.0 0.0 0.0 0.0% **K_AgriLivestock** 0.0 0.0 L_AgriOther 8.1 0.4 0.1 0.3 0.3 0.3 4.0% -96.4% 0.0%

Table 2.1.8 Cd emissions by sector (t)

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

7.6

7.2

7.5

7.4

100.0%

-74.9%

-2.2%

29.3

11.4

2.1.8.1. Trend assessment

Total (Canary Islands not included)

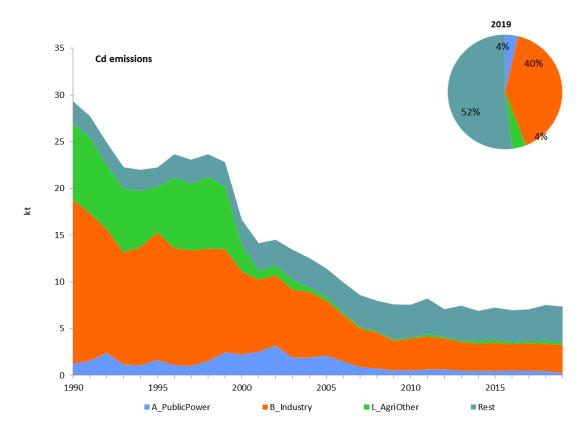


Figure 2.1.14 Evolution of Cd emissions by category and distribution in year 2019

The trend of Cd emissions is basically ruled by the decrease of emissions from B_Industry (-83.1% along the whole time series), and particularly in Combustion Non-metallic minerals

(1A2f). Emissions in this sector have been reduced by 99.2%, due to the introduction of abatement techniques in combustion facilities, the decline of coal consumption and the economic recession suffered from 2008. A drastic reduction (-96.4%) is also observed in L_AgriOther, specifically in Field burning (3F), linked to the legal restrictions of this practice (forest fire prevention legislation).

When comparing 2019 with 2018, a decrease of -41.2% in Cd emissions is shown in A PublicPower, due to the marked reduction of coal use in the last inventoried year.

2.1.9. Mercury (Hg)

In 2019, approximately 3.1 t of Mercury (Hg) were emitted in Spain (excluding the Canary Islands).

Hg emissions in 2019 showed a decrease of -71.2% when compared to 1990 and of -26.6% when compared to 2018.

These are the major GNFR aggregated sectors contributing to Hg emissions:

- Industries (B Industry), as the first contributing activity, accounting for 56.2% of total Hg emissions, with Iron and steel production (2C1) accounting for 26.5% of the total of emissions. Combustion in Non-metallic minerals manufacturing industries (1A2f) stands for 13.7% of the total and Zinc production (2C6) for 9.9%.
- (A PublicPower), namely Public electricity and heat production (1A1a) represented a 19.3% of total Hg emissions.

1990 2005 2010 2015 2018 2019 A_PublicPower 3.4 3.5 1.2 1.6 1.6 0.6 4.8 2.4 2.0 1.8 1.7 **B_Industry** 3.1 0.2 0.2 0.2 C_OtherStationaryComb 0.2 0.2 0.1 0.0 **D_Fugitive** 0.0 0.0 0.0 0.0 0.0 E_Solvents 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2 F_RoadTransport 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 **G_Shipping** 0.0 0.0 0.0 **H** Aviation 0.0 0.0 0.0 I Offroad 0.0 0.0 0.0 0.0 0.0 0.0 J Waste 0.7 0.1 0.1 0.2 0.3 0.3 K_AgriLivestock 0.0 0.0 0.0 0.0 0.0 0.0 L AgriOther 1.3 0.1 0.0 0.0 0.0 0.0 Total (Canary Islands not included) 10.7 7.4 4.3 4.4 4.2 3.1

Table 2.1.9 Hg emissions by sector (t)

Share 2019	2019/ 1990	2019/ 2018
19.3%	-82.4%	-63.3%
56.2%	-63.6%	-3.0%
5.0%	-12.1%	-17.1%
0.0%	13.7%	-7.9%
3.4%	-50.2%	0.8%
5.2%	46.9%	1.1%
0.5%	-54.6%	4.5%
0.0%	184.9%	2.7%
0.4%	-45.4%	0.9%
8.4%	-63.3%	-2.8%
0.0%	-	-
1.5%	-96.4%	0.0%
100.0%	-71.2%	-26.6%

2.1.9.1. Trend assessment

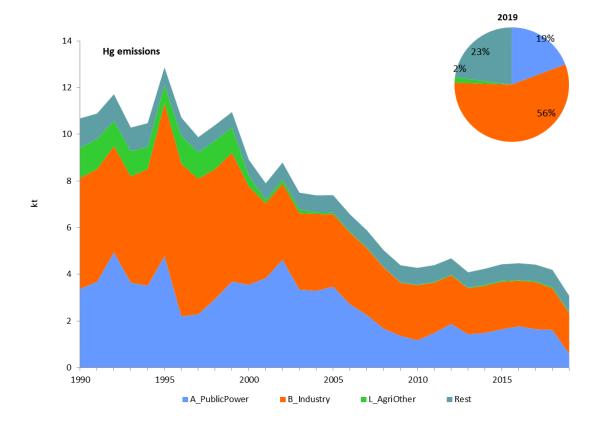


Figure 2.1.15 Evolution of Hg emissions by category and distribution in year 2019

The trend of Hg emissions in Spain is mainly led by the decrease of emissions from B_Industry (-82.4%). More specifically, the Chlorine production using mercury technologies (2B10a), which accounted for 18% of total Hg emissions in 1990, halted its emissions in 2018 pursuant the Implementing Decision 2013/732/EU adopted under the Directive 2010/75/EU on industrial emissions, which prohibits the use of mercury as a cathode in the chlor-alkali industry. Additionally, Stationary Combustion in Non-metallic minerals manufacturing industries (1A2f), which accounted for 13.7% of total Hg emissions in 1990, reduced its emissions by 71.8% in 2019, with respect to 1990.

The Hg emissions from A_PublicPower also declined by -63.6% when compared to 1990. This reduction has been caused by the shift from coal power plants to combined cycle gas plants and the implementation of abatement techniques in thermal power plants.

Again, particular mention deserves the mercury emissions from L_AgriOther, which show a strong decrease during the studied time series (-96.4%), due to the abandonment of the practice of field burning (3F), now restricted by forest fire prevention reasons.

The Hg emissions in 2019 decreased by -63.3% in A_PublicPower sector when compared to 2018, due to the drop in coal use as a fuel.

2.1.10. Dioxins and Furans (PCDD/F)

In 2019, approximately 172.2 g I-TEQ of Dioxins and Furans (PCDD/F) were emitted in Spain (excluding the Canary Islands).

PCDD/F emissions in 2019 decreased by -60.2% when compared to 1990, and slightly decreased by -0.5%, compared to 2018 emissions.

The major GNFR aggregated sector contributing to PCDD/F emissions was <u>Industries</u> (<u>B Industry</u>) representing 44% of PCDD/F total emissions, with Iron and steel production (2C1) and Aluminium production (2C3) industries accounting for 31.1% and 5.9% of the total PCDD/F emissions, respectively.

<u>Small Stationary Combustion (C OtherStationaryComb)</u> and <u>J Waste</u> were the two next-largest contributing activities accounting for 33.9% and 18.8% of the total emissions, respectively. Under C_OtherStationaryComb, 1A4bi activity (Residential stationary combustion) accounted for 33.0% of the total of PCDD/F emissions in 2019.

Table 2.1.10 PCDD/F emissions by sector (g i-TEQ)

	1990	2005	2010	2015	2018	2019	Share 2019	2019/ 1990	2019/ 2018
A_PublicPower	133.8	4.4	1.3	3.4	3.0	1.9	1.1%	-98.6%	-37.0%
B_Industry	88.2	88.3	83.4	87.2	77.7	75.9	44.0%	-14.0%	-2.4%
C_OtherStationaryComb	56.2	53.3	62.5	59.5	59.2	58.3	33.9%	3.8%	-1.5%
D_Fugitive	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	34.8%	12.3%
E_Solvents	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	257.8%	-6.8%
F_RoadTransport	4.0	4.0	3.3	2.9	3.2	3.3	1.9%	-18.7%	3.7%
G_Shipping	0.3	0.1	0.1	0.1	0.2	0.2	0.1%	-22.4%	12.4%
H_Aviation	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	-	-
I_Offroad	0.1	0.1	0.1	0.1	0.1	0.1	0.0%	-45.5%	0.5%
J_Waste	145.0	34.8	28.8	28.2	29.5	32.4	18.8%	-77.6%	9.8%
K_AgriLivestock	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	-	-
L_AgriOther	4.6	0.2	0.1	0.2	0.2	0.2	0.1%	-96.4%	0.0%
Total (Canary Islands not included)	432.2	185.3	179.6	181.5	173.1	172.2	100.0%	-60.2%	-0.5%

2.1.10.1. Trend assessment

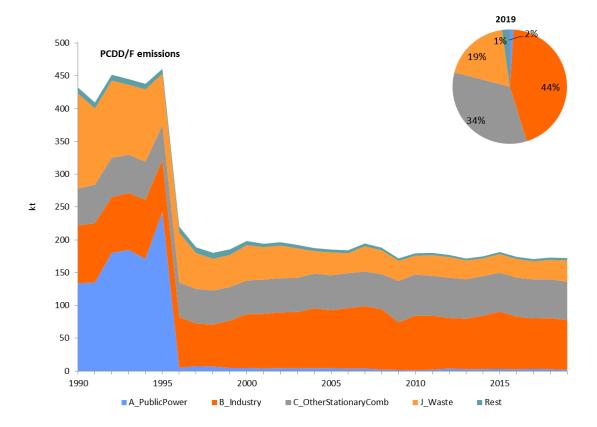


Figure 2.1.16 Evolution of PCCD/F emissions by category and distribution in year 2019

Along the studied series, the trend of PCDD/F emissions is mainly driven by the reduction of PCDD/F emissions from the activities A_PublicPower (-98.6% decrease since 1990) and J_Waste (-77.6%). The first is linked to the adoption of emission levels set by legislation in this sector (1A1a). The latter is mainly due to the decrease as from 2001 of emissions from incineration of municipal waste (5C1a) and hazardous waste (5C1bii), due to the compliance of managed waste incineration facilities to the limit emission levels set by legislation, as well as the introduction of energy recovery installations.

2.1.11. Polycyclic Aromatic Hydrocarbons (PAHs)

In 2019, approximately 63.8 t of polycyclic aromatic hydrocarbons (PAHs) were emitted in Spain (excluding the Canary Islands).

The total PAHs emissions in 2019 decreased by -27.7% when compared to 1990, and decreased by -7.6% compared to 2018.

The major GNFR aggregated sectors contributing to PAHs emissions in 2019 were <u>C OtherStationaryComb</u>, representing a 58.1% of the total of emissions, and <u>Industries</u> (<u>B Industry</u>) which accounted for 33.4% of total PAHs emissions. <u>Agriculture (L AgriOther)</u>, represented 1.2% of PAHs total emissions,

Table 2.1.11 PAHs emissions by sector (t)

	1990	2005	2010	2015	2018	2019	Share 2019	2019/ 1990	2019/ 2018
A_PublicPower	0.0	0.1	0.1	0.8	0.9	0.9	1.4%	1919%	-1.3%
B_Industry	23.0	29.1	25.9	25.5	25.8	21.3	33.4%	-7%	-17.6%
C_OtherStationaryComb	41.0	36.9	41.8	38.4	37.6	37.1	58.1%	-10%	-1.4%
D_Fugitive	1.5	1.2	0.9	0.7	0.6	0.5	0.8%	-67%	-21.2%
E_Solvents	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	168%	-9.5%
F_RoadTransport	0.9	2.0	2.1	2.0	2.2	2.2	3.4%	154%	-0.8%
G_Shipping	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	-28%	11.4%
H_Aviation	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	185%	-1.9%
I_Offroad	0.4	0.5	0.4	0.4	0.4	0.4	0.7%	23%	0.9%
J_Waste	0.3	0.3	0.5	0.5	0.6	0.6	0.9%	90%	0.0%
K_AgriLivestock	0.0	0.0	0.0	0.0	0.0	0.0	0.0%	-	-
L_AgriOther	21.2	1.1	0.3	0.8	0.8	0.8	1.2%	-96%	0.0%
Total (Canary Islands not included)	88.3	71.3	72.2	69.1	69.0	63.8	100.0%	-28%	-7.6%

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

2.1.11.1. Trend assessment

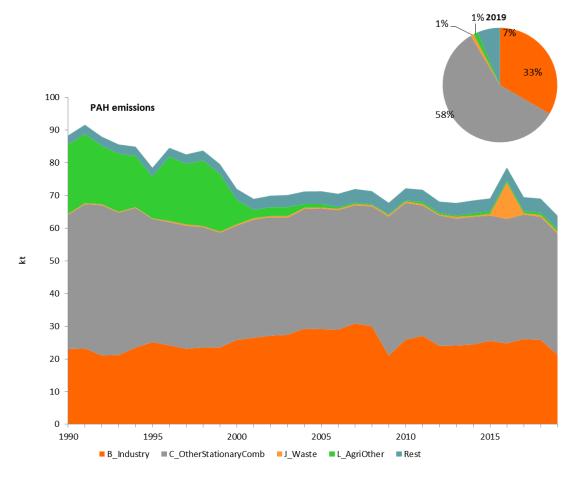


Figure 2.1.17 Evolution of PAHs emissions by category and distribution in year 2019

The trend of global PAHs emissions between 1990 and 2019 (decrease of -28%) is essentially ruled by the behaviour of emissions from L_AgriOther sector, that experiences a sharp decrease as from 2000, due to the abandonment of the practice of field burning (3F), restricted by forest fire prevention legislation.

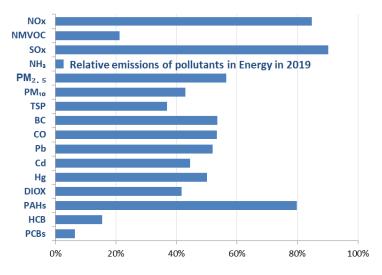
In the Small Stationary Combustion (C_OtherStationaryComb) category, there is a decrease of -10% in PAH emissions, in which predominates the declining use of coal over the increasing use of biomass (PAH emission factors for combustion of coal in small and uncontrolled combustion devices are higher than those of biomass).

Although not relevant in the total amounts, the A_PublicPower sector shows an enormous increase in PAH emissions, due to the increasing use of biomass, which was almost residual at the beginning of the time series.

In 2016 there is an uptick regarding the emissions of PAHs under J_Waste, linked to an accidental tyre fire reported under Other waste (5E), that therefore can be considered as a singularity in the time series.

2.2. Analysis by activity category

The latest estimates of the emissions by major NFR activity category, as well as the trends in these emissions along the studied time series (1990-2019) are analysed and discussed in this section.


The considered activity categories are:

- Energy (NFR 1A, 1B)
- Industrial Processes and Product Use, IPPU (NFR 2)
- Agriculture (NFR 3)
- Waste (NFR 5)

Each of these activity categories is covered in detail in the following chapters.

2.2.1. Energy (NFR 1)

Energy emissions stand out for their relative weight for almost every pollutant emitted in Spain. Except in few cases, the energy sector is responsible for more than 40% of the pollutants emissions in the Spanish Inventory (excluding the Canary Islands) in 2019.

Emission 2019	Emissions 2019		ENER	%
NOx	kt	645.9	547.4	85%
NMVOC	kt	608.3	128.6	21%
SOx	kt	149.5	134.8	90%
NH₃	kt	471.3	12.7	3%
PM _{2.5}	kt	134.8	76.1	56%
PM ₁₀	kt	194.8	83.8	43%
TSP	kt	261.4	96.3	37%
ВС	kt	29.4	15.7	53%
со	kt	1,599.7	853.6	53%
Pb	t	98.5	51.2	52%
Cd	t	7.4	3.3	44%
Hg	t	3.1	1.5	50%
DIOX	g	172.2	71.8	42%
PAHs	t	63.8	50.9	80%
НСВ	kg	12.9	2.0	15%
PCBs	kg	25.7	1.6	6%

Figure 2.2.1 Relative emissions of pollutants (Energy vs. total emissions, excluding Canary Islands) in 2019

Along the last two decades, emission reductions in the energy sector have had a drastic effect on the Inventory, with most of the pollutants showing reductions higher than 30% in 2019 compared to 1990 levels (year 2000 in case of Particulate Matter). NH₃ and HCB, on the contrary, showed increases.

	Emission 2019/base year							
	Total	ENER						
NOx	-52%	-55%						
NMVOC	-41%	-72%						
SOx	-93%	-93%						
NH ₃	1%	41%						
PM _{2.5}	-18%	-27%						
PM ₁₀	-22%	-34%						
TSP	-21%	-37%						
ВС	-26%	-47%						
со	-59%	-70%						
Pb	-96%	-98%						
Cd	-75%	-82%						
Hg	-71%	-72%						
DIOX	-60%	-65%						
PAHs	-28%	-2%						
НСВ	-97%	4%						
PCBs	-3%	-77%						

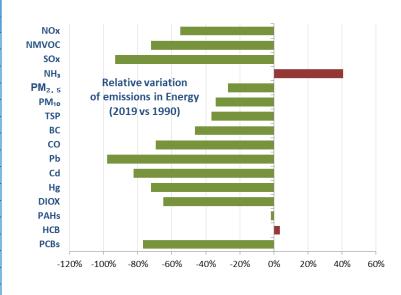
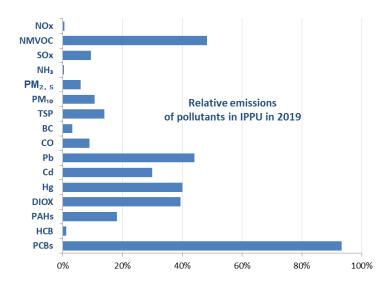



Figure 2.2.2 Relative variation of emissions in Energy (2019 vs. base year, excluding Canary Islands)

2.2.2. Industrial Processes and Product Use (NFR 2)

With a wide variety of industrial activities, installations, plants and uses of products in Spain, IPPU sector contributed by 93% of the total PCBs emissions in 2019 and contributed to almost 50% of the total NMVOC emissions in Spain (excluding the Canary Islands). To a lesser extent, IPPU activities also had a high share to Heavy Metals and Dioxins/Furans emissions.

Emission 2019	าร	Total	IPPU	%
NOx	kt	645.9	3.7	1%
NMVOC	kt	608.3	293.6	48%
SOx	kt	149.5	13.9	9%
NH₃	kt	471.3	1.7	0%
PM _{2.5}	kt	134.8	8.0	6%
PM ₁₀	kt	194.8	20.8	11%
TSP	kt	261.4	36.2	14%
ВС	kt	29.4	0.9	3%
со	kt	1,599.7	143.4	9%
Pb	t	98.5	43.3	44%
Cd	t	7.4	2.2	30%
Hg	t	3.1	1.2	40%
DIOX	g	172.2	67.8	39%
PAHs	t	63.8	11.5	18%
НСВ	kg	12.9	0.2	1%
PCBs	kg	25.7	24.0	93%

Figure 2.2.3 Relative emissions of pollutants (IPPU vs. total emissions, excluding Canary Islands) in 2019

Significant reduction in pollutant emissions has taken place between 1990 and 2019 in the IPPU sector (base year: 2000 in case of Particulate Matter). Emissions reductions of NOx, NH₃, Hg and HCB are particularly significant. On the contrary, emissions of Black Carbon, Cd and PCBs have increased since 1990/2000.

	Emission 201	19/base year
	Total	IPPU
NOx	-52%	-65%
NMVOC	-41%	-26%
SOx	-93%	-23%
NH ₃	1%	-46%
PM _{2.5}	-18%	1%
PM ₁₀	-22%	-31%
TSP	-21%	-37%
ВС	-26%	148%
со	-59%	-21%
Pb	-96%	-19%
Cd	-75%	33%
Hg	-71%	-61%
DIOX	-60%	-12%
PAHs	-28%	-23%
НСВ	-97%	-100%
PCBs	-3%	26%

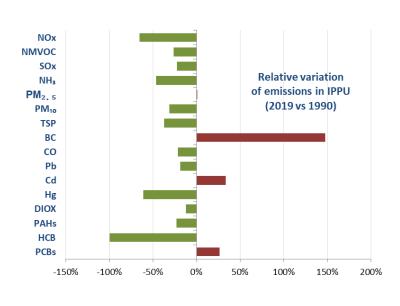
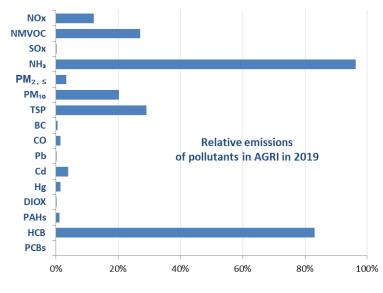



Figure 2.2.4 Relative variation of emissions in IPPU (2019 vs. base year, excluding Canary Islands)

2.2.3. Agriculture (NFR 3)

Taking into account the importance of this primary sector, Agriculture accounts for 96% of NH_3 total emissions in Spain (excluding the Canary Islands). This sector is also responsible of 83% of HCB emissions, due to the use of pesticides and phytosanitary products.

Emissior 2019	ıs	Total	AGRI	%
NOx	kt	645.9	78.2	12%
NMVOC	kt	608.3	164.9	27%
SOx	kt	149.5	0.2	0%
NH ₃	kt	471.3	453.9	96%
PM _{2.5}	kt	134.8	4.5	3%
PM ₁₀	kt	194.8	39.5	20%
TSP	kt	261.4	75.9	29%
ВС	kt	29.4	0.2	1%
со	kt	1,599.7	22.1	1%
Pb	t	98.5	0.0	0%
Cd	t	7.4	0.3	4%
Hg	t	3.1	0.0	2%
DIOX	g	172.2	0.2	0%
PAHs	t	63.8	0.8	1%
НСВ	kg	12.9	10.7	83%
PCBs	kg	25.7	0.0	0%

Figure 2.2.5 Relative emissions of pollutants (Agriculture vs. total emissions, excluding Canary Islands) in 2019

When comparing 2019 to 1990 (2000 in case of Particulate Matter), only NMVOC and NH_3 emissions show an increase. The strong decrease observed in SOx, CO, Heavy Metals, PAHs and DIOX emissions is caused by the abandonment of the practice of field burning (3F), restricted by forest fire prevention legislation.

	Emission 20:	19/base year
	Total	AGRI
NOx	-52%	-17%
NMVOC	-41%	10%
SOx	-93%	-96%
NH₃	1%	5%
PM _{2.5}	-18%	-78%
PM ₁₀	-22%	-32%
TSP	-21%	-12%
вс	-26%	-90%
со	-59%	-96%
Pb	-96%	-96%
Cd	-75%	-96%
Hg	-71%	-96%
DIOX	-60%	-96%
PAHs	-28%	-96%
нсв	-97%	-80%
PCBs	-3%	-

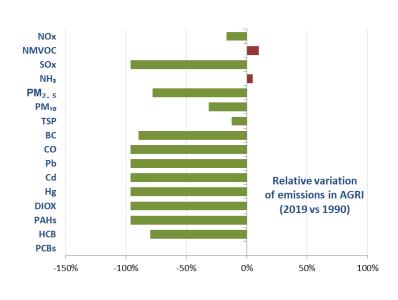
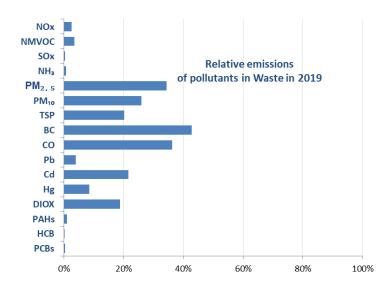



Figure 2.2.6 Relative variation of emissions in Agriculture (2019 vs. base year, excluding Canary Islands)

2.2.4. Waste (NFR 5)

The Waste sector contribution to the total emissions in Spain (excluding the Canary Islands) in 2019 is relatively low for most pollutants. Exceptions should be made when considering Particulate Matter, CO Dioxins and Furans, and some heavy metals' emissions.

Emissions 2019		Total	WASTE	%
NOx	kt	645.9	16.6	3%
NMVOC	kt	608.3	21.2	3%
SOx	kt	149.5	0.5	0%
NH₃	kt	471.3	3.1	1%
PM _{2.5}	kt	134.8	46.3	34%
PM ₁₀	kt	194.8	50.7	26%
TSP	kt	261.4	52.9	20%
ВС	kt	29.4	12.6	43%
со	kt	1,599.7	580.6	36%
Pb	t	98.5	3.9	4%
Cd	t	7.4	1.6	22%
Hg	t	3.1	0.3	8%
DIOX	g	172.2	32.4	19%
PAHs	t	63.8	0.6	1%
НСВ	kg	12.9	0.0	0%
PCBs	kg	25.7	0.1	0%

Figure 2.2.7 Relative emissions of pollutants (Waste vs. total emissions, excluding Canary Islands) in 2019

Since 1990 (2000 in case of Particulate Matter), most pollutants have increased emissions in this sector. NOx, Black Carbon, CO, Pb, Cd and PAHs have showed increase of more than 50%. Conversely, significant reductions of more than 60% in NH₃, Hg, Dioxins and Furans, HCB and PCBs emissions have taken place.

		2019/base ear
	Total	WASTE
NOx	-52%	75%
NMVOC	-41%	46%
SOx	-93%	-24%
NH₃	1%	-85%
PM _{2.5}	-18%	49%
PM ₁₀	-22%	49%
TSP	-21%	49%
ВС	-26%	53%
со	-59%	87%
Pb	-96%	91%
Cd	-75%	90%
Hg	-71%	-63%
DIOX	-60%	-78%
PAHs	-28%	90%
НСВ	-97%	-98%
PCBs	-3%	-80%

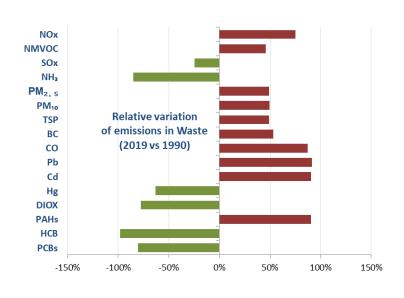


Figure 2.2.8 Relative variation of emissions in Waste (2019 vs. base year, excluding Canary Islands)

3. ENERGY (NFR 1)

CONTENTS

3.	ENERGY (NFR 1)	119
3.1.	Sector overview	120
3.2.	Sector analysis	122
3.2.	1. Key categories	124
3.2.	2. Analysis by pollutant	124
3.2.	3. Condensable component of PM ₁₀ and PM _{2.5}	133
3.3.	Major changes	136
3.4.	Key categories analysis	137
A.	Public electricity and heat production (1A1a)	138
B.	Petroleum refining (1A1b)	144
C.	Combustion in industry (1A2)	148
D.	Air traffic at airports (1A3a)	155
E.	Road Transport (1A3b)	158
F.	National navigation (1A3d)	165
G.	Combustion in other sectors (1A4)	167
Н.	Fugitive emissions from fuels (1B)	175
3.5.	Memo items	180
3.6.	Recalculations	180
3.7.	Sector improvements	213
Appen	dix 3.1: Inventory Energy Balance (IEB)	215

FIGURES

Figure 3.1.1	Relative emissions in Energy in 2019 and its relative variation (2019 vs. 1990)	119
Figure 3.2.1	Evolution of NOx emissions by category and distribution in year 2019	
Figure 3.2.2	Evolution of NMVOC emissions by category and distribution in year 2019	125
Figure 3.2.3	Evolution of SOx emissions by category and distribution in year 2019	126
Figure 3.2.4	Evolution of NH ₃ emissions by category and distribution in year 2019	
Figure 3.2.5	Evolution of PM _{2.5} emissions by category and distribution in year 2019	
Figure 3.2.6	Evolution of PM ₁₀ emissions by category and distribution in year 2019	
Figure 3.2.7	Evolution of TSP emissions by category and distribution in year 2019	
Figure 3.2.8	Evolution of BC emissions by category and distribution in year 2019	
Figure 3.2.9	Evolution of CO emissions by category and distribution in year 2019	129
Figure 3.2.10	Evolution of Pb emissions by category and distribution in year 2019	
Figure 3.2.11	Evolution of Cd emissions by category and distribution in year 2019	
Figure 3.2.12	Evolution of Hg emissions by category and distribution in year 2019	
Figure 3.2.13	Evolution of PAHs emissions by category and distribution in year 2019	
Figure 3.2.14	Evolution of DIOX emissions by category and distribution in year 2019	
Figure 3.2.15	Evolution of HCB emissions by category and distribution in year 2019	
Figure 3.2.16	Evolution of PCBs emissions by category and distribution in year 2019	
Figure 3.4.1	Evolution of fuel consumption in category 1A1a	
Figure 3.4.2	Distribution of fuel consumption in category 1A1a (2019)	
Figure 3.4.3	Distribution of refineries in Spain	
Figure 3.4.4	Evolution of fuel consumption	
Figure 3.4.5	Distribution of fuel consumption 1A1b (2019)	
Figure 3.4.6	Evolution of fuel consumption	
Figure 3.4.7	Distribution of fuel consumption 1A2 (2019)	
Figure 3.4.8	Evolution of fuel consumption in 1A3a	
Figure 3.4.9	1A3b Main Pollutants, CO and PM _{2.5} emissions evolution in percentage (1990 base 100)	
Figure 3.4.10	1A3b Priority heavy metal emissions evolution	
Figure 3.4.11	Road transport NOx emissions split in 2019 (tonnes)	
Figure 3.4.12	Road transport NOx emissions spatial distribution in Spain (2019)	
Figure 3.4.13 Figure 3.4.14	Evolution of fuel consumption in 1A3b Evolution of fuel consumption in 1A3d	
Figure 3.4.15	Evolution of fuel consumption in 1A4 category	
Figure 3.4.16	Distribution of fuel consumption 1A4 (2019)	
Figure 3.4.17	Evolution of fuel consumption in Commercial and Institutional sector (1A4a)	
Figure 3.4.18	Evolution of fuel consumption in Residential Sector (1A4b)	
Figure 3.4.19	Evolution of fuel consumption in Agriculture, forestry and fishing sector (1A4c)	
Figure 3.4.20	Evolution of NMVOC emissions in sector 1B2ai	
Figure 3.4.21	Evolution of SOx Implied emission factor in sector 1B2aiv	
Figure 3.6.1	Evolution of the difference in 1A1a NOx emissions	183
Figure 3.6.2	Evolution of the difference in 1A1a NMVOC emissions	
Figure 3.6.3	Evolution of the difference in 1A1a SOx emissions	
Figure 3.6.4	Evolution of the difference in 1A1a NH ₃ emissions	
Figure 3.6.5	Evolution of the difference in 1A1a CO emissions	
Figure 3.6.6	Evolution of the difference in 1A1a PM ₁₀ emissions	185
Figure 3.6.7	Evolution of the difference in 1A1a TSP emissions	186
Figure 3.6.8	Evolution of the difference in 1A1a BC emissions	186
Figure 3.6.9	Evolution of the difference in 1A1a DIOX emissions	186
Figure 3.6.10	Evolution of the difference in 1A1a HCB emissions	187
Figure 3.6.11	Evolution of the difference in 1A1a PAHs emissions	
Figure 3.6.12	Evolution of the difference in 1A1c SOx emissions	
Figure 3.6.13	Evolution of the difference in 1A1c NH ₃ emissions	
Figure 3.6.14	Evolution of the difference in 1A1c TSP emissions	
Figure 3.6.15	Evolution of the difference in 1A1c BC emissions	
Figure 3.6.16	Evolution of the difference in 1A1c Pb emissions	
Figure 3.6.17	Evolution of the difference in 1A1c Cd emissions	
Figure 3.6.18	Evolution of the difference in 1A1c Hg emissions	
Figure 3.6.19	Evolution of the difference in 1A1c DIOX emissions	
Figure 3.6.20	Evolution of the difference in 1A1c PCBs emissions	_
Figure 3.6.21 Figure 3.6.22	Evolution of the difference in 1A1c PCBs emissions	
Figure 3.6.22	Evolution of the difference in 1A3a NMVOC emissions	
1 Igui C 3.0.23	EVOIGION OF THE GITTETICE III TAGG INIVIVOE CHIISSIONS	132

Figure 3.6.24	Evolution of the difference in 1A3a SOx emissions	
Figure 3.6.25	Evolution of the difference in 1A3a PM _{2.5} emissions	193
Figure 3.6.26	Evolution of the difference in 1A3a CO emissions	193
Figure 3.6.27	Evolution of the difference in 1A3a PAH emissions	193
Figure 3.6.28	Evolution of the difference in 1A3b SOx emissions	194
Figure 3.6.29	Evolution of the difference in 1A3b NH ₃ emissions	194
Figure 3.6.30	Evolution of the difference in 1A3dii NOx emissions	
Figure 3.6.31	Evolution of the difference in 1A3dii NMVOC emissions	
Figure 3.6.32	Evolution of the difference in 1A3dii SOx emissions	
Figure 3.6.33	Evolution of the difference in 1A3dii NH ₃ emissions	
Figure 3.6.34	Evolution of the difference in 1A3dii TSP emissions	
Figure 3.6.35	Evolution of the difference in 1A3dii CO emissions	
Figure 3.6.36	Evolution of the difference in 1A3dii PAH emissions	
Figure 3.6.37	Evolution of the difference in 1A3ei SOx emissions	_
Figure 3.6.38	Evolution of the difference in 1A3ei PCBs emissions	
-	Evolution of the difference in 1A3ei HCB emissions	
Figure 3.6.39		
Figure 3.6.40	Evolution of the difference in 1A3ei Cd emissions	
Figure 3.6.41	Evolution of the difference in 1A4a NOx emissions	
Figure 3.6.42	Evolution of the difference in 1A4a NMVOC emissions	
Figure 3.6.43	Evolution of the difference in 1A4a BC emissions	
Figure 3.6.44	Evolution of the difference in 1A4a CO emissions	
Figure 3.6.45	Evolution of the difference in 1A4a PCB emissions	
Figure 3.6.46	Evolution of the difference in 1A4a HCB emissions	
Figure 3.6.47	Evolution of the difference in 1A4a PAH emissions	
Figure 3.6.48	Evolution of the difference in 1A4a DIOX emissions	
Figure 3.6.49	Evolution of the difference in 1A4a Pb emissions	201
Figure 3.6.50	Evolution of the difference in 1A4a Cd emissions	202
Figure 3.6.51	Evolution of the difference in 1A4a Hg emissions	202
Figure 3.6.52	Evolution of the difference in 1A4bi NOx emissions	203
Figure 3.6.53	Evolution of the difference in 1A4bi NMVOC emissions	203
Figure 3.6.54	Evolution of the difference in 1A4bi NH ₃ emissions	203
Figure 3.6.55	Evolution of the difference in 1A4bi PM _{2.5} emissions	204
Figure 3.6.56	Evolution of the difference in 1A4bi CO emissions	204
Figure 3.6.57	Evolution of the difference in 1A4bi PAH emissions	204
Figure 3.6.58	Evolution of the difference in 1A4bi Pb emissions	205
Figure 3.6.59	Evolution of the difference in 1A4bi Cd emissions	205
Figure 3.6.60	Evolution of the difference in 1A4bi Hg emissions	205
Figure 3.6.61	Evolution of the difference in 1A4ci NOx emissions	206
Figure 3.6.62	Evolution of the difference in 1A4ci NMVOC emissions	206
Figure 3.6.63	Evolution of the difference in 1A4ci SOx emissions	
Figure 3.6.64	Evolution of the difference in 1A4ci TSP emissions	207
Figure 3.6.65	Evolution of the difference in 1A4ci BC emissions	
Figure 3.6.66	Evolution of the difference in 1A4ci CO emissions	
Figure 3.6.67	Evolution of the difference in 1A4ci PCB emissions	
Figure 3.6.68	Evolution of the difference in 1A4ci HCB emissions	
Figure 3.6.69	Evolution of the difference in 1A4ci DIOX emissions	
Figure 3.6.70	Evolution of the difference in 1A4ci Pb emissions	
Figure 3.6.71	Evolution of the difference in 1A4ci Cd emissions	
Figure 3.6.72	Evolution of the difference in 1A4ci Hg emissions	
Figure 3.6.73	Evolution of the difference in 1A4cii and 1A4ciii NOx emissions	
Figure 3.6.74	Evolution of the difference in 1A4cii and 1A4ciii NMVOC emissions	
-		
Figure 3.6.75	Evolution of the difference in 1A4cii and 1A4ciii PM _{2.5} emissions	
Figure 3.6.76	Evolution of the difference in 1A4cii and 1A4ciii PAH emissions	
Figure 3.6.77	Evolution of the difference in 1B1b CO emissions	
Figure 3.6.78	Evolution of the difference in 1B2ai NMVOC emissions	
Figure 3.6.79	Evolution of the difference in 1B2b NMVOC emissions	
Figure 3.6.80	Evolution of the difference in 1B2c NMVOC emissions	
Figure 3.7.1	Percentage of fuel consumption provided by IEB and registered information for categories	
Figure 3.7.2	Adjustment of natural gas consumption as registered by the Inventory and national statistics.	216

TABLES

Table 3.1.1	Coverage of NFR category in 2019	120
Table 3.2.1	Sector analysis	123
Table 3.2.2	Assignation of KC	124
Table 3.2.3	Condensable component of PM ₁₀ and PM _{2.5} in Energy sector	133
Table 3.3.1	Major changes in the Energy sector in Inventory edition 2021	136
Table 3.4.1	Summary of activity variables, data and information sources for category 1A1a	138
Table 3.4.2	Summary of methodologies applied in category 1A1a	139
Table 3.4.3	Fuel consumption in category 1A1a (Amounts in TJ _{LHV})	142
Table 3.4.4	Summary of activity variables, data and information sources for category 1A1b	144
Table 3.4.5	Summary of methodologies applied in category 1A1b	
Table 3.4.6	Fuel consumption (Amounts in TJ _{LHV})	146
Table 3.4.7	Fuel characteristics	
Table 3.4.8	Summary of activity variables, data and information sources for category 1A2	148
Table 3.4.9	Summary of methodologies applied in category 1A2	150
Table 3.4.10	Fuel consumption (Amounts in TJ _{LHV})	153
Table 3.4.11	Summary of activity variables, data and information sources for category 1A3a	155
Table 3.4.12	Summary of methodologies applied in category 1A3a	155
Table 3.4.13	Summary of activity variables, data and information sources for category 1A3b	158
Table 3.4.14	Summary of methodologies applied in category 1A3b	
Table 3.4.15	Methodological issues	159
Table 3.4.16	Fuel consumption (Amounts in TJ _{LHV})	164
Table 3.4.17	Summary of activity variables, data and information sources for category 1A3d	165
Table 3.4.18	Summary of methodologies applied in category 1A3d	165
Table 3.4.19	Summary of activity variables, data and information sources for category 1A4	167
Table 3.4.20	Summary of methodologies applied in category 1A4	168
Table 3.4.21	Fuel consumption (Amounts in TJ _{LHV})	173
Table 3.4.22	Contents of 1B	175
Table 3.4.23	Summary of activity variables, data and information sources for category 1B	175
Table 3.4.24	Summary of methodologies applied in category 1B	
Table 3.4.25	Activity data of 1B2ai	
Table 3.4.26	NMVOC emission factors from EMEP/EEA Guidebook (2019) 1B2ai	179
Table 3.5.1	Air traffic: Inventory items / Memo Items	
Table 3.5.2	Maritime traffic: Inventory items / Memo Items	
Table 3.6.1	Recalculation by pollutants – Energy	

3. ENERGY (NFR 1)

Chapter updated in March, 2021.

Sector Energy at a glance

Energy emissions stand out for their relative weight for almost every pollutant covered by the Spanish Inventory. As shown in Figure 3.1.1, except for some cases, Energy sector is responsible for more than 50% of the pollutants emissions in the Inventory. In general, Energy emissions have decreased since 1990 (2000 for PM_{2.5} and BC) for most of the inventoried pollutants by more than 50%.

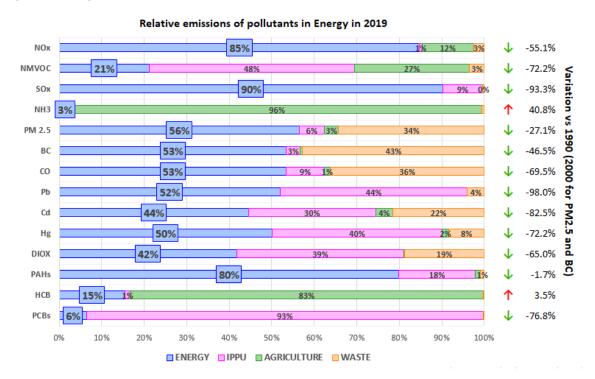


Figure 3.1.1 Relative emissions in Energy in 2019 and its relative variation (2019 vs. 1990)

In 2019, the Energy sector in Spain involved, among others, the activity of 60 large power thermal plants, 12 incineration plants with energy recovery, 9 refineries, 1 integrated steel plant with coke production, more than 800 installations covered by the EU ETS, 200 energy installations registered within the PRTR, more than 1.96 million of flights, 28 million vehicles and almost 25 million of households (see Table 3.2.1).

Energy activities in 2019 produced 85% of the total emissions of NOx and 90% of SOx emissions. On the other hand its contribution to ammonia and PCBs emissions was minor (3% and 6% respectively).

Along the last two decades, emission reduction measures have had a drastic effect on most of the pollutants with reduction rates higher than 50% in 2019 compared to 1990 levels. The relative increase in NH₃ emissions is indicative of the growing weight of the use of biomass in energy production, and the relative increase of HCB is mostly linked to the growing trend of waste incineration with energy production as well as the use of biomass as fuel.

3.1. Sector overview

Main issues regarding gas emissions reported for this sector are shown in the following table, in particular, NFR categories and pollutants coverage, methodology approach (Method) and selection as key categories (KC).

Table 3.1.1 Coverage of NFR category in 2019

		Pollutants					
NFR Code	NFR category	Exceptions			Metho		кс
Code		Covered	IE	NA	NE		
1A1a	Public electricity and heat production	All	-	-	-	T1/T2	✓
1A1b	Petroleum refining	All	-	HCB, PCBs	NH3	T1/T2/T3	✓
1A1c	Manufacture of solid fuels and other energy industries	All	_	-	-	T1/T2	
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	All	-	-	-	Т1/Т2/Т3	
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals	All	-	РСВ	-	T1/T2/T3	
1A2c	Stationary combustion in manufacturing industries and constructions: Chemicals	All	-	-	_	Т1/Т2/Т3	
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	All	-	-	-	T1/T2/T3	
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	All	-	-	-	T1/T2/T3	✓
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	All	ı	-	ı	Т1/Т2/Т3	
1A2gvii	Mobile Combustion in manufacturing industries and construction	All	_	HCB, PCBs	Pb, Hg, As, DIOX	T1/T2	
1A2gviii	Stationary combustion in manufacturing industries and construction: Other	All	-	-	-	T1/T2/T3	
1A3ai(i)	International aviation LTO (civil)	All	_	HCB, PCBs	NH ₃ , DIOX	T1/T3	1
1A3aii(i)	Domestic aviation LTO (civil)	All	_	HCB, PCBs	NH ₃ , DIOX	T1/T3	
1A3bi	Road transport: Passenger cars	All	_	HCB, PCBs	_	T1/T3	
1A3bii	Road transport: Light duty vehicles	All	_	HCB, PCBs	-	T1/T3	
1A3biii	Road transport: Heavy duty vehicles and buses	All	-	HCB, PCBs	-	T1/T3	
1A3biv	Road transport: Mopeds & motorcycles	All	_	HCB, PCBs	-	T1/T3	√
1A3bv	Road transport: Gasoline evaporation	NMVOC	_	Rest of pollutants	-	T2	
1A3bvi	Road transport: Automobile tyre and brake wear	All	_	NOx, NMVOC, SOx, NH₃, CO, DIOX, HCB, PCBs	Hg	T1/T2	

				Pollutants			
NFR Code	NFR category			Exceptions		Method	кс
Code		Covered	IE	NA	NE		
1A3bvii	Road transport: Automobile road abrasion	All	-	NOx, NMVOC, SOx, NH ₃ , CO, DIOX, HCB, PCBs	Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, BaP, BbF, BkF, IcP	T1/T2	
1A3c	Railways	All	_	HCB, PCBs	Pb, Hg, As	T1	
1A3di(ii)	International inland waterways			NO			1
1A3dii	National navigation (shipping)	All	-	BaP, BkF	-	T1/T2	Ť
1A3ei	Pipeline transport	All	-	NH ₃	-	T1/T2	
1A3eii	Other			NO			
1A4ai	Commercial/institutional: Stationary	All	-	_	NH ₃	T1/T2	✓
1A4aii	Commercial/institutional: Mobile	All	-	HCB, PCBs	Hg, As, DIOX	T1	
1A4bi	Residential: Stationary	All	-	_	-	T1/T2	✓
1A4bii	Residential: Household and gardening (mobile)			IE (under 1A4	bi)		✓
1A4ci	Agriculture/Forestry/Fishing: Stationary	All	-	_	NH ₃	T1/T2	
1A4cii	Agriculture/Forestry/Fishing: Off- road vehicles and other machinery	All	-	HCB, PCBs	Pb, Hg, As, DIOX	T1/T2	✓
1A4ciii	Agriculture/Forestry/Fishing: National fishing	All	-	BaP, BkF	-	T1/T2	
1A5a	Other stationary (including military)			IE (under 1A3 and	d 1A4)		
1A5b	Other mobile	All	_	_	-	T1/T2/T3	
1B1a	Coal mining and handling	All	-	NOx, SOx, NH ₃ , CO, DIOX, PAHs, HCB, HCH	NMVOC, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, BC	T2	
1B1b	Solid fuel transformation	All	Pb, Cd, Hg	DIOX, HCB, PCBs	As, Cr, Cu, Ni, Se, Zn, BC	T2	
1B1c	Other fugitive emissions from solid fuels			NO			
1B2ai	Fugitive emissions oil: Exploration, production, transport	NMVOC	-	NOx, CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PCBs, PAHs, HCB	SOx, DIOX	T2	✓
1B2aiv	Fugitive emissions oil: Refining /storage	All	-	PAHs, HCB, PCBs	-	T1/T2/T3	
1B2av	Distribution of oil products	NMVOC	-	NOx, CO, NH ₃ , TSP, PM ₁₀ , PM2., Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PCBs, PAHs, HCB	SOx, DIOX	T2	1
1B2b	Fugitive emissions from natural gas (exploration, production, processing, transmission, storage, distribution and other)	NMVOC	-	NOx, CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PCBs, PAHs, HCB	SOx, DIOX	T2	

NFR Code	NFR NFR category			Exceptions		Method	кс
Couc		Covered	IE	NA	NE		
1B2c	Venting and flaring (oil, gas, combined oil and gas)	All	-	HCB, PCBs	NH ₃ ,Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, DIOX, PAHs	Т1/Т2/Т3	
1B2d	Other fugitive emissions from energy production	NO					

IE: included elsewhere; NA: not applicable NE: not estimated; NO: not occurring.

To a large extent, the emissions of SOx, NOx and PM (sometimes CO, NMVOC) are estimated using data from continuous emission monitoring systems (CEMS), especially in large combustion plants (LCPs) belonging to NFR categories 1A1 and 1A2.

According to Spain's Orden PRA/321/2017, Annex II, Section A, referred to Large Combustion Plants (LCPs) that require continuous measurements, the "validated average values" must include the subtraction of the specific confidence interval depending on the pollutant, and are to be used solely to assess the compliance with emission limit values (ELV-art. 7). However, article 6 of Annex II sets the criteria to determine "average emission values". No subtraction of the confidence interval is required in this case. The calculation must be performed in accordance with UNE/EN standards (Spain CEN standards) and the start-up and shut-down periods must be disregarded.

According to article 9 of Orden PRA/321/2017, "average emission values" are those reported to the European Pollutant Emission Register and to the National Inventory of emissions.

Therefore, the Spanish Inventory considers that no underestimation is taking place when including emissions reported by operators using CEMS data and assuming that every operator complies with the current legislation in force.

More information on emission estimations, processes and abatement techniques are available in <u>Introductory factsheet A General description of combustion processes that generate emissions</u>, <u>Introductory factsheet B General description of emission reduction techniques</u> and <u>Introductory factsheet C Methodologies for estimating combustion emissions</u>.

3.2. Sector analysis

Main features of the Energy sector in Spain in 2019 are listed in the following table for reference. These main features do not consider the Canary Islands, as their territory is not under the EMEP grid.

For further information on methodology applied to non-key categories, links to the methodology factsheets published in MITERD-SEI website are included below. For key categories, links to the available factsheets have been included in the corresponding methodology section.

Table 3.2.1 Sector analysis

NFR Code	NFR category	Main features (2019)	Main sources of activity data
1A1a	Public electricity and heat production	 - 60 large thermoelectric power plants. - 64,733 GWh/year of electricity produced in thermal power plants. - 523,650 TJ in fossil fuels consumption. - 13 Incineration plants with energy production (1 out of order). - 12 significant district heating networks (>10 MWt). - 247 kt methane (biogas) for energy recovery use. 	IQ from main power generation plants (LPS), MITERD (small power plants and solar thermal plants). National census of DH plants from IDAE-MITERD.
1A1b	Petroleum refining	 9 Refineries. 68.6·10⁶ tonnes of crude oil processed. 197,841 TJ in fossil fuels consumption. 	IQ from refineries.
1A1c	Manufacture of solid fuels and other energy industries (Methodology factsheet: Combustion in other energy industries)	 - 1 integrated steel plant with coke production. - 2 plants of coke production. - 32,759 TJ in fossil fuels consumption. 	IQ from large plants, MITERD (other energy industries).
1A2	Stationary combustion in manufacturing industries and construction	 More than 60 industrial activities, including: Cement production: 32 facilities (17,511 kt of clinker manufactured). Lime production: 17 facilities (2,153 kt produced). Glass production: more than 25 facilities (4,707 kt of glass). 778,034 TJ in fossil fuels consumption. 	IQ Entrepreneurial associations.
1A3a	Transport: aviation	 47 airports. 0.59·10⁶ domestic flights. 67.40·10⁶ passengers in domestic flights. 1.96·10⁶ total flights. 230.33·10⁶ total passengers. 	National Statistics from Air Navigation Agency (AENA) and MITMA.
1A3b	Transport: road	 - 161,491 km not urban road network. - 23.28·10⁶ passengers cars (57% diesel/43% gasoline). - 4.9·10⁶ duty vehicles and buses (91% diesel/9% gasoline). - 239,119·10⁶ vehicles x km not urban pattern. 	National statistics from Traffic Department and MITMA.
1A3c	Transport: railways (Methodology factsheet: Railways)	- 15,301 km railway network of them 63.6% electrified.	National statistics from MITMA.
1A3d	Transport: navigation	 - 26 national ports. - 28.30·10⁶ domestic passengers (incl. regional ports). - 76.89·10⁶ tonnes domestic freights (incl. regional ports). 	National statistics from MITMA.
1A3e	Pipeline transport (Methodology factsheet: Pipeline transport)	- More than 11,000 km of high-pressure gas pipelines More than 4,000 km of oil pipelines.	ENAGÁS, CLH.
1A4	Commercial/Institutional Residential Agriculture, forestry and fishing	- 24.74·10 ⁶ households. - 2.65·10 ⁶ tonnes of diesel oil for agricultural machinery. - 7,965 fishing ships.	MITMA, MITERD, MAPA.
1B	Fugitives	- 0.0 tonnes of coal (sub-bituminous and steam coal) extracted, both open-cast and underground mines 40,244 tonnes crude oil extracted 1,501,607 GW/h Gas produced 1,074,975.2 t of coke produced.	MITERD, SEDIGÁS, ENAGÁS. IQ from coke plants.

3.2.1. Key categories

Identified key categories within the Energy sector in 2019, according to the information provided in section 1.5 of the IIR and Annex 1, are listed in the following table.

Table 3.2.2 Assignation of KC

NFR	NFR Category	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	DIOX	PAHs	нсв	PCBs
1A1a	Public electricity and heat production	L-T	Т	L-T	-	L-T	L-T	L-T	-	L	-	L	L-T	Т	L-T	L-T	-
1A1b	Petroleum refining	L	-	L-T	-	-	-	-	-	-	-	L	L	-	-	-	-
1A2	Manufacturing Industries and Construction	L-T	L	L-T	-	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L	L-T	L	Т
1A3a	Aviation LTO (civil)	L-T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3b	Road transport	L-T	L-T	Т	Т	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	-	L-T	-	-
1A3d	Navigation	L	-	L-T	-	L	L-T	-	-	-	-	-	-	-	-	-	-
1A4a + 1A4b	Commercial / institutional / residential	L-T	L-T	L-T	-	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T	L-T
1A4c	Agriculture / Forestry / Fishing	L-T	-	-	-	L-T	L-T	L-T	L-T	L	-	-	-	-	-	-	-
1B	Fugitive Emissions from Fuels	-	L	L-T	-	-	-	-	-	-	-	-	-	-	-	-	-

L: level; T: trend

3.2.2. Analysis by pollutant

Charts of the time series by pollutants and NFR categories are shown next. Each pollutant is represented independently, broken down by main NFR categories within the sector. Additionally, a pie chart showing weight distribution of the main categories for year 2019 is included.

Explanation boxes are included beside the graphs, providing specific details on the pollutant emissions in year 2019 and main drivers and trends during the time series. Emissions from the Canary Islands are not considered, as their territory is not under the EMEP grid.

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

Main Pollutants

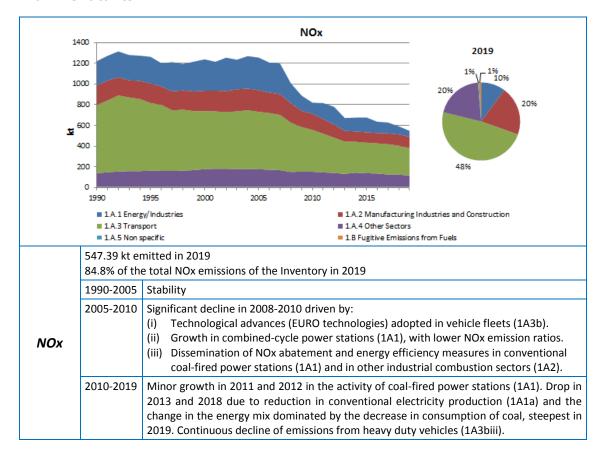


Figure 3.2.1 Evolution of NOx emissions by category and distribution in year 2019

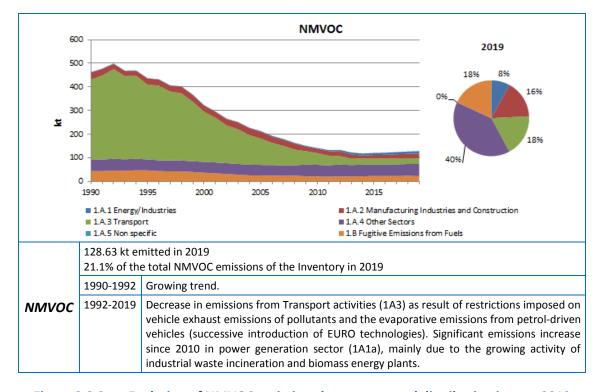


Figure 3.2.2 Evolution of NMVOC emissions by category and distribution in year 2019

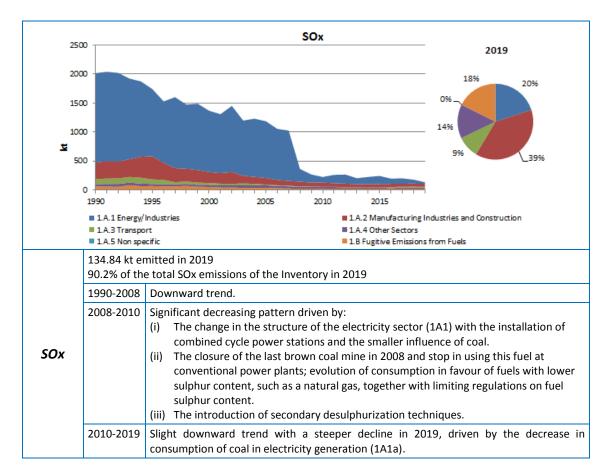


Figure 3.2.3 Evolution of SOx emissions by category and distribution in year 2019

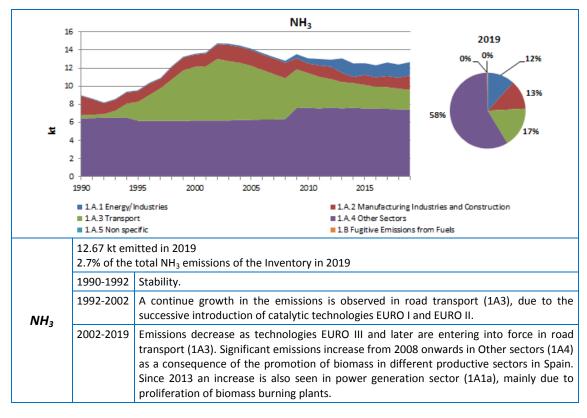


Figure 3.2.4 Evolution of NH₃ emissions by category and distribution in year 2019

Particulate Matter

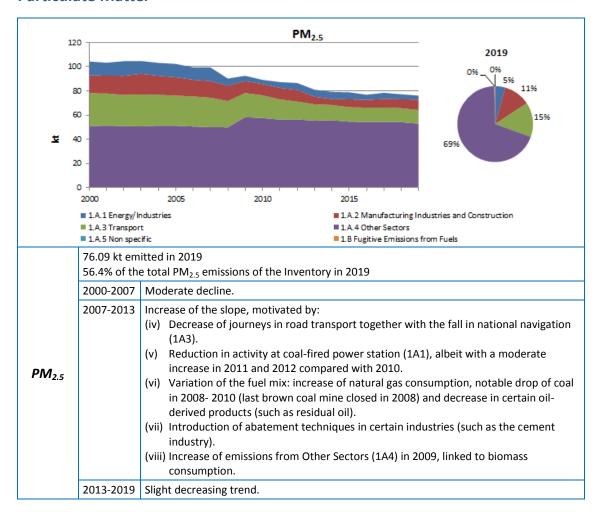


Figure 3.2.5 Evolution of PM_{2.5} emissions by category and distribution in year 2019

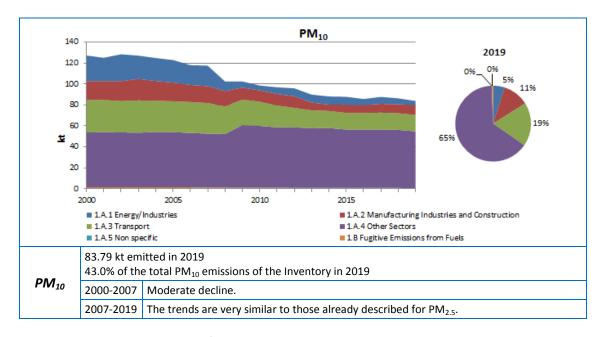


Figure 3.2.6 Evolution of PM₁₀ emissions by category and distribution in year 2019

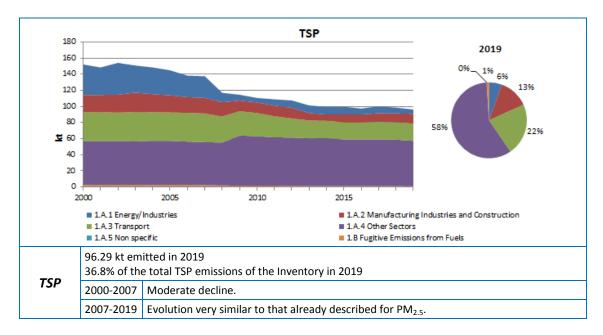


Figure 3.2.7 Evolution of TSP emissions by category and distribution in year 2019

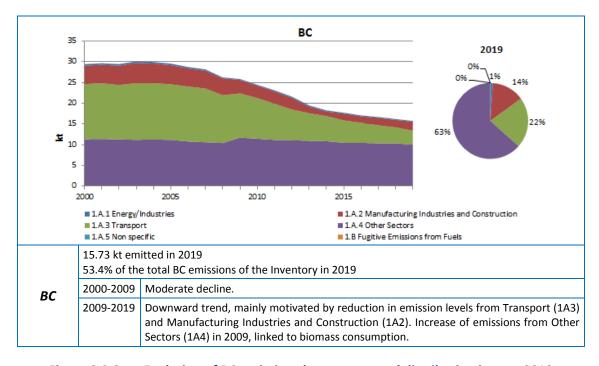


Figure 3.2.8 Evolution of BC emissions by category and distribution in year 2019

CO and Priority Heavy Metals

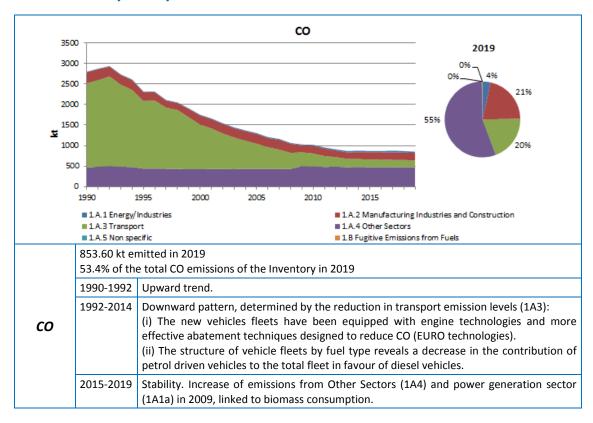


Figure 3.2.9 Evolution of CO emissions by category and distribution in year 2019

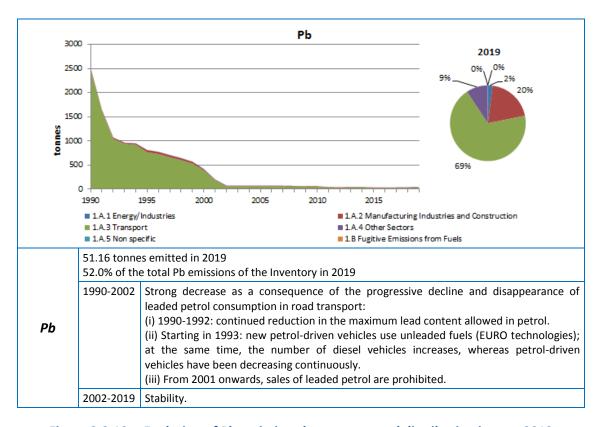


Figure 3.2.10 Evolution of Pb emissions by category and distribution in year 2019

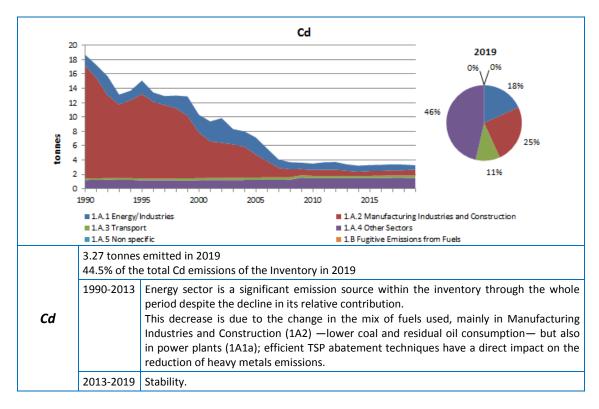


Figure 3.2.11 Evolution of Cd emissions by category and distribution in year 2019

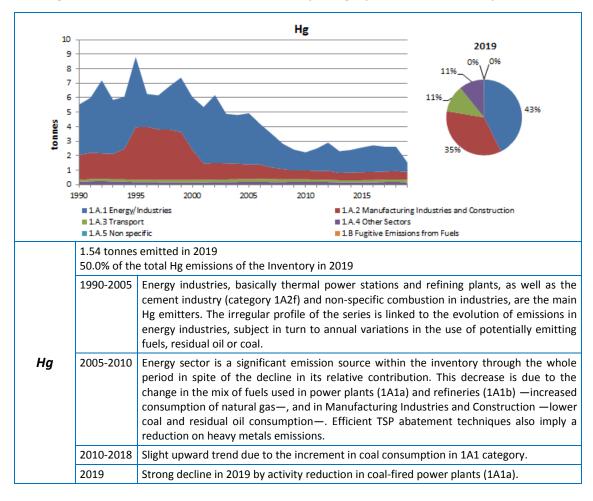


Figure 3.2.12 Evolution of Hg emissions by category and distribution in year 2019

POPs

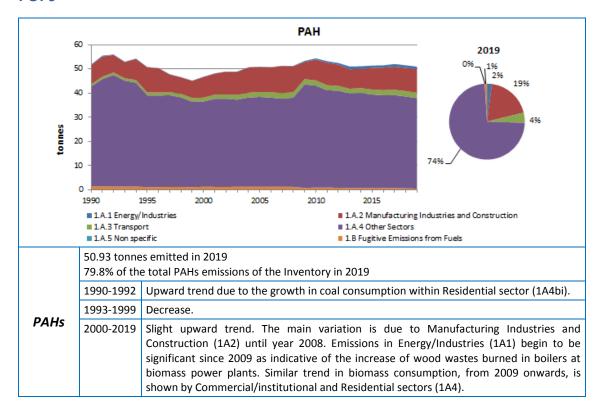


Figure 3.2.13 Evolution of PAHs emissions by category and distribution in year 2019

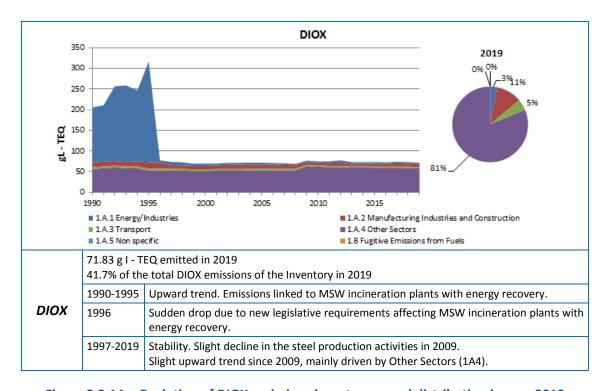


Figure 3.2.14 Evolution of DIOX emissions by category and distribution in year 2019

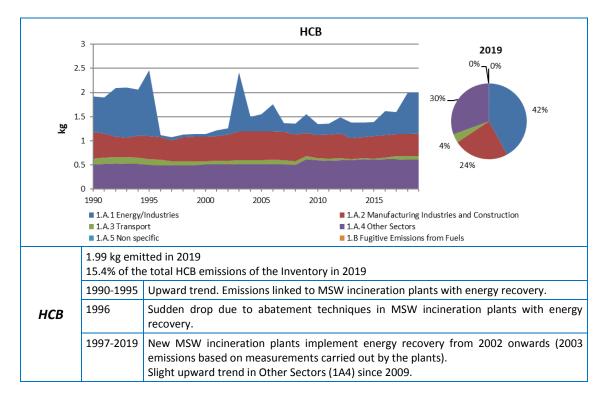


Figure 3.2.15 Evolution of HCB emissions by category and distribution in year 2019

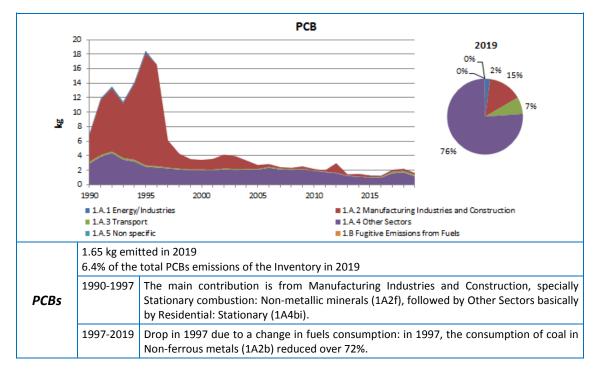


Figure 3.2.16 Evolution of PCBs emissions by category and distribution in year 2019

3.2.3. Condensable component of PM_{10} and $PM_{2.5}$

As detailed in Annex V, indication of whether the emission estimates and emission factors for PM_{10} and $PM_{2.5}$ in the Energy sector include or exclude the condensable component can be found in the table below:

Table 3.2.3 Condensable component of PM₁₀ and PM_{2.5} in Energy sector

NFR	Source/sector name	conde	sions: the nsable nent is excluded	EF reference and comments
1A1a	Public electricity and heat production	included	X	LPS: continuous stack measurements of TSP (mainly opacimeters, calibrated by gravimetry and isokinetic sampling); PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data. Area sources: default EF from CEPMEIP Database (2000).
1A1b	Petroleum refining		х	Varying degrees of complexity; in majority emission factors represent filterable PM emissions.
1A1c	Manufacture of solid fuels and other energy industries		х	LPS (coke plants): country specific TSP and PM ₁₀ EF; PM _{2.5} fraction based in CEPMEIP. Area sources: mainly default EF from CEPMEIP Database (2000), but also from EEA/EMEP Guidebook (2019) where most of the EF used represents only filterable PM emissions.
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019); TSP (mainly opacimeters, calibrated by gravimetry and isokinetic sampling); PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data. Periodic measurements (between one time a week and once a year).
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous Metals	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019); TSP (mainly opacimeters, calibrated by gravimetry and isokinetic sampling); PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data. Periodic measurements (between one time a month and once a year).
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019).

NFR	Source/sector name	PM emissions: the condensable component is		EF reference and comments
		included	excluded	
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019). Periodic measurements (between one time a month and more than once a year).
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019).
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals		cluded but lear	Varying degrees of complexity; in majority emission factors represent filterable PM emissions (EMEP/EEA Guidebook (2019), OFICEMEN).
1A2gvii	Mobile combustion in manufacturing industries and construction	х		EF from EEA/EMEP Guidebook (2019).
1A2gviii	Stationary combustion in manufacturing industries and construction: Other		Х	PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data. Periodic measurements (between one time a week and once a year).
1A3ai(i)	International aviation LTO (civil)	Х		EF from FEIS model (EUROCONTROL).
1A3aii(i)	Domestic aviation LTO (civil)	Х		
1A3bi	Road transport: Passenger cars	X		EF from EEA/EMEP Guidebook (2016): The measurement procedure regulated
1A3bii	Road transport: Light duty vehicles	Х		for vehicle exhaust PM mass
1A3biii	Road transport: Heavy duty vehicles and buses	Х		characterisation requires that samples are taken at a temperature lower
1A3biv	Road transport: Mopeds & motorcycles	х		than52°C. At this temperature lower than52°C. At this temperature, PM contains a large fraction of condensable species. Hence, PM mass emission factors in this sector are considered to include both filterable and condensable material.
1A3bv	Road transport: Gasoline evaporation	N	IA	
1A3bvi	Road transport: Automobile tyre and brake wear	х		EF from EEA/EMEP Guidebook (2016).
1A3bvii	Road transport: Automobile road abrasion	х		EF from EEA/EMEP Guidebook (2016).
1A3c	Railways	Х		Default T1 EF from EEA/EMEP Guidebook (2019).
1A3di(ii)	International inland waterways	NO		
1A3dii	National navigation (shipping)	Х		EF from EEA/EMEP Guidebook (2019).
1A3ei	Pipeline transport		х	Default EF from CEPMEIP Database (2000).
1A3eii	Other	N	0	

NFR	Source/sector name	conde	sions: the nsable onent is	EF reference and comments
		included	excluded	
1A4ai	Commercial/Institutional: Stationary	Depending on category and fuel		EF from EEA/EMEP Guidebook (2019), Chapter 1A4, Small combustion. Boilers – solid and liquid fuels: It is unclear whether PM emissions include or not the condensable component. Boilers – gaseous fuels: Condensable component excluded. Boilers – biomass: Condensable component included. Turbines – all fuels: It is unclear whether PM emissions include or not the condensable component. Stationary engines – lliquid fuels: Condensable component excluded. Stationary engines – gaseous fuels: It is unclear whether PM emissions include or not the condensable component.
1A4aii	Commercial/Institutional: Mobile	Х		Default EF from EEA/EMEP Guidebook (2019), Chapter 1A4 Non road mobile machinery, table 3-1.
1A4bi	Residential: Stationary	Depending on category and fuel		EF from EEA/EMEP Guidebook (2019), Chapter 1A4, Small combustion. Boilers – solid fuels: Condensable component excluded. Boilers – gas oil: Condensable component excluded. Boilers – rest of liquid fuels: It is unclear whether PM emissions include or not the condensable component. Boilers – gaseous fuels: It is unclear whether PM emissions include or not the condensable component. Boilers – biomass: Condensable component included.
1A4bii	Residential: Household and gardening (mobile)	I	E	
1A4ci	Agriculture/Forestry/Fishing: Stationary	Depending on category and fuel		EF from EEA/EMEP Guidebook (2019), Chapter 1A4, Small combustion. Boilers – solid and liquid fuels: It is unclear whether PM emissions include or not the condensable component. Boilers – gaseous fuels: Condensable component excluded. Boilers – biomass: Condensable component included. Stationary engines – gas oil: Condensable component excluded. Stationary engines – rest of liquid fuels: It is unclear whether PM emissions include or not the condensable component.
1A4cii	Agriculture/Forestry/Fishing: Off- road vehicles and other machinery	Х		EF from EEA/EMEP Guidebook (2019).
1A4ciii	Agriculture/Forestry/Fishing: National fishing	х		EF from EEA/EMEP Guidebook (2019).
1A5a	Other stationary (including military)	I	E	

NFR	Source/sector name	PM emissions: the condensable component is		EF reference and comments
		included	excluded	
1A5b	Other, Mobile (including military, land based and recreational boats)	х		Aggregated methodology from 1A3a, 1A3b, 1A3dii (see categories above).
1B1a	Fugitive emission from solid fuels: Coal mining and handling		rmation lable	EF from EEA/EMEP Guidebook (2019).
1B1b	Fugitive emission from solid fuels: Solid fuel transformation	No information available		EF from EEA/EMEP Guidebook (2019).
1B1c	Other fugitive emissions from solid fuels	NO		
1B2ai	Fugitive emissions oil: Exploration, production, transport	N	IA	
1B2aiv	Fugitive emissions oil: Refining and storage		rmation lable	EMEP/EEA Guidebook (2019). Continuous measurements.
1B2av	Distribution of oil products	N	IA	
1B2b	Fugitive emissions from natural gas (exploration, production, processing, transmission, storage, distribution and other)	NA		
1B2c	Venting and flaring (oil, gas, combined oil and gas)	No information available		Continuous measurements.
1B2d	Other fugitive emissions from energy production	N	0	

3.3. Major changes

In the present edition, the Spanish Inventory has made several major changes that are summarized in the table below.

Those referred to the recommendations made by the ERT in the 2020 NECD review¹ (pursuant to Directive (EU) 2016/2284), have been marked with an asterisk (*).

Table 3.3.1 Major changes in the Energy sector in Inventory edition 2021

NFR Category	Activities included	Pollutant	Type of change
(*) Public electricity and heat production (1A1a)	- MSW incineration plants	PM ₁₀	Correction
Public electricity and heat production (1A1a)	- District heating networks (1A1aiii)	All	Activity data update nationwide (public heat production relocated from 1A4ai and 1A4bi)
	- Diesel stationary engines	ВС	Update to EMEP/EEA Guidebook (2019)
Manufacture of solid fuels and other energy industries (1A1c)	- Coal/oil/gas extraction	SOx, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, HM, DIOX, HCB, PCBs	Update to EMEP/EEA Guidebook (2019) and corrections
Air traffic (1A3a)	Air traffic (1A3a) - All categories		Activity data update and recalculation
Road transport (1A3b)	nsport (1A3b) - All categories		Update of sulphur content

_

Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

NFR Category	Activities included	Pollutant	Type of change
National navigation (1A3d)	- National navigation	As, Cu, Se, PAHs and its especies	Update to EMEP/EEA Guidebook (2019)
National navigation (1A3d)	- National navigation	All	Activity data update
Commercial/Institutional sector (1A4a)	- Stationary	SOx, BC, HCB, PCB, DIOX and HM	Update to EMEP/EEA Guidebook (2019)
Commercial/Institutional sector (1A4a)	- Boilers (LPG consumption)	All	Relocation (from 1A4bi to 1A4ai/1A4ci)
Commercial/Institutional sector (1A4a)	- Boilers (district heating)	All	Relocation (from 1A4ai to 1A1aiii)
Residential sector (1A4b)	- Stationary	SOx, BC, HCB, PCB, DIOX and HM	Update to EMEP/EEA Guidebook (2019)
Residential sector (1A4b)	- Stationary	All	New estimates of pellets
Residential sector (1A4b)	- Boilers (district heating)	All	Relocation (from 1A4bi to 1A1aiii)
Agriculture, forestry and fishing sector (1A4c)	- Stationary	SOx, BC, HCB, PCB, DIOX and HM	Update to EMEP/EEA Guidebook (2019)
Agriculture, forestry and fishing sector (1A4c)	- Stationary (LPG Consumption)	All	Correction and relocation (from 1A4bi to 1A4ai/1A4ci)
Agriculture, forestry and fishing sector (1A4c)	- Mobile machinery (agriculture, forestry, fishing)	All	Activity data update
Agriculture, forestry and fishing sector (1A4c)	- Mobile machinery (fishing)	PAH and species and Cu	Update to EMEP/EEA Guidebook (2019)
(*) Agriculture, forestry and fishing sector (1A4c)	- Mobile machinery (fishing)	NOx, TSP and BC	Change from Tier 1 to Tier 2
Fugitive emissions (1B)			Update to EMEP/EEA Guidebook (2019)

3.4. Key categories analysis

Within this sector, the following categories have been identified as key (Table 3.2.2 for reference).

- A. Public electricity and heat production 1A1a
- B. Petroleum refining 1A1b
- C. Manufacturing industries and construction 1A2
- D. Air traffic at airports 1A3a
- E. Road transport 1A3b
- F. National navigation 1A3d
- G. Combustion in other sectors 1A4
- H. Fugitive emissions from fuels 1B

Activity data sources, methodologies and a general assessment for each category are provided.

A. Public electricity and heat production (1A1a)

This category includes Public service heat and power generation plants (NFR 1A1a) and it constitutes one of the main contributors to the emissions in the Inventory as a whole. It is considered a key category for:

- NOx, SOx, PM_{2.5}, PM₁₀, TSP, Hg, PAHs and HCB for level and trend reasons;
- CO and Cd for level reasons;
- NMVOC and DIOX for trend reasons.

The dominant types of installations in the power plants are gas turbines (combined cycles) and boilers, and among the latter, those with power ratings in excess of 300 MWt. Facilities of stationary engines are particularly significant within the extra-peninsular electrical system.

In the current edition of the Inventory, some significant changes in activity rates have been performed under 1A1a category:

- District Heating activity in Spain has been deeply revised, in order to complete the coverage of category 1A1aiii nationwide along the whole 1990-2019 series, having been definitely relocated from categories 1A4ai (Commercial/Institutional) and 1A4bi (Residential);
- New data from one power plant (LPS) not previously accounted for, as a result of the segregation of one combined cycle power plant into two independent installations, since 2016;
- New data from two solar thermal plants not previously accounted for (period 2013-2019);

Additionally, the emission factor of BC has been updated to EMEP/EEA Guidebook (2019) in diesel stationary engines.

Descriptions of these changes are shown in section 3.6 (Recalculations) and in Chapter 8 (Recalculations and planned improvements).

A.1. Activity variables

The following table summarises the main activity variables considered within this category, as well as the main activity data and their corresponding sources of information.

Table 3.4.1 Summary of activity variables, data and information sources for category 1A1a

Activities included	Activity data	Source of information
Public service heat and power generation plants	 Fuel consumption. Fuel characteristics: LHV, contents in carbon, sulphur, ash, etc. Type of installation and thermal power installed. Other parameters required for the application of emission estimation algorithms. 	 1990-1993: OFICO-MINER. 1994-2019: IQ to thermal power stations (Large Point Sources). 1990-2019: information on fuel consumption and location of small power plants (Area Sources) provided by MITERD. 2009-2019: information on fuel consumption and location of solar thermal plants (Area Sources) provided by the Spanish Office of Climate Change at MITERD. 1990-2012: information on district heating

Activities included	Activity data	Source of information
		(Area Sources) from FEMP / ADHAC 2013-2019: national census of district heating plants provided by IDAE at MITERD.
Biogas from solid waste landfills in power plants	- Amounts of waste and biogas burnt Other parameters required for the application of emission estimation algorithms.	- 1990-2008: IQ. - 2009-2019: information provided by national focal point (Subdirectorate General of Waste at MITERD). - 2009-2019: IQ to non-municipal facilities.
Municipal and industrial incineration plants with heat or electricity production	 Quantities of waste burnt. Composition of the waste. Other parameters required for the application of emission estimation algorithms. 	- IQ to incineration plants.

A.2. Methodology

 Table 3.4.2
 Summary of methodologies applied in category 1A1a

Pollutants Tier		Methodology applied	Observations						
Boilers									
(Methodology	Methodology factsheet: Public electricity production)								
Stoichiometric balanc EMEP/EEA Guidebook Chapter 1.A.1.a.		Direct emissions measurement. Stoichiometric balance. EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a. Chapter 1.A.4.	Data provided by installations via IQ. In absence of direct measurements. In absence of data: default EF. Tables 3-4, 3-5, 3-9 to 3-16. Tables 3-10, 3-25, 3-27 and 3-45.						
NOx T2 Direct emissions measurement. EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a. Data provided by installation In absence of data: default E Tables 3-4, 3-5, 3-9 to 3-16.		Data provided by installations via IQ. In absence of data: default EF. Tables 3-4, 3-5, 3-9 to 3-16. Tables 3-10, 3-25, 3-27 and 3-45.							
PM _{2.5} , PM ₁₀ , TSP			Data (TSP) provided by installations via questionnaire; distribution of PM _{2.5} and PM ₁₀ fractions based on CEPMEIP Database. In absence of data: CEPMEIP default EF.						
BC T1 EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a.			Default EF: % of the PM _{2.5} . Tables 3-3, 3-6, 3-9 to 3-16.						
Cd, Hg, Pb (from coal)			EF obtained from publication: "Heavy metal emissions in ENDESA's Coal Power Stations" For other fuels or data absence: default EF Table 31, DBB.						
DIOX T1 OSPAI		OSPARCOM-HELCOM-UNECE (1995).	EF for maximum abatement techniques. Table 4.5.1.						
Ch		EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a. Chapter 1.A.4.	Default EF. Tables 3-4 to 3-7 and 3-9 to 3-16. Tables 3-8 to 3-10, 3-25, 3-27 and 3-45.						
, ,		I	Data provided by installations via IQ. In absence of data: default EF Tables 3-4, 3-5, 3-9 to 3-16. Tables 3-10, 3-25, 3-27 and 3-45.						
со	T1/T2 Direct emissions measurement. EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a Chapter 1.A.4.		Data provided by installations via IQ. In absence of data: default EF. Tables 3-4, 3-5, 3-9 to 3-16. Tables 3-10, 3-25, 3-27 and 3-45.						
NH ₃	T1/T2 Direct emissions measurement. EMEP/EEA Guidebook (2019) Part B,		LPS: data provided by installations via IQ. Area Sources: default EF.						

Pollutants	Tier	Methodology applied	Observations					
		Chapter 1.A.4.	Tables 3-10 and 3-45.					
Gas turbines a	Gas turbines and stationary engines							
(Methodology factsheet: Public electricity production)								
SOx			Data provided by installations via IQ. In absence of direct measurements. In absence of data: default EF. Tables 3-5, 3-17 to 3-20.					
NOx	T1	Direct emissions measurement. EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a.	Data provided by installations via IQ. In absence of data: default EF. Tables 3-5, 3-17 to 3-20.					
PM _{2.5} , PM ₁₀ , TSP	T1/T2	Mixed methodology based on direct emissions measurement and default EF from CEPMEIP. EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a.	Data (TSP) provided by installations via questionnaire; distribution of PM _{2.5} and PM ₁₀ fractions based on CEPMEIP Database. In absence of data: CEPMEIP default EF. Default EF: % of the PM _{2.5} . Tables 3-5, 3-17 to 3-20.					
Cd, Hg, Pb	T1	EMEP/CORINAIR Guidebook (2007) Part B, Chapter 111.	Default EF. Table 31, DBB.					
PAHs	T1	EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a. Chapter 1.A.4.	Default EF. Tables 3-5, 3-6 and 3-17 to 3-20. Tables 3-9, 3-28, 3-31.					
PCBs	T1	EMEP/EEA Guidebook (2013) Part B, Chapter 1.A.1.a.	Default EF. Table 3-19.					
EMEP/EEA Guidebook (2019) Part B, In absence of		Data provided by installations via IQ. In absence of data: default EF. Tables 3-5, 3-17 to 3-20.						
со	Direct emissions measurement. EMEP/EEA Guidebook (2019) Part B, Chapter 1.A.1.a.		Data provided by installations via IQ. In absence of data: default EF. Tables 3-5, 3-17 to 3-20.					
MSW incinerat	ion plant	s (with energy recovery)						
(Methodology	factsheet	: MSW incineration power plants)						
Main Pollutants, PM, BC, Heavy Metals, DIOX, PAHs, HCB, PCBs	Main Pollutants, PM, BC, Heavy Metals, DIOX, PAHs, HCB, PCBs Direct emissions measurement. EMEP/EEA Guidebook (2019) Part B, Chapter 5.C.1.a. Emission data and abatement technique provided by installations via IQ. In absence of data: default EF by tonne waste table 3-2 (1990-1995, it was assured only "Particle Abatement" as control techniques) and table 3-1 (1996-2015, considered as a minimum "Particle Abatement")		In absence of data: default EF by tonne of waste table 3-2 (1990-1995, it was assumed					
Industrial wast	e inciner	ation plants (with energy recovery)						
(Methodology	(Methodology factsheet: IW incineration power plants)							
Main Pollutants, PM, BC, Heavy Metals, DIOX, PAHs, HCB	ain Dillutants, Chapters 5.C.1.bi, 5.C.1.bii, 5.C.1.biv. Table 3-1. Table 3-1. Table 3-1.		Default EF by tonne of waste. Table 3-1.					
Combustion in	Combustion in managed landfills with biogas capture							
(Methodology	(Methodology factsheet: Biomethanization)							
NOx, CO, PM	T1	US EPA AP-42 - 5th Edition (1998) Chapter 2.4.	Default EF. Table 2.4-4.					

A.3. Assessment

According to Red Eléctrica de España data², the demand for electricity in Spain during 2019 showed a decrease of 1.6% with respect to the previous year, this being the first decrease in demand since 2014. The evolution of the peninsular electricity system demand (just over 94% of total Spanish demand) was 1.7% lower than in 2018, 6% lower than the maximum demand reached in 2008.

With regard to electricity generation, the share of renewable generation in relation to total generation fell (38.9% compared to 40.2% in 2018) due to lower production by hydroelectric power stations (27.6% down on than the previous year). Non-renewable generation reached 61.1% of the total on the Spanish peninsula, favoured by the increase in production from combined cycle, which almost doubled its share in the generation mix, rising from 10.7% in 2018 to 20.7% in 2019. On the other hand, there has been a fall in coal-fired generation, which has accounted for only 4.3% of the generation mix, the lowest value since statistical records began.

Thereby, fuel consumption into 1A1a category of the Inventory decreased by 15% in 2019 compared to 2018 due to the drastic fall in the consumption of solid fuels (-64%), despite the strong increase experienced by natural gas consumption in combined cycle plants (+75%).

Also liquid fuels experienced a marked decrease (-52%) in 2019, mainly due to the strong drop in petroleum coke and residual oil consumption by coal power plants.

Regarding the whole time series, in 2019 solid fuels (domestic and imported coal) are no longer the predominant type of fuel used for electricity generation, due to lower activity and progressive closure of the coal plants in favour of combined cycles. The figure below shows the influence of the economic downturn in Spain in this sector since 2007. Only between 2008 and 2010 the use of coal decreased significantly, becoming more predominant the gaseous fuels consumption. Furthermore, the only IGCC plant in Spain was closed at the end of 2015, so 'Gas works gas' is no longer used in electricity generation.

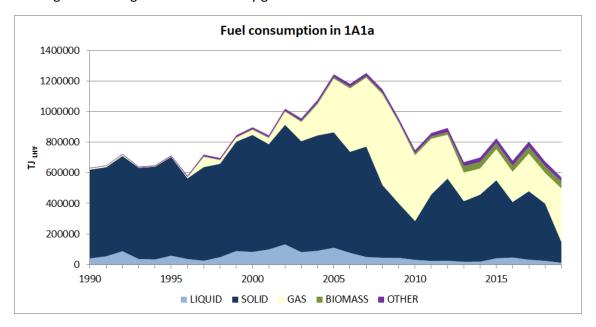


Figure 3.4.1 Evolution of fuel consumption in category 1A1a

.

² REE Spanish Electricity System 2019 Report

Among liquid fuels, as the following table shows, the main consumption corresponds to residual oil, with a complementary contribution of gas oil. As of 2006, there was a significant decrease in the consumption of residual oil, as a result of the cessation of activity of several thermal plants. In the years 2015 and 2016, there was a remarkable increase in petroleum coke burned at thermal plants, although this trend changed in 2017.

As for gaseous fuels, the increase in natural gas consumption is remarkable since 2002 owing to new combined cycle thermal power stations. 2011 onwards there is a general decline in the use of natural gas, which changes dramatically in 2019.

Within the biomass consumption, the trend would be linked to the actions developed by the Administration for the promotion of biomass in different productive sectors, such as the Renewable Energy Plan (PER) 2005-2010 and its subsequent regulatory developments. Until 2012 the main fuel corresponds to biogas in the landfills and biomethanization plants. In 2013, the consumption of wood wastes together with agricultural wastes begins to gain relevance. This is explained by the proliferation of biomass power plants in recent years in Spain.

Finally, regarding the fuels included in 'Other', the general growing trend changed in 2018 due to the slight drop in MSW consumption. This new downward trend continues and is even greater in 2019 (-15% compared to 2018), caused by the sharp decline in industrial waste incineration.

Table 3.4.3 Fuel consumption in category 1A1a (Amounts in TJ_{LHV})

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019
LIQUID	39,928	109,650	30,632	40,803	45,689	31,829	24,139	11,651
GAS OIL	2,203	14,719	14,456	5,077	4,005	5,441	4,751	4,278
LPG	-	-	-	0	0	0	0	0
PETROLEUM COKE	-	26,081	363	26,774	30,281	16,541	9,975	797
RESIDUAL OIL	37,726	68,790	15,776	8,936	11,403	9,847	9,413	6,576
OTHER LIQUID FUELS	-	59	37	17	-	-	-	-
SOLID	581,240	755,577	254,251	510,772	363,573	448,080	374,953	135,513
BLAST FURNACE GAS	4,784	9,922	7,672	11,374	8,910	13,011	12,490	10,350
BROWN C. / LIGNITE	114,539	61,976	-	-	-	-	-	-
BROWN COAL BRIQ.	5,860	-	-	-	-	-	-	-
COKE OVEN GAS	944	2,410	530	-	-	-	-	-
GAS WORKS GAS	-	6,466	8,179	6,135	-	-	-	-
STEAM COAL	401,951	625,694	224,266	460,453	335,687	408,669	342,795	114,583
SUB-BITUM. COAL	53,162	49,109	13,604	32,809	18,975	26,400	19,668	10,580
GAS	7,450	351,556	430,686	203,259	198,155	246,099	200,442	351,538
NATURAL GAS	7,450	351,556	430,686	203,259	198,155	246,099	200,442	351,538
BIOMASS	1,346	9,499	13,241	39,170	40,253	45,017	44,382	45,656
AGRICULT. WASTES	-	1,080	2,777	9,373	11,504	12,029	12,912	13,460
BIOGAS	1,340	3,542	4,606	7,078	6,255	6,356	6,525	6,643
GAS F. WASTE TIPS	6	4,427	4,792	4,185	4,616	4,581	3,722	3,711
WOOD WASTES	-	451	1,065	18,534	17,878	22,052	21,224	21,841
OTHER	3,103	18,568	19,384	31,826	31,548	32,948	30,592	25,977
INDUSTRIAL WASTES	-	590	618	8,848	7,764	8,922	8,758	4,086
MUNICIPAL WASTES	3,103	15,598	17,426	22,213	22,668	22,842	20,809	20,862
WASTE GAS	-	2,379	1,339	766	1,115	1,184	1,024	1,029

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019	ı
TOTAL	633,068	1,244,849	748,194	825,831	679,219	803,974	674,508	570,335	1

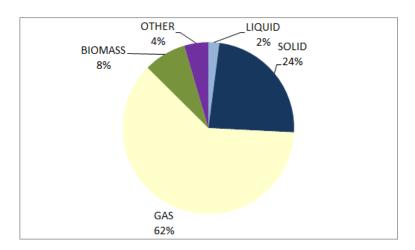


Figure 3.4.2 Distribution of fuel consumption in category 1A1a (2019)

B. Petroleum refining (1A1b)

This NFR category 1A1b includes refineries with many different processes. It is considered a key category for Cd for level and trend reasons, for SOx for trend reasons and for NOx for level reason.

In Spain (without Canary Islands) there are nine refineries with very diverse processes, ages, capacities and configurations.

Figure 3.4.3 Distribution of refineries in Spain

B.1. Activity variables

The following table summarises the main activity variables considered within this category as well as the main activity data and their corresponding sources of information.

Table 3.4.4 Summary of activity variables, data and information sources for category 1A1b

Activities included	Activity data	Source of information
Combustion processes in Refineries	Fuel Consumption - Fuel characteristics: LHV, contents in carbon, sulphur, ash, etc.	- IQ sent to each of the nine existing refineries

^{*} Regarding the emissions of pollutants, consideration is given exclusively to those gases coming from the combustion carried out in the furnaces; the emissions that these furnaces might generate through non-combustible processes taking place inside them are included within category 1B2aiv. Additionally, the emissions from waste gas flaring are included in category 1B2c2i.

B.2. Methodology

Table 3.4.5 Summary of methodologies applied in category 1A1b

Pollutants	Tier	Methodology applied	Observations			
Boilers, gas tur	Boilers, gas turbines, stationary engines and process furnaces					
(Methodology	factsheet	s: Combustion in oil refining plan	<u>ts</u>)			
SOx	T3/T2	IQ	Direct emissions measurements, when available via IQ. Mass balance when measurements were not available.			
NOx	T3/T2/ T1	IQ EMEP/EEA Guidebook (2019), Chapter 1.A.1	Direct emissions measurements, when available via IQ. Default EF, tables 3-4, 3-5, 3-6, 3-17, 3-18, 4-2, 4-4, 4-5 and 4-6.			
NMVOC	T1/T2	EMEP/EEA Guidebook (2019), Chapter 1.A.1.	Default EF, tables 3-4, 3-5, 3-6, 3-17, 3-18, 4-2, 4-4, 4-5 and 4-6.			
PM _{2.5} , PM ₁₀ , TSP, BC	T1/T2	IQ EMEP/EEA Guidebook (2019), Chapter 1.A.1.	Direct emissions measurements, when available via IQ. With TSP measurement (generally) an in absence of PM_{10} and $PM_{2.5}$ CEPMEIP Database default emission factors. Default EF, tables 3-4, 3-5, 3-6, 3-17, 3-18, 4-2, 4-4, 4-5 and 4-6.			
Cd, Pb, Hg, As, Cr, Cu, Ni, Se, Zn	T1/T2	EMEP/EEA Guidebook (2019), Chapter 1.A.1.	Default EF, tables 3-4, 3-5, 3-6, 3-17, 3-18, 4-2, 4-4, 4-5 and 4-6.			
DIOX	T1/T2	EMEP/EEA Guidebook (2019), Chapter 1.A.1.	Default EF, Tables 3-4, 3-5, 3-6, 4-4.			

B.3. Assessment

There is a change in the relative share of liquid fuels between residual oil and refinery gas, particularly in the last years of the Inventory period. Thus, residual oil shows a downward trend from 2004 on, going from representing 49% of the consumption of liquid fuels in 1990 to 0.8% in 2019, and refinery gas shows an upward trend since 2010. Regarding the whole time series, this fuel varies from a 51% share of liquid fuels in 1990 to represent 98% in 2019.

The increase observed in natural gas consumption throughout the Inventory period is remarkable, as a consequence of the progressive installation of cogeneration units (gas turbines) in oil refinery plants.

Finally, mention should be made about the inclusion of various fuel gases (off-gas) used in oil refinery plants within 'Other' category with a low representativeness.

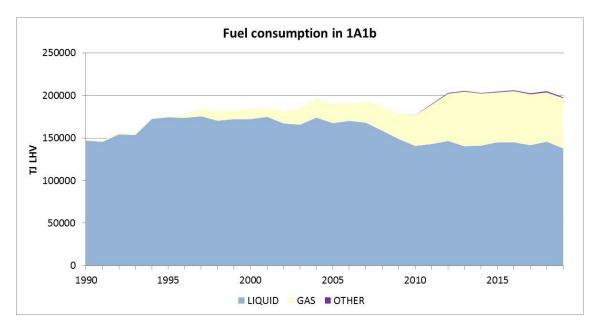


Figure 3.4.4 Evolution of fuel consumption

Table 3.4.6 Fuel consumption (Amounts in TJ_{LHV})

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019
LIQUID	147,059	167,501	140,787	144,964	144,989	141,615	145,701	137.836
GAS OIL	369	1,674	66	14	-	-	-	-
KEROSENE	-	22	2	-	-	-	-	-
LPG	-	172	143	115	95	28	-	117
NAPHTA	195	-	-	-	-	-	-	-
OTHER PETROLEUM PRODUCTS	-	1,390	884	1,461	1,565	2,102	1,674	1,845
REFINERY GAS	74,573	95,164	95,448	136,451	139,395	136,197	141,167	134,783
RESIDUAL OIL	71,922	69,079	44,245	6,923	3,933	3,289	2,861	1,092
GAS	820	23,259	36,188	58,653	60,167	59,775	57,895	59,046
NATURAL GAS	820	23,259	36,188	58,653	60,167	59,775	57,895	59,046
OTHER	-	-	46	883	960	1,095	1,355	960
WASTE GAS	-	-	46	883	960	1,095	1,355	960
TOTAL	147,879	190,760	177,021	204,500	206,116	202,485	204,951	197,842

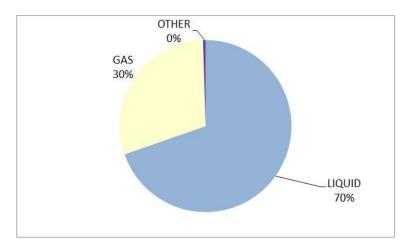


Figure 3.4.5 Distribution of fuel consumption 1A1b (2019)

Except for natural gas, the fuels used at the refineries are produced onsite. Therefore, their physical and chemical characteristics vary from one plant to another and even from one year to another in the same refinery. The characteristics (ranges) for the fuels used throughout the period of the Inventory are the following:

Table 3.4.7 Fuel characteristics

51151	0/ CHI DIII D	e/ CARRON	LHV		
FUEL	% SULPHUR	% CARBON	kcal/kg	GJ/t	
GAS/DIESEL OIL	0 – 0.872	82.70 – 87.47	9,542 – 10,548	39.76 – 43.95	
INDUSTRIAL WASTE	0 – 6.8	0.07 – 74.05	60 – 16,344	0.25 – 68.9	
LPG	0 – 0.03	73.30 – 81.85	10,548 – 11,347	43.95 – 46.58	
NAPHTA	0	81.36	10,723 – 11,352	44.68 – 47.3	
NATURAL GAS	0 – 0.12	69.32 – 78.50	10,728 – 12,550	44.7 – 52.29	
OTHER (*)	-	-	-	-	
OTHER KEROSENE	0.035 – 0.3	84.80 – 86.48	10,270 – 10,632	42.79 – 44.3	
REFINERY GAS	0 – 5.7	0 – 87.77	7,152 – 14,124	29.8 – 58.85	
RESIDUAL OIL	0 – 4.49	82.91 – 90.35	9,326 – 10,109	38.86 – 42.12	

^(*) No characteristics are given in the table for "Other" in view of the wide range of variation in the specifications of this gas and because no information is available regarding its characteristics in some refineries

C. Combustion in industry (1A2)

This category encompasses a set of activities related to industrial combustion. Depending on the device used and the type of process, the Spanish Inventory data compilation is performed differentiating the following four groups:

- Non-specific stationary industrial combustion: this group includes the emissions from non-specific industrial combustion in boilers, gas turbines and stationary engines whose purpose is the production of electricity and/or the generation of heat. Within the boilers, the Spanish Inventory compiles the emissions differentiating the ranges of rated thermal input capacity (combustion plants: RTI ≥ 300 MWt; combustion plants: 300 MWt > RTI ≥ 50 MWt; combustion plants: RTI < 50 MWt).
- 2. <u>Industrial combustion in furnaces without contact</u>: this group includes the emissions from furnaces in which neither the flames nor the combustion gases come into contact with the products that are processed. Within this group, the Inventory compiles the emissions from blast furnaces, plaster furnaces and other type of processes.
- 3. <u>Industrial combustion in furnaces with contact</u>: this group includes the emissions from furnaces in which the flames and/or the combustion gases come into contact with the products that are processed.
- Industrial mobile machinery: includes emissions of exhaust gases from vehicles and mobile machinery operating in open spaces, essentially in mining, construction and public works.

The Spanish Inventory assigns the emissions from the same industrial sector in two different categories (emissions from combustion of fuels in NFR category 1A2, SNAP group 03 and specific emissions of the industrial process in NFR category 2, SNAP group 04).

The combustion in industry is a key category for its contribution to the level and the trend of the emissions of NOx, SOx, PM_{2.5}, PM₁₀, TSP, BC, CO, Pb, Cd, Hg and PAHs, for NMVOC, DIOX and HCB for level reasons and PCBs for trend reasons.

Spanish Inventory compiles more than 60 activities+fuels from more than 70 different sources (both area and large point sources) included in industrial combustion. For this reason, all the particularities of every activity/pollutant are not fully detailed in the following tables. The main characteristics of the activity variables and the methodology are explained in the following sections.

C.1. Activity variables

Table 3.4.8 Summary of activity variables, data and information sources for category 1A2

Activities included	Activity data	Source of information
Combustion in industry (1A2)	Fuel consumption and LHV by category.	AQs: Energy balance from international questionnaires elaborated by DGPEM (MITERD).
Stationary combustion in manufacturing industries and construction: Iron and steel (1A2a)	Fuel consumption by process. Fuel characteristics: LHV, contents in carbon, sulphur, ash, etc. Other parameters required for the estimation of NFR 2 emissions: production, type of process, inputs used, etc.	IQ from the two existing integrated iron and steel plants. For non-integrated iron and steel sector, the Inventory uses data from: - MINER for 1990-1993, - UNESID for 1994-2019 - FEAF.

Activities included	Activity data	Source of information
Stationary combustion in manufacturing industries and construction: Nonferrous metals (1A2b)	Fuel consumption by process. Fuel characteristics: LHV, contents in carbon, sulphur, ash, etc. Other parameters required for the estimation of NFR 2 emissions: production, type of process, inputs used, etc.	- Primary Aluminium: IQ from the three existing production plants of electrolytic aluminium Primary copper: IQ from the only existing plant Primary zinc: IQ from the only existing plant. For industries listed below an estimate of fuel consumption is made based on energy requirements (GJ/tonne produced) obtained from the IPCC non-ferrous metal industry BREF. Information on production has been obtained from the following sources: - Primary lead: MINER Secondary lead: IQ from five plants, UNIPLOM and MITYC Secondary Aluminium: SGIBPMINER, ASERAL, MITYC and INE data Secondary Zinc: SGIBP-MINER and U.S. Geological Survey Mineral Yearbook (2014) Secondary copper: SGIBP-MINER UNICOBRE, MITYC, UNICOBRE and U.S. Geological Survey Mineral Yearbook (2014).
Stationary combustion in manufacturing industries and construction: Chemicals (1A2c)	Fuel consumption by process.	IQ from production plants.
Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print (1A2d)	Fuel consumption by process. Fuel characteristics: LHV, contents in carbon, sulphur, ash, etc. Other parameters required for the estimation of NFR 2 emissions: production, type of process, inputs used, etc.	IQ from 10 production plants. ASPAPEL
Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco (1A2e)	Fuel consumption and LHV by category.	IQ from 5 sugar plants.
Stationary combustion in manufacturing industries and construction: Nonmetallic minerals (1A2f)	Fuel consumption by process. Fuel characteristics: LHV, contents in carbon, sulphur, ash, etc. Other parameters required for the estimation of NFR 2 emissions: production, type of process, inputs used, etc.	Cement: OFICEMEN. Asphalt concrete plants: "Asphalt in figures", EAPA. Lime: ANCADE. Glass: Vidrio España, ANFFEC. Brick and tiles: HISPALYT. Fine ceramics: ASCER. IQ from 2 magnesite plants
Mobile Combustion in manufacturing industries and construction (1A2gvii)	1993-1996: fuel consumption estimation constructed from those two aspects. Remaining years: fuel consumption series, extended from 1993-1996 series by means of the socio-economic variables.	1993-1996: expert's judgments on specialized sectorial documentation, about: machinery fleet and activity parameters. Remaining years: representative variables of the main socio-economic sector, in relation with the sectorial evolution: - < 1993: cost for building and civil engineering works, available (until 2005) in the "Ministry of Public Works' Statistical Yearbook". - >1996: gross fixed capital formation (GFCF) in the construction sector, published by INE.
Stationary combustion in manufacturing industries and construction: Other (1A2gviii)	Fuel consumption by process.	Others (includes various industries: car and transport material factories among others). Cogeneration in ceramics and bricks and tiles (HISPALYT, ASCER)

The information coming from direct sources in 1A2 represents 54% of the entire information for the Inventory period. The remaining data (46%) come from the national energy statistics, provided by the Spanish Ministry for the Ecological Transition and Demographic Challenge (MITERD). Therefore, the contribution of energy statistics to 1A2 emission estimates is quite significant.³

C.2. Methodology

The methodological approach for all industrial combustion activities is similar. The following table summarizes the general approach followed for estimating all activities as well as the methodology of activities with distinct approaches within this 1A2 category.

Table 3.4.9 Summary of methodologies applied in category 1A2

Pollutants	Tier	Methodology applied	Observations
General approach	T1/T2	IQ	Within the IQ, the plants provide measured emissions, specific emission factors or default emission factors.
		Entrepreneurial associations.	The collaboration of the Inventory with associations of reference in different sectors derives in certain cases in national specific emission factors.
		EMEP/EEA Guidebook (2019) & EMEP/CORINAIR Guidebooks. CEPMEIP. PARCOM-ATMOS etc.	In the cases that the Inventory cannot obtain national specific information, the best available generic combustion factors by type of device.
Non-specific in	dustrial c	ombustion	
(Methodology	factsheet	s: Non - specific industrial station	nary combustion)
NOx, NMVOC, CO, SOx, NH ₃ , PM, CO, HM, DIOX, PAHs, HCB, PCBs	T3/T2/ T1	EMEP/EEA Guidebook (2016) & EMEP/CORINAIR Guidebooks.	
(Methodology	-	: Sintering plants (combustion); E	Blast furnace cowners)
NOx, NMVOC, SOx, NH ₃ , PM, CO, HM, DIOX, PAHs, HCB, PCBs	T3/T2/ T1		Information from IQ from integrated steel plants has been obtained for several pollutants and years. As this information is not homogeneous and sustained over the years, the Spanish Inventory completes the information from measurements with the best available emission factors.
Non-Ferrous N	letals (1A	2b)	
NOx, NMVOC, SOx, NH ₃ , PM, CO, HM, DIOX, PAHs, HCB, PCBs	Т2/Т1	IQ. EMEP/EEA Guidebook (2019) Chapters 1A1 and 1A2. EMEP/CORINAIR Guidebooks Chapters B111 and B3322. OSPARCOM-HELCOM-UNECE (1995). CEPMEIP. PARCOM-ATMOS.	Mass balance (SOx). EF

³ See Appendix 1: Inventory energy balance (IEB).

150

_

Pollutants	Tier	Methodology applied	Observations
Chemicals (1A2	?c)		
NOx, NMVOC, SOx, NH ₃ , PM, CO, HM, DIOX, PAHs, HCB, PCBs	T3/ T2	IQ. EMEP/EEA Guidebook (2019) Chapter 1.A.2.	Information from IQ. EF
Pulp, Paper an	d Print (1	A2d)	
NOx, NMVOC, SOx, NH ₃ , PM, CO, HM, DIOX, PAHs, HCB, PCBs	Т2/Т1	IQ EMEP/EEA Guidebook (2019) Chapter 1A1, 1A2. EMEP/CORINAIR Guidebooks Chapters B111, B321. OSPARCOM-HELCOM-UNECE (1995). CEPMEIP.	Mass balance (SOx). EF
Food Processin	g, Beverd	ages and Tobacco (1A2e)	
NOx, NMVOC, SOx, NH ₃ , PM, CO, HM, DIOX, PAHs, HCB, PCBs	T2	EMEP/EEA Guidebook (2019) Chapter 1.A.2.	EF
Cement (under	1A2f)		
NO _X , NMVOC, SO _X , NH ₃ , PM, HM, DIOX, PCBs	T2	OFICEMEN	EF OFICEMEN 1990 – 2005: OFICEMEN estimated the expected evolution of the incorporation of reduction technologies, as well as their impact on the emissions of the pollutants considered. OFICEMEN 2005: OFICEMEN provided EFs as an average of the values measured within the Environmental Benchmarking programme for 2003. OFICEMEN 2013: OFICEMEN provided representative EFs based on a measurement program developed during the years 2007-2011. OFICEMEN 2014: OFICEMEN provided representative EFs based on a measurement program developed during the years 2009-2013. OFICEMEN 2017: OFICEMEN provided representative EFs based on a measurement program developed during the years 2011-2015. OFICEMEN 2019: OFICEMEN provided representative EFs based on a measurement program developed during the years 2014-2018.
Non-metallic N	1inerals (except Cement) (1A2f)	
NOx, NMVOC, SOx, PM, CO, HM, DIOX, PAHs, PCBs	Т2	EMEP/EEA Guidebook (2016, 2019) Chapter 1.A.2. EMEP/CORINAIR Guidebooks Chapters B112. OSPARCOM-HELCOM-UNECE (1995). CEPMEIP.	EF
Other (1A2gvii)) Mobile	Combustion in manufacturing in	dustries and construction
(Methodology	factsheet	: Mobile machinery)	
NOx, NMVOC, SOx, NH ₃ , PM, HM (except Pb, Hg, As), PAHs	T2/T1	EMEP/EEA Guidebook (2019) Chapter 1.A.4	EF

Pollutants	Tier	Methodology applied	Observations
Other (1A2gviii) Other:		
NOx, NMVOC, SOx, NH ₃ , PM, CO, HM, DIOX, PAHs, HCB, PCBs	Т2	EMEP/CORINAIR Guidebooks Chapters B111, B112. EMEP/EEA Guidebook (2019) Chapter 1.A.2. OSPARCOM-HELCOM-UNECE (1995). CEPMEIP.	EF

In those cases where the information registered by the Inventory does not fully cover all the sectors, information is completed with the official energy statistics.⁴

C.3. Assessment

The consumption of liquid and gaseous fuels in 1A2 shows opposite trends along the Inventory period. While liquid fuels shows a downward trend, representing 45% of the total consumption in 1990 and 16% in 2019, gaseous fuels increase their share from 25% in 1990 to 69% in 2019. Whereas biomass fuels shows a steady trend over the whole period.

Within each type of fuel ranking, the most representative fuels for 2019 besides natural gas (69%) are petroleum coke (7%), wood wastes (7%), residual oil (4%), diesel oil (4%) and black liquor (3%).

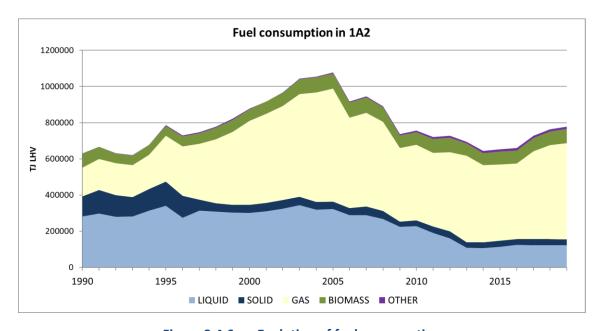


Figure 3.4.6 Evolution of fuel consumption

.

⁴ See Appendix 3.1

Table 3.4.10 Fuel consumption (Amounts in TJ_{LHV})

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019
LIQUID	282,280	322,264	227,074	113,569	123,657	121,973	123,142	122,683
BITUMEN	-	-	34	42	-	1	64	127
CRUDE OIL	-	-	-	181	363	0	-	-
DIESEL OIL ROAD TRANSPORT	50,489	57,038	44,042	21,922	25,369	28,221	29,711	30,846
GAS OIL	424	8,524	4,182	372	296	1,051	638	603
LPG	13,283	10,819	3,260	552	6,866	3,351	545	558
OTHER LIQUID FUELS			788	709	1,162	1,501	1,676	1,628
PETROLEUM COKE	57,027	135,800	126,262	55,596	57,226	55,688	59,350	57,855
REFINERY AND PETROCHEM, GAS	1,344	-	-	-	-	-	-	-
RESIDUAL OIL	159,712	110,083	48,507	34,196	32,376	32,160	31,157	31,065
SOLID	110,715	41,011	33,566	34,282	32,894	33,663	32,501	31,655
BLAST FURNACE GAS	16,501	8,189	6,963	8,501	8,379	8,061	7,967	8,739
COKE OVEN COKE	16,850	9,280	7,402	5,875	6,535	6,690	5,948	5,770
COKE OVEN GAS	15,057	7,690	6,634	3,883	4,100	3,848	3,101	2,632
GAS WORKS GAS	81	-	-	-	-	-	-	-
STEAM COAL	60,830	14,460	11,068	14,574	12,888	13,886	14,296	13,492
STEEL PLANT FURNACE GAS	732	1,393	1,359	1,329	940	1,148	1,190	1,022
SUB-BITUMINOUS COAL	664	-	140	118	52	29	1	-
BIOMASS	78,146	83,849	69,423	71,834	72,600	73,873	73,283	76,824
AGRICULTURAL WASTES	-	18	17	329	476	593	413	584
ANIMAL MEAL	-	1,033	835	1,165	1,264	1,426	1,373	1,408
BIOGAS	363	490	891	1,044	1,056	1,091	1,061	1,153
BLACK LIQUOR	18,217	32,106	30,897	31,613	31,911	26,565	26,192	21,425
CELLULOSE	-	-	25	-	-	-	-	-
SEWAGE SLUDGE	-	315	823	399	351	287	275	257
WOOD WASTES	59,566	49,887	35,934	37,286	37,541	43,911	43,968	51,997
GAS	157,304	624,317	416,571	421,380	416,864	486,111	521,172	533,248
NATURAL GAS	157,304	624,317	416,571	421,380	416,864	486,111	521,172	533,248
OTHER	838	5,310	9,383	11,807	13,305	12,655	13,455	13,624
INDUSTRIAL WASTES	838	2,015	7,171	4,510	5,234	6,217	6,616	6,988
OTHER LIQUID WASTES	-	1,284	474	1,011	1,278	131	167	123
REFUSE DERIVED FUELS	-	-	438	5,682	5,880	5,286	5,769	5,986
WASTE GAS	-	921	-	-	-	-	-	-
WASTE SOLVENTS	-	1,089	1,299	605	914	1,021	903	527
TOTAL	629,283	1,076,751	756,017	652,871	659,320	728,275	763,553	778,034

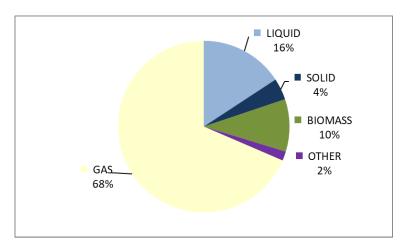


Figure 3.4.7 Distribution of fuel consumption 1A2 (2019)

D. Air traffic at airports (1A3a)

Two types of air traffic (segments) may be distinguished based on country of origin and destination for flights, regardless of air carrier nationality; thus, domestic traffic is defined as all airplane traffic between two Spanish airports, and international traffic includes all flights whose origin or final destination is a foreign airport.

This category includes activities related to air traffic within or in the surroundings of Spanish airports (landing and take-off cycles, LTO, from both national and international flights).

Cruise stage –national and international- is reported as "Memo item" in the NFR reporting tables for informative purposes.

In the present Inventory Edition, fuel consumptions of the whole series have slighty changed due to an update of the EUROCONTROL dataset.

Aviation (1A3a) is a key category for its contribution to the trend and level of the emissions of NOx.

D.1. Activity variables

Table 3.4.11 Summary of activity variables, data and information sources for category 1A3a

Activities included	Activity data	Source of information
Civil air traffic	Spanish Civil Airports landing and takeoff cycles (LTO): Number of LTO cycles by segment flight, departure and arrival airport, and by aircraft type.	2005-2019: EUROCONTROL ("European Organisation for the Safety of Air Navigation"). Remaining years: Statistical adjustment based on airports data from Directorate General for Civil Aviation (DGAC) at the Ministry of Transport, Mobility and Urban Agenda.
	Domestic and international air traffic (kerosene consumption).	2005-2019: EUROCONTROL ("European Organisation for the Safety of Air Navigation"). Remaining years: Statistical adjustment based on jet fuel sales from National energy statistics elaborated by MITERD (AQ-AOS) and sent to IEA and EUROSTAT.
	Air traffic of piston engine aircraft (aviation gasoline consumption).	2005-2019: EUROCONTROL ("European Organisation for the Safety of Air Navigation"). Remaining years: Statistical adjustment based on aviation gasoline sales from National energy statistics elaborated by MITERD (AQ-AOS) and sent to IEA and EUROSTAT.

D.2. Methodology

Table 3.4.12 Summary of methodologies applied in category 1A3a

Pollutants	Tier	Methodology applied	Observations			
Jet and Turbop	Jet and Turboprop aircraft					
(Methodology f	actsheet	: <u>Air traffic</u>)				
NOx, NMVOC,	T3, T1	EUROCONTROL European	EF:			
SOx, PM, CO		Aviation Fuel Burn and	- FEIS model from EUROCONTROL.			
		Emissions Inventory System.	- Statistical adjustment based on emissions for each			
		Tier 1 methodology for time	departure and arrival airport.			

Pollutants	Tier	Methodology applied	Observations
		series 1990 – 2004.	
As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn	T1	EMEP/EEA Guidebook (2019) Chapter 1A3a.	EF: - Annex 2: Additional comments on emission factors: "general emission factors for the stationary combustion of kerosene and the combustion of gasoline in cars may be applied" Kerosene: EMEP/EEA (2019) 1A1. Table 3-6 and 3-18.
PAHs	T1	EMEP/EEA Guidebook (2019) Chapter 1A3a.	EF: - General emission factors for the stationary combustion of kerosene and the combustion of gasoline in cars Kerosene: EMEP/EEA (2019) 1A1. Table 3-6 and 3-18.
ВС	T1	EMEP/EEA Guidebook (2019) Chapter 1A3a.	EF: - Note in Table 3-1: % of PM _{2.5} .
Piston engine d	aircraft		
(Methodology	factsheet	: Air traffic)	
NOx, NMVOC, SOx, PM, CO	T3, T1	EUROCONTROL European Aviation Fuel Burn and Emissions Inventory System. Tier 1 methodology for time series 1990 – 2004.	EF: - FEIS model from EUROCONTROL Statistical adjustment based on emissions for each departure and arrival airport.
As, Cd, Cr, Cu, Hg, Ni, Se, Zn	T1	EMEP/EEA Guidebook (2019) Chapter 1A3a.	EF: - Annex 2: Additional comments on emission factors: "general emission factors for the stationary combustion of kerosene and the combustion of gasoline in cars may be applied" Avgas: EMEP/EEA (2019) 1A3b. Table 3-76 and 3-79.
PAHs	T1	EMEP/EEA Guidebook (2019) Chapter 1A3a.	EF: - Annex 2: Additional comments on emission factors: "general emission factors for the stationary combustion of kerosene and the combustion of gasoline in cars may be applied" Avgas: EMEP/EEA (2019) 1A3b. Table 3-76 and 3-79.
Pb	T1	EMEP/EEA Guidebook (2019) Chapter 1A3a.	EF: - Annex 2: Additional comments on emission factors EF calculated from the Pb content in Avgas applied to the Avgas density.
ВС	T1	EMEP/EEA Guidebook (2019) Chapter 1A3a.	EF: - Table A3.1: % of PM _{2.5} .

EUROCONTROL has developed a Fuel Burn and Emissions Inventory System (FEIS) that produces estimates of the total mass of jet fuel (for aircraft powered by turbojet, turbofan or turboprop engines) burnt by all the aircraft that, during a year, made relevant flights that departed from, arrived at —or both—, an airport (or aerodrome) that is located in a relevant part of the territory of one of the 28 EU Member States. The total masses of certain gaseous species and types of Particulate Matter that were emitted because of the burning of this jet fuel are also estimated.

The system developed by EUROCONTROL concerns the aircraft movement information of any flight that has a part of its trajectory within the EUROCONTROL zone of coverage; it also concerns only Instrumental Flight Rules flights (no Visual Flight Rules flights), and all flights operated as military or special operations are excluded.

Because information about trajectory followed by an aircraft when it is below 3,000 feet is not usually available, the calculation used in the FEIS procedure is considered as a mix of Tier 3A and Tier 3B according to EMEP/EEA Guidebook (2019):

- Cruise stage (Advanced Emissions Model): Tier 3B calculation on a "flight segment by flight segment" basis, using as the main source the EUROCONTROL's PRISME database, which contains the corrected flight plan for each trajectory of a flight with at least a part inside EUROCONTROL airspace. For aircraft movements with trajectories partly or completely outside of the EUROCONTROL zone of coverage, trajectories are completed or generated from aircraft movements identified in commercial aircraft schedule databases.
- LTO stages (below 3,000 feet): A Tier 3A calculation is performed with the assumption that the LTO stages are described by an ICAO LTO cycle (default ICAO taxi-in and taxiout times) which are replaced by more accurate values if available (EUROCONTROL's Central Office for Delay Analysis —CODA— which produces specific airport taxi times from an annual list of average measured taxi times for a large number of European airports).

D.3. Assessment

Fuel consumption in 1A3a has experienced a sustained increment throughout the Inventory period as a direct consequence of the growth in air traffic, in continuous expansion. It is worth mentioning the decline starting in 2007 due to the economic downturn, which turns into an increase in 2014. This general trend is more smooth in domestic aviation where pre-crisis consumption figures have not yet recovered, while it is noteworthy the marked rise in international consumption, which maintains its average growth above 7% for the last four years, reaching the highest historical values since data are available.

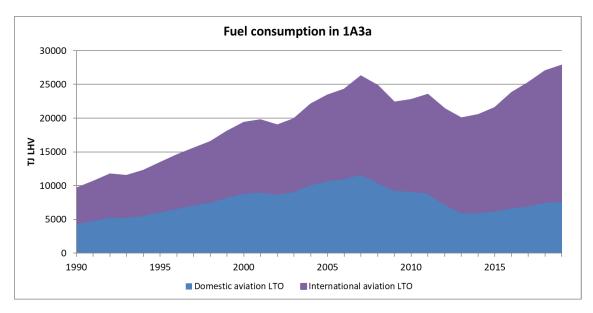


Figure 3.4.8 Evolution of fuel consumption in 1A3a

E. Road Transport (1A3b)

This subcategory encompasses pollutant emissions from traffic of vehicles whose main purpose is the road transportation of passengers or freight. Self-propelled vehicles that are classified and used as industrial or agricultural-forestry machinery are included in categories 1A2 and 1A4.

Some minor changes in fuel characteristics have been performed in the present Inventory Edition. In addition, sulphur fuel content has been updated in the period 2011 – 2018.

Road transport is one of the main contributors to the emissions in the whole Spanish inventory, therefore is a key category for its contribution to the level and trend of the emissions of NOx, NMVOC, Particulate Matter⁵, Black Carbon, CO, Pb, Cd, Hg and PAHs. In addition, is a key category for its contribution to the trend of the emissions of SOx and NH₃.

E.1. Activity variables

Table 3.4.13 Summary of activity variables, data and information sources for category 1A3b

Activities included	Activity data	Source of information
Road transport	Fuel consumption	- AQs: National energy balances elaborated by MITERD, and sent to IEA and EUROSTAT. - "Oil-derived Product Consumption Statistics" by the Sub-Directorate- General for Hydrocarbons at MITERD.
	Vehicle fleets Number of registered vehicles classified by type. Tables of distribution of the number of vehicles: - by fuel type and years of age, - of lorries by payload and age, - of cars and motorcycles by engine capacity and age, - registration of mopeds.	- "Anuario Estadístico General" ("General Statistical Yearbook") published by the DGT (Spanish Traffic Department) of the Ministry of Home Affairs.
	Distances travelled - Journeys including the State Road Network (Red de Carreteras del Estado), Regional Community networks and Provincial networks, broken down by vehicle category and driving patterns (interurban and rural routes). - EPTMC: journeys by heavy vehicles engaged in freight transport.	- Statistics from General Directorate for Roads (Ministry of Transport, Mobility and Urban Agenda) "Standing Survey of Road Freight" EPTMC, prepared by DGC (Subdirectorate-General for Statistics and Surveys at the Directorate-General for Economic Programming, of the Ministry of Transport, Mobility and Urban Agenda).
	Distribution of vehicle fleets - Distribution of the journeys for each vehicle category into driving patterns (interurban, rural and urban routes), depending on the fuel type, cylinder capacity, age, max. authorized weight, prepared by the inventory team on the referred information.	- Statistics from General Directorate for Roads (Ministry of Transport, Mobility and Urban Agenda) Road sampling carried out in the city of Madrid during 2008 and 2009.

Regarding Particulate Matter, it is assumed that all of the emission is concentrated in PM_{2.5}

E.2. Methodology

Table 3.4.14 Summary of methodologies applied in category 1A3b

Pollutants	Tier	Methodology applied	Observations
Passenger cars	(1A3bi),	Light goods vehicles (1A3bii), He	avy duty vehicles (1A3biii) and motorcycles (1A3biv)
SOx, HM	T1, T3	EMEP/EEA Guidebook 2016 (May 2017 version). Chapter 1A3b.	EF: - Emissions dependent on fuel consumption, assuming that all the sulphur and heavy metals content into fuel are emitted to the atmosphere Lubricants*: HM emissions are estimated assuming that they come only from engine wear.
CO, NOx, NMVOC, PM	Т3	EMEP/EEA Guidebook 2016 (May 2017 version). Chapter 1A3b.	EF: - Specific for each vehicle category, fuel and engine size Two types of emissions considered: - hot emissions (velocity dependent) in three different driving patterns (see table 3.4.18 below) additional cold emissions during transient thermal engine operation, related to climatic conditions.
NH ₃	Т3	EMEP/EEA Guidebook 2016 (May 2017 version). Chapter 1A3b.	EF: - Related to vehicles mileage and fuel sulphur content.
PAHs, POPs, DIOX	Т3	EMEP/EEA Guidebook 2016 (May 2017 version). Chapter 1A3b.	EF: - Values provided for all vehicle categories.
ВС	Т3	EMEP/EEA Guidebook 2016 (May 2017 version). Chapter 1A3b.	EF: - % of PM 2.5; except 1A3bv, NA.
Evaporative en	nissions (1A3bv)	
NMVOC	ТЗ	EMEP/EEA Guidebook 2016 "Gasoline evaporation" section 3.4.2.	EF: - Emission factors depending on the temperature profile and the driving and parking pattern over the day, for uncontrolled and canister equipped vehicles Table 3-11.
Tyre and brake	wear (1	A3bvi) and road abrasion (1A3bv	rii)
PM, HM, PAHs	T2	EMEP/EEA Guidebook 2016 (May 2017 version). Chapter 1A3b.	EF: - Emissions dependent on travelled distances EF given in section 1.A.3.b.vi/vii.
ВС	T1	EMEP/EEA Guidebook 2016 (May 2017 version). Chapter 1A3b.	EF: - % of PM 2.5; except 1A3bvii, NE.

^{*} Regarding the ES-1A3b-2017-0004 recommendation made by the ERT in the 2017 NECD review (pursuant to Directive (EU) 2016/2284), related to lubricant consumption, Heavy metals emissions are estimated based on the apparent emission factors from EMEP/EEA Guidebook 2016 (table 3.77) assuming that these emissions come exclusively from engine wear. The Spanish Inventory does not specifically estimate SOx, NOx, NH₃, NMVOC nor PM_{2.5} emissions due to lubricant consumption since these are assumed to be included within the fuel consumption emission factors and EMEP/EEA Guidebook does not provide emission factors for this subcategory. Therefore, emissions are all reported under 1A3b category but there is no point in reporting consumption as activity data.

The following table describes in more detail the parameters used in the methodology.

Table 3.4.15 Methodological issues

Parameter	Description	Explanation
Vehicle classification	European regulations introducing common requirements for emissions from motor vehicles (EURO	Those regulations have been considered taking into account the year of registration of the vehicles as an indicator of the vehicles' environmental characteristics, thus allowing the creation of a correspondence

Parameter	Description	Explanation
	standards).	between the age of the fleet and the categories defined in EMEP/EEA Guidebook 2016.
Driving patterns	Three driving patterns defined by EMEP/EEA Guidebook 2016: - highway driving (I), - rural driving (R), and - urban driving (U).	 Traveling speed affects the amount of contamination emitted. A distinction has been made between vehicle categories before determining average speeds, taking into account the different characteristics of the vehicles.
Distribution of vehicle fleets	Vehicle fleets provided by General Directorate for Traffic (Ministry of Home Affairs).	Redistribution in accordance with EMEP/EEA Guidebook 2016. - Passenger cars: number according to engine capacity. - Motorcycles: distribution. - Mopeds: fleet and age. - Light and heavy-duty vehicles: number. - Buses: urban – coaches.
Running fleet	Information provided by General Directorate for Traffic (Ministry of Home Affairs). Road sampling carried out in the city of Madrid during 2008 and 2009.	Distribution of vehicles running (identified by the cross-tabbing of <i>category</i> , fuel used, cylinder capacity or maximum weight depending on the category and age. Resulting in a fleet of vehicles and journeys by patterns highway driving, rural driving and urban driving).
Other variables and parameters information	- Fuel Characteristics according to measured values, reported under the fuel quality Directive 98/70/EC Average length of journey, to calculate the parameter ☑. The value of 12 km has been assumed in accordance with EMEP/EEA Guidebook.	The estimation method includes parameters that qualify or constrain emission factors.
	Fraction of injection engine vehicles and vehicles equipped with evaporation control/canister.	European regulations: Directive 91/441/CEE and Directive 94/12/CE.

E.3. Assessment

The registered vehicle fleet in Spain has experienced notable growth over the years since 1990, doubling its quantity, and also the distances travelled under the three driving patterns considered (interurban, rural and urban routes) have experienced an increase of 100% in 2019 compared to 1990.

Figures below illustrate the time-based index (taking 1990 as base 100, and year 2000 for $PM_{2.5}$) of the emissions of main pollutants in road transport category (1A3b), and priority heavy metals emissions evolution.

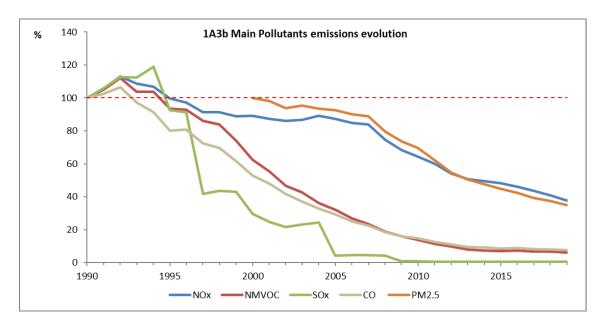


Figure 3.4.9 1A3b Main Pollutants, CO and PM_{2.5} emissions evolution in percentage (1990 base 100)

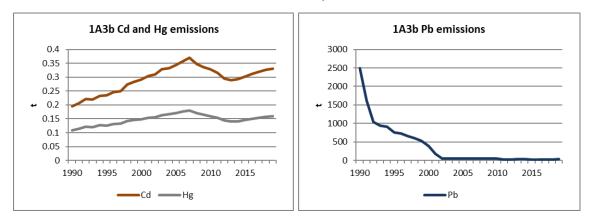


Figure 3.4.10 1A3b Priority heavy metal emissions evolution

The main contributor to NOx and SOx emissions is Passenger cars category (1A3bi) followed by Heavy duty trucks category (1A3biii). For the rest of pollutants, the main contributor is unquestionably, Passenger cars category. This category has experienced the most noticeable increase over the whole series both in vehicle fleet and in mileage for the three driving patterns. Despite this increase in activity, most pollutants have experienced strong decreases due to the enforcement of more stringent emission regulations.

EURO regulations entered into force in 1991 for the first time with the aim of limiting as much as possible the negative impact of road vehicles on the environment. These requirements are particularly focused on nitrogen oxides and Particulate Matter, but also show effects on other pollutants such as carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Different emission limits have been established for each category of pollutants and for the different types of vehicles. Successive EURO regulations have been approved and their influence on the affected pollutant emissions is noticeable in the figures above.

Regarding heavy metals emissions, the graphs above reflect how road transport emissions of cadmium and mercury follow a similar trend to the pattern of fuel consumption in 1A3b

category. On the other hand, lead emissions suffer a drastic fall from the beginning of the series to reach negligible values since the prohibition of leaded gasoline in 2002.

The Inventory covers pollutant emissions coming from all kind of fuels, all vehicle categories and three different driving patterns (highway, rural and urban routes). The road transport NOx emissions in 2019 in Spain can be split in the following manner:

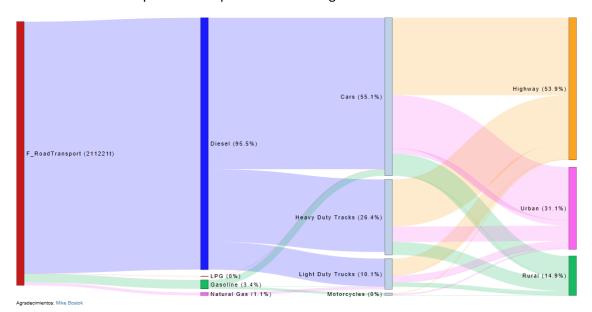


Figure 3.4.11 Road transport NOx emissions split in 2019 (tonnes)

The figure above clearly shows that most of the Road transport NOx emissions come from diesel passenger cars (1A3bi) in both urban and highway patterns. In highway pattern, as mentioned above, traffic of heavy duty vehicles (1A3biii) also has an important weight.

The figure below shows the spatial distribution of NOx emissions for road traffic throughout Spain. As a complement to the previous graph, the map corroborates that the greatest concentration of NOx emissions occurs in large urban areas and on highways with high traffic density, which corresponds to the interurban driving pattern.

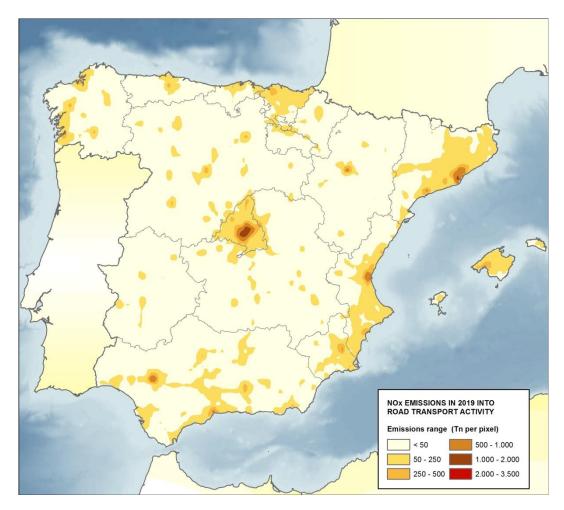


Figure 3.4.12 Road transport NOx emissions spatial distribution in Spain (2019)

As far as fuel consumption is concerned, this activity data has experienced a sustained growth along the Inventory period in category 1A3b. After 2007, consumption has decreased according to the economic downturn in Spain. From 2012 onwards, new sustained growth can be observed.

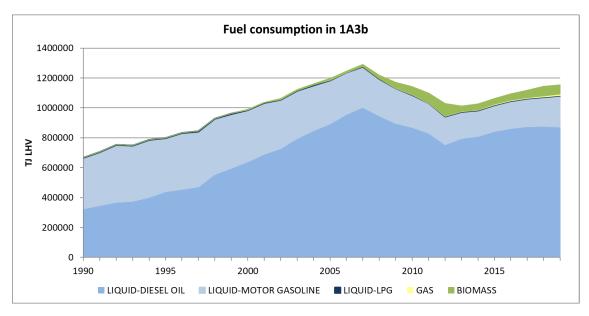


Figure 3.4.13 Evolution of fuel consumption in 1A3b

Table 3.4.16 Fuel consumption (Amounts in TJ_{LHV})

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019
LIQUID	666,915	1,186,211	1,086,745	1,020,474	1,046,718	1,063,841	1,073,433	1,083,716
MOTOR GASOLINE	338,636	289,309	213,675	173,495	181,152	185,051	192,914	205,965
GAS/DIESEL OIL	327,157	894,966	872,253	845,134	863,551	876,605	877,863	874,068
LPG	1,121	1,936	817	1,845	2,016	2,186	2,656	3,683
OTHER	-	305	2,564	1,220	1,580	1,906	2,779	2,676
FOSSIL PART BIODIESEL	-	305	2,564	1,220	1,580	1,906	2,779	2,676
GAS	-	972	2,572	3,673	4,549	5,336	6,991	8,565
NATURAL GAS	-	972	2,572	3,673	4,549	5,336	6,991	8,565
BIOMASS	-	9,619	53,068	38,956	44,052	50,624	64,886	63,263
OTH. LIQ. BIOMASS	-	9,619	53,068	38,956	44,052	50,624	64,886	63,263
TOTAL	666,915	1,197,107	1,144,949	1,064,323	1,096,900	1,121,707	1,148,088	1,158,219

By type of fuel, the relative distribution of diesel fuel versus gasoline maintains a very similar ratio since 2013 but, for the last years, is noteworthy the slight increase of the gasoline share at the expense of the minimal but sustained fall in the diesel share over total fuel consumption. In this sense, for the last year it is worth noting the increase in gasoline consumption, which reaches 6.8% compared to 2018, while diesel consumption remains steady (-0.43%).

Other liquid biomass includes bioethanol and biodiesel (FAME) that are marketed after mixture with petrol and diesel, respectively. Their consumptions grow significantly until 2012 and, after a pronounced decrease in 2013, similar consumptions are observed in 2014 and 2015 with a significant 13% increase in 2016 consumption that doubles in 2018 (26%). In 2019 the trend changes, experiencing a decrease of 2.5% respect to 2018. For consistency with the Spanish greenhouse gases inventory, the fossil part of FAME (that coming from fossil methanol) is shown separately in the table.

F. National navigation (1A3d)

This category includes domestic maritime traffic, thus voyages between domestic ports, despite the vessel's nationality or flag.

National navigation (1A3d) is a key category for its contribution to the level and the trend of the emissions of SOx and PM_{10} , and to the level of the emissions NOx, and $PM_{2.5}$.

International navigation is reported as "Memo item" in the NFR reporting tables for informative purposes.

In this Inventory edition, emission factors of As, Cu, Se, PAHs and PAHs species have been updated according to the latest October 2020 version of EMEP/EEA Guidebook (2019). In addition, some minor changes have been carried out due to the updating of activity data.

F.1. Activity variables

Table 3.4.17 Summary of activity variables, data and information sources for category 1A3d

Activities included	Activity data	Source of information
National navigation	- Fuel consumption series.	Oil international questionnaires (AQAOS), elaborated by MITERD and sent to IEA and EUROSTAT.
	- Number and gross tonnage of vessels in the main ports by type of vessel.	"Anuario de Puertos del Estado" ("National Ports Yearbook") published by National Port Authorities of the Ministry of Transport, Mobility and Urban Agenda.

F.2. Methodology

Table 3.4.18 Summary of methodologies applied in category 1A3d

Pollutants	Tier	Methodology applied	Observations			
National navig	National navigation					
(Methodology	factsheet	:: <u>Navigation</u>)				
SOx	T1	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF: - Derived from mass balance based on the sulphur content in marine fuels, established by international regulations.			
NMVOC, CO, HM, DIOX, HCB, PCBs	T1	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF: - Default value from tables 3-1, 3-2.			
NOx, PM	T2	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF: - Tables 3-4, 3-6 and 3-7.			
NH ₃	T1	EMEP CORINAIR Manual (1992).	EF: - Table VI, 10-1 (Updated EMEP guidelines do not provide NH ₃ EF for maritime transport).			
PAHs	T1	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF - Default value from tables 3-1, 3-2.			
ВС	T2	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF: - Note in table 3-4, % of PM _{2.5} .			

F.3. Assessment

Fuel consumption throughout the Inventory period shows a decreasing trend since 2006 with a minimum in 2014. Drastic descent in fuel supply to domestic navigation activities is likely due to a combination of sector development, activity evolution during the economic downturn in Spain and market and geographical factors. Nonetheless, since 2014 there has been a change in trend with a sustained upturn in maritime fuel consumption (see figure below), which grows progressively starting from an increase of 37% in 2015 and reaching a maximum increase of 61% in 2017. For the last year, consumption continues its growing trend, but with a slower increase (+6%).

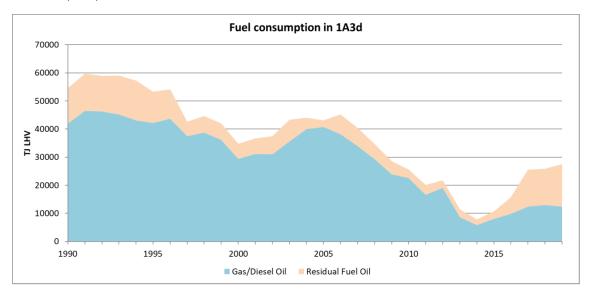


Figure 3.4.14 Evolution of fuel consumption in 1A3d

Drastic rise in fuel oil supply to domestic navigation activities is again likely due to a combination of factors. On one hand, statistical corrections have been carried out in the national energy statistics for the sector since 2016. On the other hand, new market strategies for one of the main operators in the sector have been recently observed. Finally, new technology introduced in residual fuel oil ships, created to adapt the engines to the legislation regarding sulphur content in marine fuels, could also be playing a role.

The modification of the International Maritime Organization to the MARPOL 78/78 convention established, as of 2015, lower limits of sulphur content in fuels consumed by ships travelling through Emission Control Areas (ECA). European Union has gone beyond the IMO, advancing until 2020 the application of the stricter limits of law in the waters of its exclusive economic zone (Directive 2016/802 amending Directive 2012/33/EU and Council Directive 1999/32/EC as regards the sulphur content of marine fuels). As an alternative, a new technology is being deployed consisting of installation of scrubber equipment in the residual fuel oil vessels, cleaning the combustion gases before going out into the atmosphere. The installation of scrubbers is increasing both in the active fleet and in newly built vessels, which could be directly related to the increase in residual fuel oil consumption. This issue, that would entail a lower level of SOx emissions, is still under assessment within the National Inventory.

G. Combustion in other sectors (1A4)

This category 1A4 includes the following subcategories:

 Combustion in mobile and stationary equipment in commercial and institutional activities (1A4a).

- Combustion in mobile and stationary equipment in residential activities (1A4b).
- Combustion in machinery used in agriculture, forestry and fishing activities (1A4c).

These subcategories have consideration of key category:

- 1A4a (Commercial/Institutional sector) and 1A4b (Residential sector), for its contribution to the level and the trend of the emissions of NOx, NMVOC, SOx, Particulate Matter, Black Carbon, CO, Pb, Cd, Hg, DIOX, PAHs, HCB and PCBs.
- 1A4c (Agriculture, forestry and fishing sector) for its contribution to the level and the trend of the emissions of NOx, PM_{2.5}, PM₁₀, TSP and BC; and for its contribution to the level of the emissions of CO.

In this Inventory edition, following the recommendation ES-1A4ciii-2020-0002 made by the ERT included in the 2020 NECD review (pursuant to Directive (EU) 2016/2284⁶, recalculations have been carried out in fishing sector (1A4ciii), due to methodological changes in order to estimate NOx and Particulate Matter emissions using T2 methodology.

Also, emission factors of Cu, PAHs and PAHs species have been updated for 1A4ciii sub-sector according to the latest October 2020 version of EMEP/EEA Guidebook (2019).

In addition, separate estimates for pellet stoves and boilers burning wood pellets have been carried out for source category Stationary combustion in Residential sector (1A4bi).

Moreover, in this Inventory edition, the emission factors update to EMEP/EEA Guidebook (2019) for Stationary combustion in Commercial/Institutional sector (1A4ai), Stationary combustion in Residential sector (1A4bi) and Stationary combustion in agricultural sector (1A4ci), started in previous edition has been finally completed.

G.1. Activity variables

Table 3.4.19 Summary of activity variables, data and information sources for category 1A4

Activities included	Activity data	Source of information
Commercial/Institutional sector (1A4a)	 Annual electricity production, broken down by energy demand sectors, generation mode (autoproduction vs. co-generation) and fuel type. 	- Questionnaires from MITERD and IDAE.
	- Final energy fuel use.	- International questionnaires elaborated by MITERD.
Residential sector (1A4b)	- Annual electricity production, broken down by energy demand sectors, generation mode (autoproduction vs. co-generation) and fuel type.	- Questionnaires from MITERD and IDAE.
	- Final energy fuel use.	- International questionnaires elaborated by MITERD.

Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

167

Activities included	Activity data	Source of information
		- Spanish association for energy recovery of biomass (AVEBIOM).
Stationary combustion in the agricultural sector (1A4ci)	 Assigned amounts of fossil fuels; with the exception of diesel, which is estimated proportionality to the value of mobile agricultural machinery. 	- AQs: Energy balance from International questionnaires elaborated by MITERD.
	 Fuel consumption for agricultural irrigation engines, based on published: diesel consumption ratios per hectare of irrigation irrigation surface area 	 "Energy Saving and Efficiency Strategy – E4" for the agricultural sector. "Statistical Yearbook" by MAPA.
Agricultural machinery (1A4cii)	- Power installed in active vehicles by type of machinery.	- Directorate-General for Agricultural Production and Markets at MAPA.
	- Other parameters: effective hours/year of each type of machinery, energy requirements per standard hour of operation and per unit of rated power.	- Expert judgement.
Forestry machinery (1A4cii)	- Socio-economic data relating to forestry: reforested surface area, volume of wood harvested, etc.	- "Statistical Yearbook" prepared by MITERD.
	 Additional activity variables (length of prepared forest trails, surface area of firewalls); characteristics of machinery by class of operation. 	- Expert judgement.
Sea fishing (1A4ciii)	- Values for parameters referring to specific fuel consumption per fishing ground calculated from sailing days per year and fishing vessels population.	- Directorate-General for Fisheries at MAPA.

G.2. Methodology

 Table 3.4.20
 Summary of methodologies applied in category 1A4

Pollutants	Tier	Methodology applied	Observations			
Commercial/In	Commercial/Institutional sector (1A4a): Combustion plants <50 MW (Boilers)					
(Methodology f	actsheet	: Other stationary combustion)				
NOx, NMVOC, CO, SOx, PM, PCBs, HCB, DIOX	T1/T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-7, 3-10, 3-21, 3-25, 3-27 and 3-46.			
ВС	T1/T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-10, 3-21, 3-25, 3-27 and 3-46, % of PM _{2.5} .			
HM , PAHs	T1	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-7, 3-21, 3-25 and 3-46.			
·		al sector (1A4a): Stationary gas and sector (1A4a): Other stationary combustion)	turbines			
NOx, NMVOC, CO, SOx, PM, DIOX	T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-28 and 3-29.			
ВС	T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-28, 3-29, % of PM _{2.5} .			
Rest of	T1	EMEP/EEA Guidebook (2019)	EF:			

Pollutants	Tier	Methodology applied	Observations
pollutants		Chapter 1A4.	Tables 3-9, 3-28 and 3-29.
Commercial/In	stitution	al sector (1A4a): Stationary engi	ines
(Methodology f	factsheet	: Other stationary combustion)	
NOx, NMVOC,	T2	EMEP/EEA Guidebook (2019)	EF:
CO, SOx, PM, PCBs, HCB, DIOX		Chapter 1A4.	Tables 3-30 and 3-31.
ВС	T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-30 and 3-31, % of PM _{2.5} .
Rest of pollutants	T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-30 and 3-31.
Commercial/In	stitution	al sector (1A4a): Mobile machin	ery
NOx, NMVOC, CO, SOx, PM, BC, NH ₃ , HM, PAHs	T1	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Table 3-1.
Residential sec	tor (1A4b	p): Combustion plants <50 MW (Boilers)
(Methodology	factsheet	: Other stationary combustion)	
NOx, NMVOC, CO, SOx, PM, BC, PCBs, HCB, DIOX, NH ₃ , HM, PAHs	T1/T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-4, 3-5, 3-6, 3-15, 3-16, 3-18, 3-43 and 3-44.
	hinery in	gariculture forestry and fishing	g activities (1A4ci): Combustion plants <50 MW (Boilers)
Stationary mad	inner y m	agriculture, jorestry una jishing	guetivities (1A4ci). Combustion plants (30 live (Boliers)
	factsheet	: Other stationary combustion)	
NOx, NMVOC, CO, SOx, PM, BC PCBs, HCB, DIOX, HM, PAHs	T1/T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-7, 3-10, 3-21, 3-25, 3-27 and 3-46.
Stationary mad	chinery in	agriculture, forestry and fishing	g activities (1A4ci): Stationary engines
(Methodology f	factsheet	: Other stationary combustion)	
NOx, NMVOC, CO, SOx, PM, BC, PCBs, HCB, DIOX, HM, PAHs	T1/T2	EMEP/EEA Guidebook (2019) Chapter 1A4.	EF: Tables 3-9 and 3-31.
Mobile machin	ery in ag	riculture and forestry activities ((1A4cii)
(Methodology	factsheet	: Mobile machinery)	
NOx, NMVOC,	T2	EMEP/EEA Guidebook (2019)	EF*
CO, SOx, NH ₃ , PM, BC	12	Chapter 1A4.	Annual emission factors according to annual fleet structure (1.A.4 Non road mobile machinery Annex: distribution by age and technology).
	T1	EMEP/EEA Guidebook (2019)	EF:
Rest of			
pollutants		Chapter 1A4.	Table 3-1.
pollutants	ery in fisi	Chapter 1A4. hing activities (1A4ciii)	Table 3-1.
pollutants Mobile machin		'	Table 3-1.

Pollutants	Tier	Methodology applied	Observations
			content in marine fuels, established by international regulations.
NMVOC, CO, HM, DIOX, HCB, PCBs	T1	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF: Default value from tables 3-2.
NOx, PM	T2	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF: - Tables 3-4, 3-6 and 3-7.
NH ₃	T1	EMEP CORINAIR Manual (1992)	EF: Table VI, 10-1 (Updated EMEP Guidelines do not provide NH_3 EF for maritime transport).
PAHs	T1	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF - Default value from tables 3-1, 3-2.
ВС	T2	EMEP/EEA Guidebook (2019) Chapter 1A3d.	EF: Note in table 3-4, % of PM _{2.5} .

^{*} Summary tables of emission factors for 1A4, mobile sources, have been included in the methodology factsheet for Mobile machinery (updated May 2019).

G.3. Assessment

Within 1A4 category, the Residential sector (1A4b) is still the main driver in the evolution of fuel consumption, due to its relative weight within the entire category (49.5% of the total fuel consumption in 1A4 for 2019).

The figure below shows the trend of fuel consumption under 1A4, showing the effect of the economic downturn in Spain, that is intertwined with meteorological inputs.

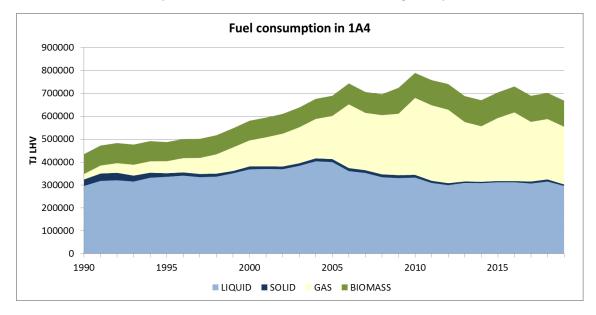


Figure 3.4.15 Evolution of fuel consumption in 1A4 category

Despite their loss of relative importance, liquid fuels continue to be the predominant type of fuel burned under 1A4, most of it consumed in Agriculture, forestry and fishing sector; this consumption remains almost constant for recent years showing a slight decrease in 2019. Consumption of solid fuels is minor and constantly decreases throughout the period to become negligible since 2015.

Biomass consumption maintains a small but steady growth along the Inventory period, increasing its representativeness due to promotion measures developed by the Spanish administration.

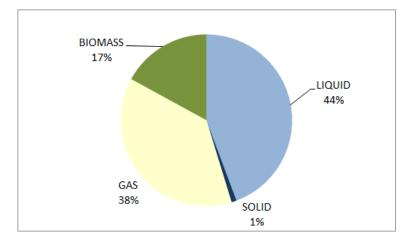


Figure 3.4.16 Distribution of fuel consumption 1A4 (2019)

Following figures show the evolution of fuel consumption in the various subcategories that constitute the category Combustion in other sectors (1A4).

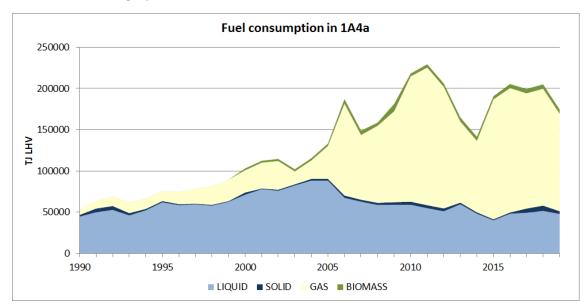


Figure 3.4.17 Evolution of fuel consumption in Commercial and Institutional sector (1A4a)

The evolution of natural gas consumption in Commercial and Institutional sector (1A4a) shows more pronounced peaks and valleys than its observed evolution in the category 1A4 as a whole, due to the already mentioned meteorological inputs, affecting mainly the gas natural consumption. In this sense, 2019 has been considered a very warm year in Spain, with an average temperature exceeding 0.8 °C the average annual value, which explains the drastic drop in natural gas consumption in the last year. With regard to liquid fuels, new estimates of mobile combustion in commercial and institutional sector (1A4aii subcategory) were carried out for the first time in previous Inventory edition, and represent in 2019 almost the 3% of total liquid consumption in 1A4a category.

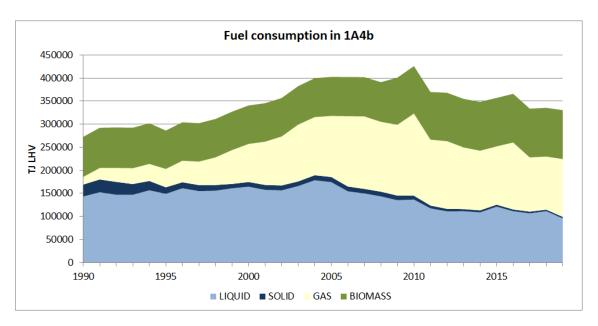


Figure 3.4.18 Evolution of fuel consumption in Residential Sector (1A4b)

The general trend in the residential sector (1A4b) reflects the population increase and effect of the economic downturn, with yearly variations due to the meteorological factors. Gas natural consumption increased noticeably till the early 2000s and, for the last year, it seems to replace the slight decrease in liquid fuels consumption. Beyond this particular fact, distribution of biomass, liquid and gaseous fuels maintains relatively similar proportions during the recent years.

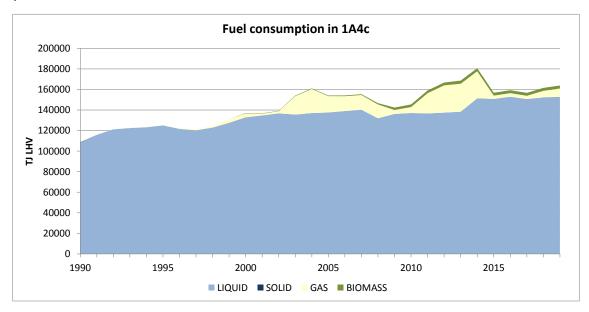


Figure 3.4.19 Evolution of fuel consumption in Agriculture, forestry and fishing sector (1A4c)

Gasoil continues to be the most consumed fuel in the Agriculture, forestry and fishing sector (1A4c category, see figure above), remaining almost constant since 2014.

The following tables include detailed information regarding fuel consumption in 1A4 and its subcategories.

Table 3.4.21 Fuel consumption (Amounts in TJ_{LHV})

1A4 Combustion in other sectors

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019
LIQUID	295,996	400,189	332,532	312,041	312,141	306,452	315,127	296,135
GAS OIL	185,377	311,110	259,746	260,448	256,767	255,243	262,633	250,794
KEROSENE	1,267	-	-	-	-	-	-	-
LPG	96,968	76,800	63,703	48,906	52,158	47,855	50,104	42,621
MOTOR GASOLINE	255	218	55	685	812	990	1,271	1,641
PETROLEUM COKE	488	358	260	-	-	-	-	-
RESIDUAL OIL	11,640	11,704	8,768	2,002	2,404	2,364	1,119	1,079
SOLID	28,343	13,300	12,032	5,601	5,301	8,976	9,718	6,504
COKE OVEN COKE	-	-	-	282	282	3,666	5,076	2,256
GAS WORKS GAS	11,834	1,771	1,413	9	13	-	-	-
PATENT FUELS	152	-	-	-	-	-	-	-
STEAM COAL	15,443	11,529	10,619	5,310	5,006	5,310	4,642	4,248
SUB-BITUMINOUS COAL	914	-	-	-	-	-	-	-
GAS	23,597	188,257	335,855	275,016	299,712	260,394	263,228	252,011
NATURAL GAS	23,597	188,257	335,855	275,016	299,712	260,394	263,228	252,011
BIOMASS	86,826	87,972	109,014	111,692	113,276	113,895	113,985	113,928
BIOGAS	-	779	1,329	870	1,122	1,201	1,171	1,383
CHARCOAL	-	-	1,130	1,130	1,130	1,130	1,130	1,130
PELLETS	-	-	180	4,311	5,119	5,856	6,377	7,545
WOOD WASTES	86,826	87,193	105,837	92,448	90,547	88,140	86,.175	81,237
TOTAL	434,761	689,717	789,432	704,350	730,430	689,716	702,057	668,579

1A4a Commercial / institutional sector

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019
LIQUID	44,543	88,278	58,933	40,018	48,038	49,178	51,479	47,785
GAS OIL	26,734	70,893	47,828	32,454	38,409	40,662	42,585	39,794
LPG	7,196	7,871	7,451	5,986	7,727	6,530	7,183	5,949
MOTOR GASOLINE	-	-	-	453	577	741	988	1,358
PETROLEUM COKE	163	163	130	-	-	-	-	-
RESIDUAL OIL	10,450	9,352	3,524	1,125	1,326	1,246	723	683
SOLID	2,128	2,150	3,715	1,353	1,508	5,183	6,441	3,318
COKE OVEN COKE	-	-	-	282	282	3,666	5,076	2,256
GAS WORKS GAS	1,234	633	1,287	9	13	-	-	-
STEAM COAL	880	1,517	2,427	1,062	1,214	1,517	1,365	1,062
SUB-BITUMINOUS COAL	13	-	-	-	-	-	-	-
GAS	6,914	39,892	152,002	145,384	150,913	139,773	141,753	118,233
NATURAL GAS	6,914	39,892	152,002	145,384	150,913	139,773	141,753	118,233
BIOMASS	-	2,768	3,482	3,862	4,931	5,274	5,360	5,055
BIOGAS	-	776	1,147	834	1,084	1,163	1,139	1,338
WOOD WASTES	-	1,991	2,335	3,028	3,846	4,111	4,221	3,717
TOTAL	53,.585	133,087	218,132	190,618	205,391	199,408	205,034	174,391

1A4b Residential sector

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019
LIQUID	143,163	174,312	136,502	121,219	111,180	106,591	111,362	95,648
GAS OIL	53,424	105,940	77,193	79,483	67,950	66,339	70,197	61,081
LPG	88,811	66,449	54,598	41,093	42,386	39,368	40,964	34,366
PETROLEUM COKE	325	195	130	-	-	-	-	-
RESIDUAL OIL	603	1,728	4,581	643	844	884	201	201
SOLID	25,850	11,150	8,317	4,248	3,793	3,793	3,277	3,186
GAS WORKS GAS	10,600	1,138	126	-	-	-	-	-
PATENT FUELS	152	-	-	-	-	-	-	-
STEAM COAL	14,563	10,012	8,192	4,248	3,793	3,793	3,277	3,186
SUB-BITUMINOUS COAL	536	-	-	-	-	-	-	-
GAS	16,571	132,479	178,101	126,453	145,289	117,447	115,113	125,553
NATURAL GAS	16,571	132,479	178,101	126,453	145,289	117,447	115,113	125,553
BIOMASS	86,826	84,582	102,952	105,013	105,541	105,816	105,747	105,968
CHARCOAL	-	-	1,130	1,130	1,130	1,130	1,130	1,130
PELLETS	-	-	180	4,311	5,119	5,856	6,377	7,545
WOOD WASTES	86,826	84,582	101,643	99,572	99,292	98.830	98,241	97,293
TOTAL	272,410	402,523	425,873	356,932	365,803	333,646	335,498	330,355

1A4c Agriculture, forestry and fishing sector

ТҮРЕ	1990	2005	2010	2015	2016	2017	2018	2019
LIQUID	108,289	137,599	137,097	150,804	152,922	150,683	152,286	152,702
GAS OIL	105,219	134,277	134,725	148,511	150,409	148,242	149,851	149,919
KEROSENE	1,267	-	-	-	-	-	-	-
LPG	960	2,480	1,653	1,827	2,045	1,958	1,958	2,306
MOTOR GASOLINE	255	218	55	231	235	249	283	283
RESIDUAL OIL	587	625	664	234	234	234	195	195
SOLID	365	-	-	-	-	-	-	-
SUB-BITUMINOUS COAL	365	-	-	-	-	-	-	-
GAS	112	15,886	5,752	3,179	3,509	3,174	6,362	8,225
NATURAL GAS	112	15,886	5,752	3,179	3,509	3,174	6,362	8,225
BIOMASS	-	622	2,579	2,818	2,805	2,805	2,877	2,906
BIOGAS	-	3	182	36	37	38	32	45
WOOD WASTES	-	619	2,398	2,781	2,768	2,767	2,845	2,861
TOTAL	108,766	154,107	145,428	156,800	159,237	156,662	161,525	163,833

H. Fugitive emissions from fuels (1B)

This category includes emissions generated during prospection, extraction, storage, transportation, processing or disposal of fossil fuels (coal, oil, oil-derived fuels or natural gas) where there is no energy recovery from the fuel. Thus, activities such as flaring of petroleum or natural gas are included here, but not combustion activities intended for the provision of energy in extractive or transformation processes.

This category is considered a key category for SOx for level and trend reasons, NMVOC for level.

Table 3.4.22 Contents of 1B

1B	Includes
Solid fuel (1B1)	Coal mining and handling (1B1a) : dust emissions (except metal particle emissions) associated with production and storage processes in coal mines.
	Solid fuel transformation (1B1b) : Fugitive emissions of residual raw gases and powdery materials generated during the opening of doors of coke ovens and coke cooling. Production of solid semi-coke is not included as this activity does not occur in Spain.
Oil and natural gas and other emissions from energy	Oil – Exploration, production, transport (1B2ai) : Evaporative emissions and organic compound (NMVOC) losses during operation in prospection and production platforms and marine terminals, including crude oil supply to refineries.
production (1B2)	Fugitive emissions oil – Refining/storage (1B2aiv): fugitive emissions associated with the processing or combustion generated by activities in refining plants (excluding those related to combustion processes for energy purposes): processing of oil derived products, sulphur recovery, storage and handling of intermediate and final products, vacuum distillation, coke calcination, fluid catalytic cracking (FCC) and catalytic reforming units. All of these can be included in separation processes, conversion, treating and blending.
	Distribution of oil products (1B2av) : emissions from hydrocarbons in the distribution network of petroleum derived products outside the refineries premises.
	Natural gas (1B2b) : hydrocarbon losses during the different stages of the operation in prospection, production and supply process: production in extractive facilities (marine or inland platforms), firs treatment, loading, transportation and supply to consumer sectors.
	Venting and flaring (1B2c) : intentional gas losses that, for safety reasons, take place at refining plants or natural gas supply systems, by means of direct gas venting or flaring.

H.1. Activity variables

Table 3.4.23 Summary of activity variables, data and information sources for category 1B

Activities included	Activity data	Source of information
Coal, natural gas and oil extraction activities (Coal 1B1a, natural gas 1B2b, oil 1B2ai)	Internal production (gross) of different primary fuels (coal, crude oil and natural gas).	 National statistics on hydrocarbon prospection and production. MITERD. National statistics on hydrocarbon production. MITERD (CORES)
Opening and extinction of coke oven furnaces (1B1b)	Production of metallurgical coke in coke oven furnaces.	 For integrated steel plants: IQ. For plants located outside integrated steelworks plants (Area source level): Historically: IEA and EUROSTAT or in national statistics from MITERD ("Statistics on Coking Paste Manufacture, Coke Ovens and Blast Furnace Gas"). 2008-2019: Individualized information at plant level (IQ).
Loading-unloading operations of tank	The acquisition (imports) of crude oil by	- "Energy Statistics of OECD countries", IEA National Energy Statistics by MITERD (AQ-AOS).

Activities included	Activity data	Source of information
vessels and crude oil storage in marine terminals (1B2ai)	refineries.	
Refining activities (1B2aiv, 1B2c)	Processed crude oil acts as a proxy variable. Process feed. Storage of products.	- IQ from refineries.
Handling and transportation activities outside refineries (1B2av)	The consumption (sales) of oil based products acts as a proxy variable.	 - Hydrocarbons Statistical Bulletin, CORES. - Gas Industry Statistics, MITERD. - "Energy Statistics of OECD countries", IEA. - National Energy Statistics by MITERD (AQ-AOS). - "Enciclopedia Nacional del Petróleo, Petroquímica y Gas" (National Encyclopaedia of Oil, Petrochemistry and Gas), OILGAS.
Gasoline and biofuels distribution (1B2av)	Amount of gasoline produced.	- AQs: Energy balance from International questionnaires elaborated by MITERD IQ from refineries.
	Exported petrol (proxy variable for the amount of petrol sold at the refinery's petrol stations for the international market).	- National energy balances (IEA and EUROSTAT) National Energy Statistics by MITERD (AQ-AOS).
	Amount of gasoline dispatched from the refinery supply stations to the national logistics circuit.	This variable has been derived from mass balance of inputs and outputs of gasoline at refineries, by computing the estimated amounts on production, exports, stock changes and transfers between products from: - National energy balances (IEA and EUROSTAT). - National Energy Statistics by MITERD (AQ-AOS). - Statistics on Renewable energy sources and waste, MITERD. - Association of Petroleum Operators (AOP) (petrol stocks at refinery stores). - APPA Biocarburantes (Association of Generators of Renewable Energy (biofuels section)). Deliveries of bioethanol to refining plants for use as an additive to petrol. - Reports on biofuels certification and marketing by the Energy National Commission, (CNE).
	Flows of gasoline at the refineries. For the completion of the entire inventory period of the data series related to the distribution of gasoline at refineries stations.	- Association of Petroleum Operators (AOP) - "Enciclopedia Nacional del Petróleo, Petroquímica y Gas" (National Encyclopaedia of Oil, Petrochemistry and Gas), OILGAS. - AQ-AOS, MITERD, Subdirectorate General for Hydrocarbons.
	Temperatures in summer and winter.	- State agency of meteorology (AEMET).
	Data on biofuels.	 Annual data (from 2006 to 2019) via IQ from major sector entity ("Refining association, Association of Renewable Energy Producers, storage facilities and logistic operators' managers").
	Means of transport, loading techniques and technologies for reducing evaporative emissions.	- Expert judgement: evolution of the national logistics circuit of gasoline.
Natural gas transport (1B2b, 1B2c)	Emissions leaked, vented or amounts	IQ (ENAGAS and gas transportation companies) with information on:

Activities included	Activity data	Source of information
	incinerated in natural gas transport facilities.	 Natural gas losses in regulation plants, transport network, compression stations, underground storage and regulation stations and measures. Amount of gas vented in regulation plants, transport network, compression stations and underground storage. Burned quantities in regulation plants and underground storage.
Natural gas distribution system facilities (1B2b)	Natural gas losses.	IQ SEDIGAS (Spanish Gas Association from gas distribution companies) with information on: - Kg CH ₄ losses in distribution networks.
Exploration-drilling (1B2c)	Production of crude oil and gas.	- National statistics on hydrocarbon production. (CORES).

H.2. Methodology

Table 3.4.24 Summary of methodologies applied in category 1B

Pollutants	Tier	Methodology applied	Observations
Fugitive emiss	ions from	fuel (1B)	
In general	T1/T2	EMEP/EEA Guidebook (2019) Chapters 1B2ai,1B2b, 1B2aiv, 1B2av and 1B2c.	Default EF.
PM, BC	T1/T2	CEPMEIP Database. EMEP/EEA Guidebook (2019).	Default EF.
Coal mining ar	nd handlii	ng (1B1a)	
(Methodology	factsheet	: Fugitive emissions in coal minin	ng)
TSP, PM _{2.5} , PM ₁₀	T2	EMEP/EEA Guidebook (2019) Chapter 1B1a.	Table 3-2.
Solid fuel trans	sformatio	n (1B1b)	
Main Pollutants	T2	EMEP/EEA Guidebook (2019) Chapter 1B1b.	Default EF: Tables 3.2/3.3/3.5 (considering wet coal charging, door leak and coke pushing operations).
СО	T2	EMEP/EEA Guidebook (2019) Chapter 1B1b.	Default EF: Tables 3.2/3.3/3.5 (considering wet coal charging, door leak and quenching operations).
TSP, PM _{2.5} , PM ₁₀	T2	EMEP/EEA Guidebook (2019) Chapter 1B1b.	Default EF: Tables 3.2/3.3/3.4/3.5/3.6 (considering wet coal charging, door leak, off-take leaks, quenching and coke pushing operations).
PAHs	T1	"Atmospheric Emission Inventory Guidelines for Persistent Organic Pollutants (POPs)".	Default EF.
Oil – Exploration	on, produ	ction, transport (1B2ai)	
(Methodology production, tra		s: Oil-In Shore exploration, produ	uction, transport and Oil-Off Shore exploration,
NMVOC	T2/T3	EMEP/EEA Guidebook (2019) Chapter 1B2ai.	Exploration Table 3-3 and table 3-4. Transport Table 3-16.
Fugitive emiss	ions from	natural gas (1B2b)	
		-	on, production, transport and Natural gas-Off shore
exploration, pr	1		Fundamentary Table 2.5 and Apple 2.6
NMVOC	T2	EMEP/EEA Guidebook (2019) Chapter 1B2b.	Exploration Table 3-5 and table 3-6.
		Direct emissions	Data on measured/estimated gas emissions furnished

Pollutants	Tier	Methodology applied	Observations						
		measurement.	by facilities within the network via individualised questionnaire, data provided by transport companies together with annual gas characteristics.						
Fugitive emissions from oil – refining/ storage (1B2aiv)									
(Methodology	factsheet	s: Fugitive emissions from proces	ises in the refining industry)						
NOx	T2	Mixed methodology based on direct emissions measurements or estimates. EMEP/EEA Guidebook (2019) Chapter 1B2aiv.	FCC regeneration and Sulphur recovery. Table 3-2.						
NMVOC	T2	EMEP/EEA Guidebook (2019) Chapter 1B2aiv.	Table 3-2, 3-7. Storage and handling (Inventory team judgement).						
SOx	T2/ T3	Mixed methodology based on direct emissions measurements or estimates (mass balance).	Coking calcination, FCC regeneration, sulphur recovery and catalytic reforming units.						
NH ₃ , PM, BC, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PAHs	T2	EMEP/EEA Guidebook (2019) Chapter 1B2aiv.	Table 3-2, 3-7.						
СО	T2	Country specific factors based on direct emissions. EMEP/EEA Guidebook (2019) Chapter 1B2aiv.	FCC regeneration. Catalytic reforming units Table 3-3.						
DIOX	T2	EMEP/EEA Guidebook (2019) Chapter 1B2aiv.	Catalytic reforming units Table 3-3.						
Distribution of	oil produ	icts (1B2av)							
NMVOC	T2	EMEP/EEA Guidebook (2019) Chapter 1B2av.	Table 3-2, 3-3, 3-4, 3-5, 3-6, 3-8, 3-9. Directive 2009/126/EC.						
Venting and flo	aring (1B	2c)							
transport, Natu	ıral gas-Ir		ransport, Oil-Off Shore exploration, production, ransport, Natural gas-Off shore exploration, production,						
NOx, NMVOC, CO, SOx	T1/ T2	EMEP/EEA Guidebook (2019) Chapter 1B2c.	Flaring Table 3-1, 3-2. Venting Table 3-8.						
РМ, ВС	T3/ T1	Mixed methodology based on direct emissions measurements or estimates (EMEP/EEA Guidebook (2019) Chapter 1A1).	IQ from refineries table 4-7.						

H.3. Assessment

This category stands out as a moderate emitting source in the Inventory for certain main pollutants (particularly, NMVOC and SOx). The contribution of the remaining pollutants, namely NOx, NH₃, CO, Particulate Matter and PAHs is marginal.

Activity data and NMVOC emission factors available for 1B2ai (Oil exploration, production and transport) and the implied emission factor for 1B2aiv (Fugitive emissions from oil refining and storage) are shown below.

Table 3.4.25 Activity data of 1B2ai

	1990	2005	2015	2016	2017	2018	2019
Production (10 ³ m ³)	901	259	346	160	136	99	46
Transport (10 ³ m ³)	65,094	75,927	79,751	79,547	82,147	83,317	82,185

Production figures cover offshore and onshore oil extraction in Spain. On the other hand, Transport figures refer to oil transport in pipelines and oil pumping at maritime terminals.

Table 3.4.26 NMVOC emission factors from EMEP/EEA Guidebook (2019) 1B2ai

	EF	Unit	Table
Production	0.10	Kg /Mg oil	3-3
	0.40	Kg /Mg oil	3-4
Transport	0.27	Kg/Mg	3-16

As can be seen in the following figure, emissions from oil transport are much higher than emissions from oil production.

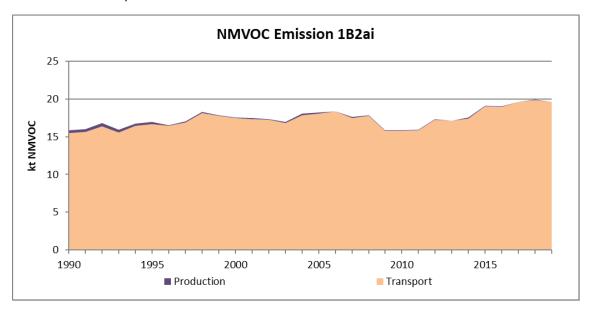


Figure 3.4.20 Evolution of NMVOC emissions in sector 1B2ai

The SOx implied emission factor for 1B2aiv is displayed in the figure below.

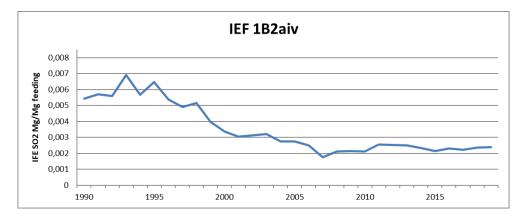


Figure 3.4.21 Evolution of SOx Implied emission factor in sector 1B2aiv

The category 1B2aiv includes different processes in petroleum industries as petroleum products processing, fluid catalytic cracking, sulphur recovery plants, catalytic reforming unit and storage and handling of petroleum products in refineries. Every process has different emission factors and, in some cases, emissions are estimated based on direct measurements.

Therefore, it is not feasible to show the whole amount of data associated. The SOx implied emission factor trend shown is mainly linked to the activity of sulphur recovery, followed by the fluid catalytic cracking process.

Finally, NMVOC emissions from Coal mining and handling activities are under the threshold of significance and, therefore, considered as negligible (see Annex 6 - Expert Judgement).

3.5. Memo items

The United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (CLRTAP) excludes cruising phases (both domestic and international segments) in air traffic category and international maritime traffic. These categories and their figures are not included in the totals of the Spanish Inventory, but are reported as "Memo items" in the NFR reporting tables for informative purposes.

Estimation of emissions in these categories is analogous to what has been previously described in the correspondent inventory categories in the present chapter, in particular in the items "E Air traffic at airports" and "G National Navigation". This correspondence can be seen below:

Table 3.5.1 Air traffic: Inventory items / Memo Items

AIR TRAFFIC	LTO	Cruise
International aviation	1A3ai(i): Inventory	1A3ai(ii): Memo item
Domestic aviation	1A3aii(i): Inventory	1A3aii(ii): Memo item

Table 3.5.2 Maritime traffic: Inventory items / Memo Items

MARITIME TRAFFIC		
International navigation	1A3di(i): Memo item	
International inland waterways	1A3di(ii): Inventory (Not Occurring)	
National navigation (shipping)	1A3dii: Inventory	

3.6. Recalculations

In the current edition of the Spanish Inventory, there have been several recalculations within the Energy sector due to different reasons such as methodological improvements —including updates of emission factors to EMEP/EEA Guidebook (2019)—, availability of new data, adjusting in the calculations and correction of found errors.

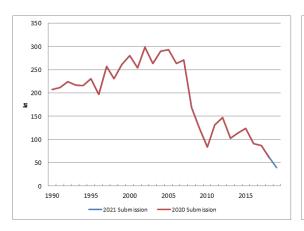
Emission estimates for PAHs compounds were carried out on the entire Inventory in the past edition, by applying emission factors from EMEP/EEA Guidebook (2019). However, it is worth mentioning that in subcategory 1A2a disaggregation has not been fully achieved due to the lack of information in the reference guides.

The most relevant recalculations performed in Energy are shown in the following table.

Table 3.6.1 Recalculation by pollutants – Energy

Pollutants affected	Recalculation
1A1a Public electricity and heat production	
Power generation plants: - All pollutants	Update of base information on fuel consumption for solar thermal plants for period 2013-2018.
	New combined cycle power plant (LPS) not previously accounted for, period 2016-2018.
District heating plants: - All pollutants	Activity data extended nationwide for period 1990-2018 (relocated from categories 1A4ai - Commercial/Institutiona and 1A4bi - Residential sector).
Power generation plants: - CO	Correction on measured emissions in a single incineration plant in 2018.
Power generation plants: - BC	EF update to EMEP/EEA Guidebook (2019) for diesel stationary engines that burn gas-oil.
Incineration plants: - PM ₁₀	Correction on emissions estimates in a single incineration plant in 2015.
1A1c Manufacture of solid fuels and other energy	ı industries
Other energy industries: - SOx, TSP, PM ₁₀ , PM _{2.5} , BC, HM, DIOX, HCB	EF update to EMEP/EEA Guidebook (2019) in coal/oil/gas extraction (non-specific combustion).
Other energy industries: - PCBs	Miscalculation corrections in regasification plants and underground storage of natural gas.
Other energy industries: - NH ₃	EF update to EMEP/EEA Guidebook (2019) for wood/wood wastes in coal mining and other industries (non-specific combustion).
All categories (except coke plants): - All pollutants	Fuel balance recalculation for consistency with energy statistics.
1A2 Combustion in manufacturing industries and	construction
All categories: - All pollutants	Fuel balance recalculation for consistency with energy statistics.
1A2a Stationary combustion in manufacturing in	dustries and construction: Iron and steel
Iron and steel reheating furnaces: - NOx, SOx, PM, CO, HM, DIOX, PAH	New information available for activity data from EAF (electric arc furnaces) plants for the year 2018.
Blast furnaces cowpers: - NMVOC, NOX, CO	Correction mistake EF value for the time series 1990-2002.
1A2b Stationary Combustion in Manufacturing In	dustries and Construction: Non ferrous metals
Secondary aluminium: - NOx, SO _x	Update of actual rate for "secondary aluminium production" from 2010 onwards.
1A2f Stationary combustion in manufacturing ind	lustries and construction: Non-metallic minerals
Plaster furnaces: - NOx	Correction mistake EF value for 2018.
Asphalt concrete plants: - NOx, CO, SOx	AD update by data supplier for 2017 and 2018.
Lime: - NOx, CO	Emission factors updated due to a mistake detected.
Magnesites: - All pollutants	Relocation of emissions from category 1A2gviii to category 1A2f. Error correction in emission factors for years 2017 and 2018
1A2gviii Stationary combustion in manufacturing	
Magnesites: - All pollutants	Relocation of emissions from category 1A2gviii to category 1A2f.
Bricks and tiles:	Emission factors updated due to a mistake detected in 2018

Pollutants affected	Recalculation	
- All pollutants		
Ceramics: -All pollutants	AD update by data supplier for 2018.	
1A3a Air traffic at airports		
- All pollutants	Update of the fuel consumptions for period 1990-2018 due to changes in EUROCONTROL dataset (2005-2018).	
1A3b Road transport		
- SOx	Sulphur content of fuels is updated in the period 2011-2018 (according to measured values, reported under the fuel quality Directive 98/70/EC).	
- All pollutants	 - Values of fuel characteristics have been corrected for the year 2015. - LCV of natural gas corrected for the year 2018. - Petrol consumption is updated as a consequence of the updated consumption of agriculture and forestry machinery (2017-2018). 	
	 Minor changes in fuel consumption data of national statistics for period 2014-2018. 	
1A3c Railways		
- NH ₃ , Cd and Se	Negligible recalculations due to rounding adjustments	
1A3d Maritime navigation		
- As, Cu, Se, PAHs and its species	Emission factors updated according to the latest version of EMEP/EEA Guidebook (2019) of October 2020.	
- All pollutants	Activity data has been updated for years 2017 and 2018. Provincial distribution has been corrected for year 2010 and updated for year 2018.	
1A3ei Pipeline transport		
Natural gas pipelines: - All pollutants	Miscalculation corrections into diesel stationary engines at compressor stations.	
1A4ai Stationary combustion in commercial and ins	titutional activities	
- SOx, BC, HCB, PCB, DIOX and HM	EF update to EMEP/EEA Guidebook (2019).	
- All pollutants	Relocation of district heating emissions from 2005 onwards, and correction on emissions estimates in a single LPS for period 2005 – 2018. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.	
1A4bi Stationary combustion in residential activities		
- SOx, BC, HCB, PCB, DIOX and HM	EF update to EMEP/EEA Guidebook (2019).	
- All pollutants	New estimations of pellets emissions for years 2010-2019. Recalculations in district heating estimations for period 1990-2019.	
1A4ci Stationary combustion in agriculture, forestry	v and fishing activities	
- SOx, BC, HCB, PCB, DIOX and HM	EF update to EMEP/EEA Guidebook (2019).	
- All pollutants	Correction on emissions estimates in a LPS affecting natural gas, diesel and biomass from 2005 onwards. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.	
1A4cii Mobile machinery in agriculture and forestry	activities	
- All pollutants	Consumption updated for years 2017 and 2018.	
1A4ciii Mobile machinery in fishing activities		
- NOx, TSP and BC	Change from Tier 1 to Tier 2 methodology.	
- PAH and species and Cu	EF update to EMEP/EEA Guidebook (2019).	
- All pollutants	Activity data updated for year 2018.	
1A5b Military transport		


Pollutants affected	Recalculation	
- All pollutants	Recalculation due to consumption update, fuel specifications changes, EF update to EMEP/EEA Guidebook (2019) and minor changes in military air traffic estimations.	
1B1b Fugitive emission from solid fuels: Solid fuel transformation		
- CO	Update to EMEP/EEA Guidebook (2019).	
1B2ai Oil-Exploration, production, transport		
- NMVOC	Data update by source.	
1B2b Natural Gas-Exploration, production, transport		
- NMVOC	Data update by source.	
1B2c Venting and flaring (oil, gas, combined oil and gas)		
- NMVOC	Data update by source.	
- CO	MIscalculation correction and data update by source.	

1A1a Public electricity and heat production. Main Pollutants and CO emissions

The increases in activity rates performed in the present edition (incorporation of updated district heating activity, now relocated from 1A4ai and 1A4bi categories; one new combined cycle power plant; and two new solar thermal plants) have barely affected 1A1a emissions, as is shown in the following pictures.

Activity data of category 1A1aiii has been extended nationwide thanks to the change in data sources. Individual questionnaires (IQs) for a few known plants have been replaced by a complete national census of DH networks (based on EUROSTAT criteria) provided by IDAE-MITERD. It is since 1996 when biomass begins to be used as fuel in the district heating plants of Spain (only natural gas in early years), so the recalculation is mostly noticeable on those pollutants directly related to biomass combustion from that year.

The following figure shows the increasing trend of the difference in NOx emissions. It is representative of the growing activity of DH in Spain, going from 4 networks in 1990 to 45 registered in 2019.

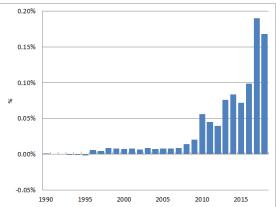


Figure 3.6.1 Evolution of the difference in 1A1a NOx emissions

The significant increase of the difference in NMVOC emissions from 1996 shows that also starts the use of gas-oil in DH plants. The small decreases in previous years are a consequence

of applying EUROSTAT criteria, that leaves out of the official census some facilities included in the previous edition of the Inventory.

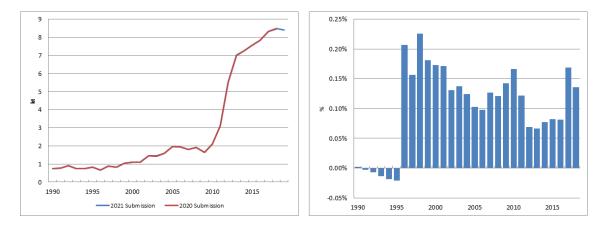


Figure 3.6.2 Evolution of the difference in 1A1a NMVOC emissions

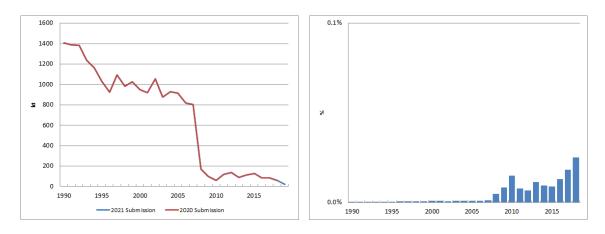


Figure 3.6.3 Evolution of the difference in 1A1a SOx emissions

Differences in NH₃ emissions are directly related to biomass combustion in DH plants from year 1996.

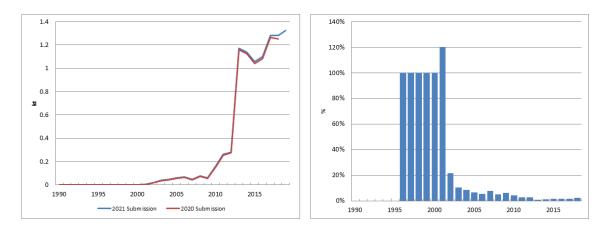


Figure 3.6.4 Evolution of the difference in 1A1a NH₃ emissions

The result of the correction on CO measured emissions in a single large power plant in year 2018 —data provided by CEMS— is shown in the following figure.

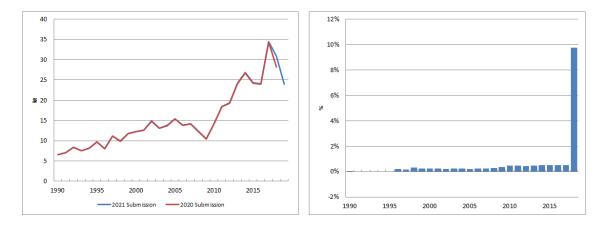


Figure 3.6.5 Evolution of the difference in 1A1a CO emissions

The small differences in previous years are again due to the referred changes in activity data.

1A1a Public electricity and heat production. Particulate Matter and POPs emissions

As result of the 2020 NECD review 7 (recommendation ES-LPS-A-2020-0002), it was introduced a correction on PM $_{10}$ emissions estimates in a single incineration plant in 2015. The change related to this recalculation is masked by the general update of activity rates under 1A1a category.

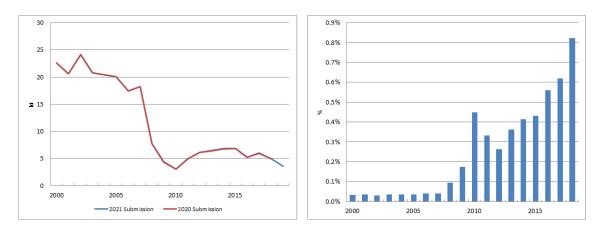


Figure 3.6.6 Evolution of the difference in 1A1a PM₁₀ emissions

⁷ Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

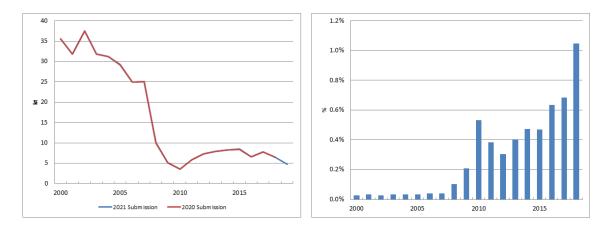


Figure 3.6.7 Evolution of the difference in 1A1a TSP emissions

The following figure shows the additional effect on BC emissions of EF updating to EMEP/EEA Guidebook (2019), for diesel stationary engines that burn gas-oil.

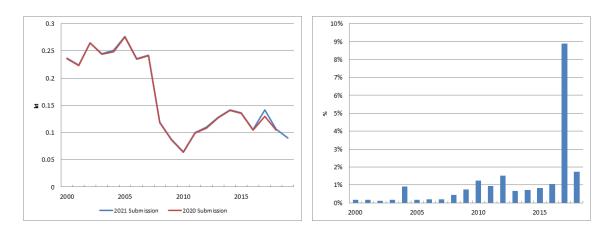


Figure 3.6.8 Evolution of the difference in 1A1a BC emissions

Recalculations are clearly noticeable on those pollutants directly related to biomass combustion since biomass begins to be used in district heating networks (year 1996).

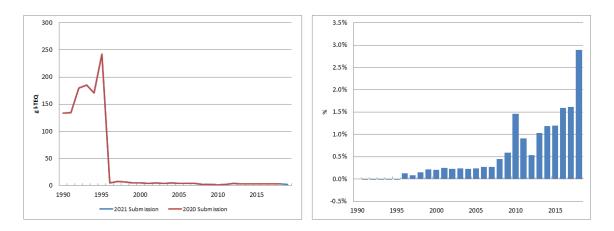
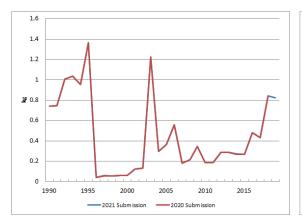



Figure 3.6.9 Evolution of the difference in 1A1a DIOX emissions

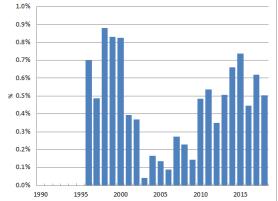
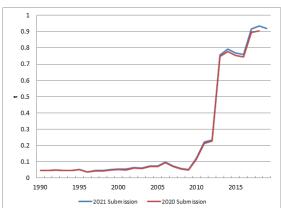



Figure 3.6.10 Evolution of the difference in 1A1a HCB emissions

PAHs emissions under 1A1a Public electricity and heat production

Emissions of PAHs totals under 1A1a were updated to EMEP/EEA Guidebook (2019) for both Large Point Sources (LPS) and small power plants (Area Sources) in previous editions of the Inventory. This recalculation included all type of fuels used in power generation plants and incineration plants.

The changes in activity rates performed in the present edition (mainly the extended district heating activity, with high proportion of biomass plants) have affected PAHs emissions, as is shown in the following picture.

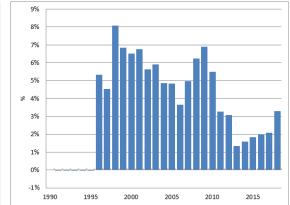


Figure 3.6.11 Evolution of the difference in 1A1a PAHs emissions

The main driver in PAHs emissions at the beginning of the Inventory period is the amount of MSW burned at incineration plants with energy recovery. From 1996 onwards, information regarding abatement techniques in MSW incineration plants became available. This explains the fall in PAHs emissions between the years 1995 and 1996, despite the increase in the municipal waste incineration. Taking into consideration historical data on control devices installed in Spanish incineration plants, in years 1990-1995 PAHs Tier 2 EF in Table 3-2 (EMEP/EEA 2019 GB, Chapter 5.C.1.a) are used (uncontrolled abatement technologies). From 1996 onwards Tier 1 EFs in Table 3-1 are used (default abatement technologies considered). This change in the PAHs emission factors also implies a significant drop in the IEF between years 1995-1996. On the other hand, between 2009 and 2010 a significant rise in agricultural wastes consumption at biomass plants implies an increase in PAHs emissions. Finally, the

consumption of wood wastes (together with agricultural wastes), begins to gain relevance in 2013. Small power plants (mainly biomass power plants but also DH networks) have multiplied in recent years in Spain (e.g. 8 biomass power plants in 2011 vs. 29 plants in 2019) that means a significant increase of wood wastes burned in boilers, which have a direct correlation with PAHs emissions.

1A1c Manufacture of solid fuels and other energy industries. Main Pollutants and Particulate Matter emissions

The following figures show the changes due to the EF update according to EMEP/EEA Guidebook (2019) carried out in coal/oil/gas extraction activities (non-specific combustion).

The changes related to the recalculation of the fuel balance are barely noticeable into 1A1c category and are masked by the update of emission factors.

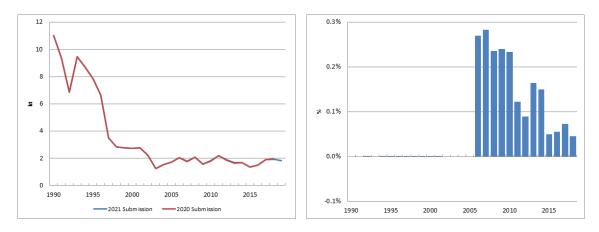


Figure 3.6.12 Evolution of the difference in 1A1c SOx emissions

NH₃ has been introduced as new pollutant for wood/wood wastes burned in coal mining and other industries, as was not previously considered.

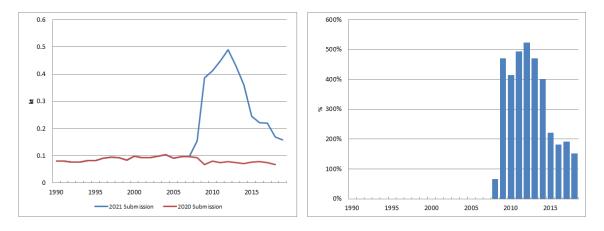


Figure 3.6.13 Evolution of the difference in 1A1c NH₃ emissions

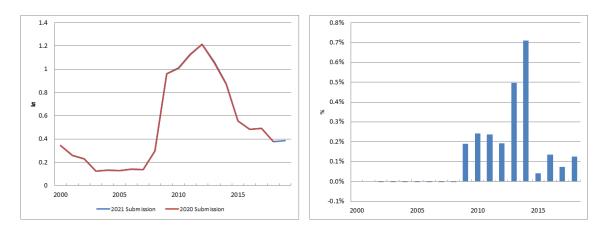


Figure 3.6.14 Evolution of the difference in 1A1c TSP emissions

Differences in $PM_{2.5}$ and PM_{10} emissions are very similar to those of TSP.

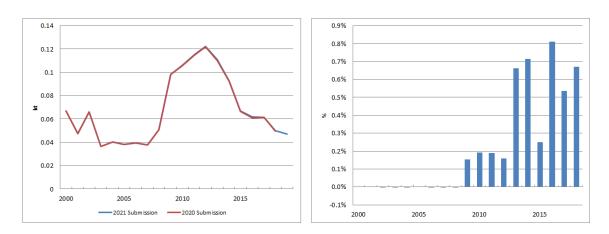


Figure 3.6.15 Evolution of the difference in 1A1c BC emissions

1A1c Manufacture of solid fuels and other energy industries. Heavy metals and POPs emissions

The following figures show the changes due to the EF update to EMEP/EEA Guidebook (2019) carried out in coal/oil/gas extraction activities (non-specific combustion).

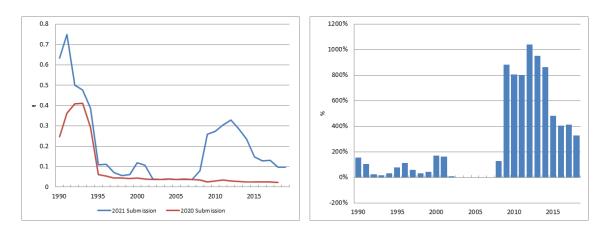


Figure 3.6.16 Evolution of the difference in 1A1c Pb emissions

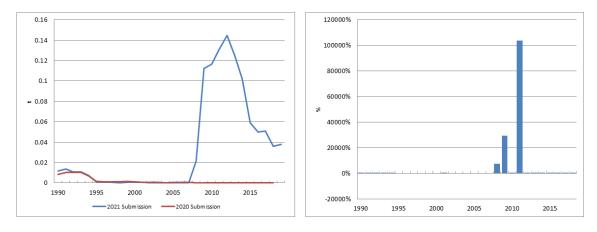


Figure 3.6.17 Evolution of the difference in 1A1c Cd emissions

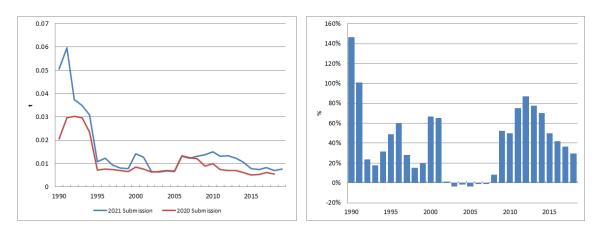


Figure 3.6.18 Evolution of the difference in 1A1c Hg emissions

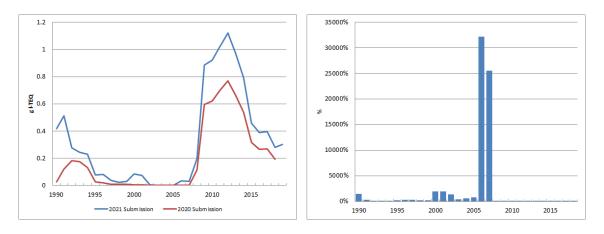


Figure 3.6.19 Evolution of the difference in 1A1c DIOX emissions

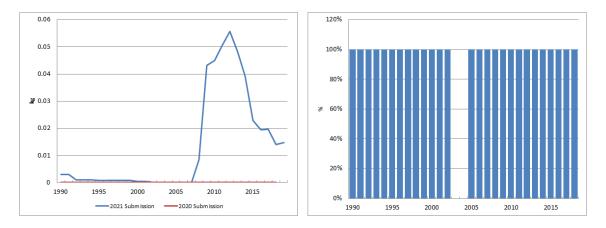


Figure 3.6.20 Evolution of the difference in 1A1c HCB emissions

Change shown by PCBs emissions trend is due to miscalculation corrections in some regasification plants and underground storage of natural gas.

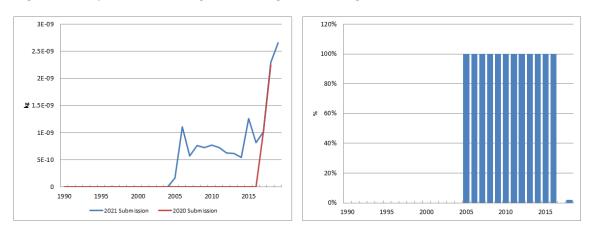
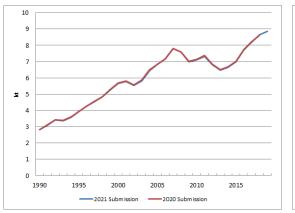


Figure 3.6.21 Evolution of the difference in 1A1c PCBs emissions

1A2 Stationary combustion in manufacturing industries and construction. All pollutants


Recalculations caused by the update of the fuel balance for consistency with energy statistics, have an impact on all subcategories and pollutants. This effect is added to the ones specified in Table 3.6.1 for each subcategory.

In this edition, the total recalculation on 1A2 is minor, almost negligible for most of the pollutants, so it has been deemed unnecessary to include any graphic.

1A3a Air traffic at airports. All pollutants

In the present Inventory edition, emissions of all pollutants have been recalculated for period 1990-2018. This is due to an update of the EUROCONTROL dataset, which covers period 2005-2018. Consequently, fuel consumptions of period 1990-2004, as are calculated as a statistical adjustment, have also been updated.

The graphs with the recalculation of the main pollutants, PM2.5 and PAHs emissions are shown below.

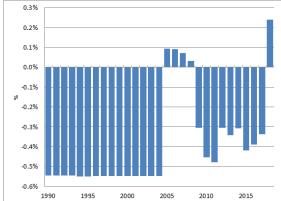
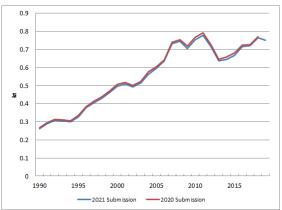



Figure 3.6.22 Evolution of the difference in 1A3a NOx emissions

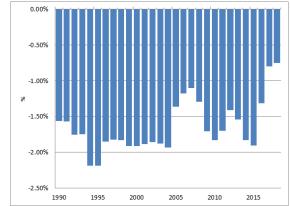
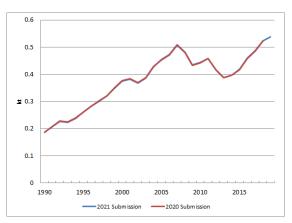



Figure 3.6.23 Evolution of the difference in 1A3a NMVOC emissions

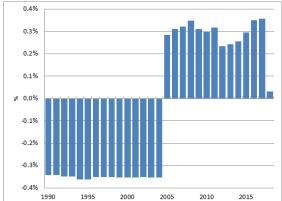


Figure 3.6.24 Evolution of the difference in 1A3a SOx emissions

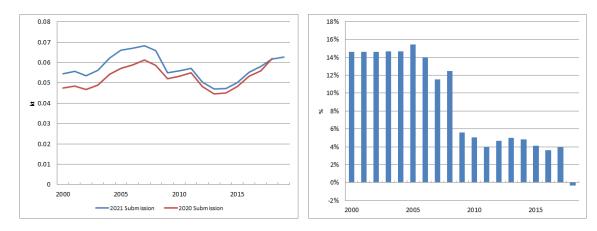


Figure 3.6.25 Evolution of the difference in 1A3a PM_{2.5} emissions

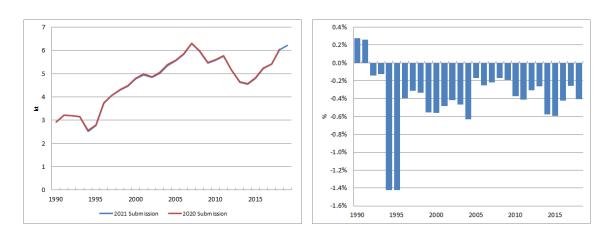


Figure 3.6.26 Evolution of the difference in 1A3a CO emissions

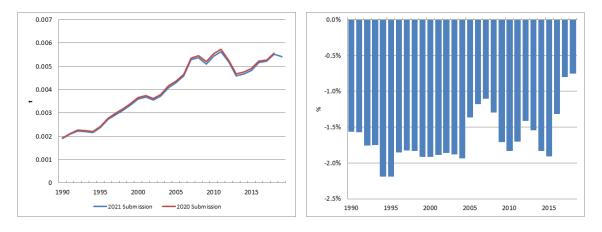


Figure 3.6.27 Evolution of the difference in 1A3a PAH emissions

1A3b Road transport. All pollutants

Recalculations made in road transport are mainly related to minor changes and data correction of previous Inventory edition: values of fuel characteristics for year 2015, LCV of gas natural for 2018, minor changes in fuel consumption data of national statistics for period 2014-2018, and updating of petrol consumption according to the updated consumption of agriculture and forestry machinery (2017-2018).

In addition, sulphur content of fuels has been updated in the period 2011-2018, according to the measured values, reported under the fuel quality Directive 98/70/EC, having decreased SOx emissions up to a 30%.

Only recalculations of pollutants SOx and NH₃ are shown below, as the variations of the rest of pollutants are negligible.

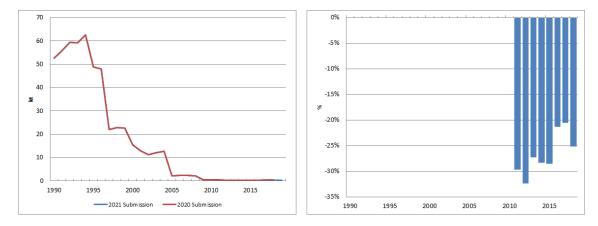


Figure 3.6.28 Evolution of the difference in 1A3b SOx emissions

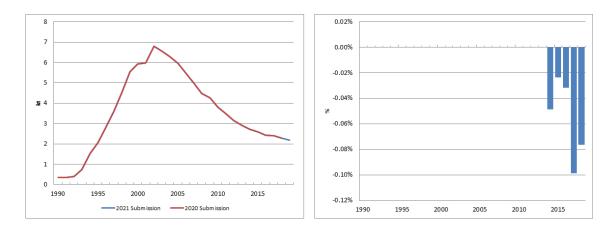


Figure 3.6.29 Evolution of the difference in 1A3b NH₃ emissions

1A3d National navigation. All pollutants

The main changes in national navigation are caused by the update of the emission factors of As, Cu, Se, PAHs and its species, according to the latest version of the EMEP/EEA Guidebook (2019) in October 2020.

Apart from this, activity data has been updated for years 2017 and 2018, and the provincial distribution has been corrected for year 2010 and updated for year 2018. This recalculation affects reported emissions, since new provincial distribution affects emissions from the Canary Islands that are excluded from this report.

The following figures show the most significant emissions trend of the pollutants affected by these recalculations.

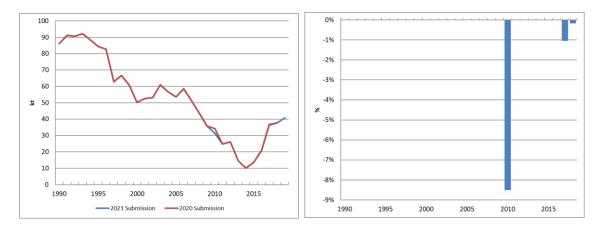


Figure 3.6.30 Evolution of the difference in 1A3dii NOx emissions

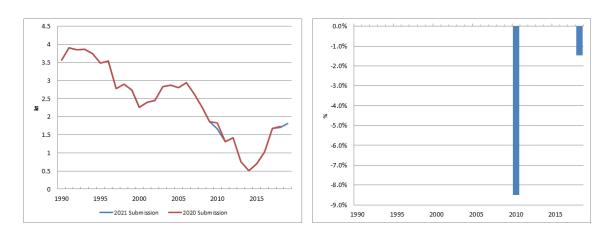


Figure 3.6.31 Evolution of the difference in 1A3dii NMVOC emissions

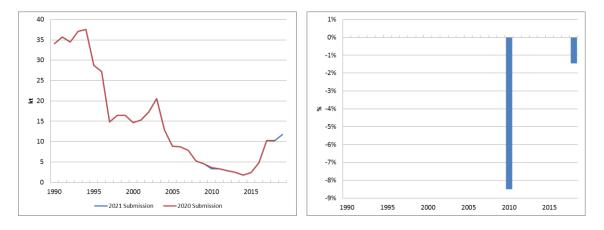


Figure 3.6.32 Evolution of the difference in 1A3dii SOx emissions

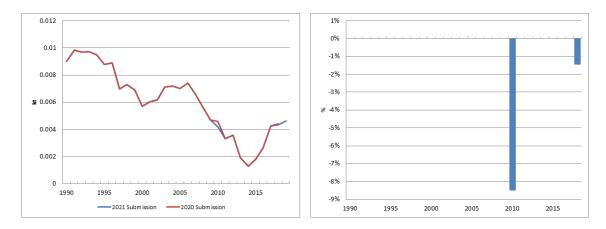


Figure 3.6.33 Evolution of the difference in 1A3dii NH₃ emissions

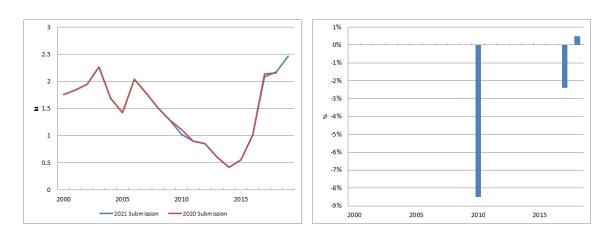


Figure 3.6.34 Evolution of the difference in 1A3dii TSP emissions

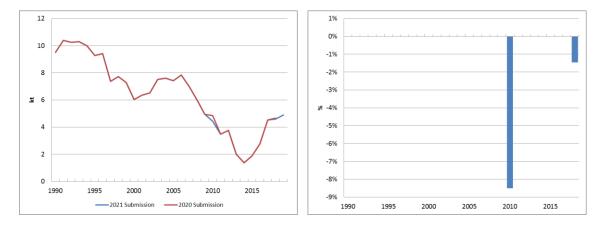


Figure 3.6.35 Evolution of the difference in 1A3dii CO emissions

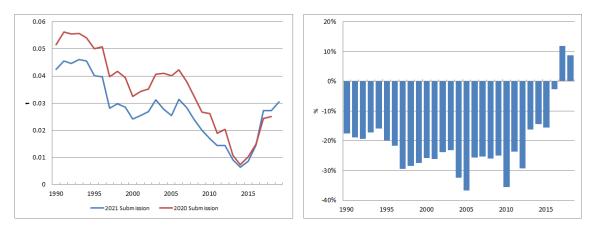


Figure 3.6.36 Evolution of the difference in 1A3dii PAH emissions

1A3ei Pipeline transport. All pollutants

Changes shown by emissions trends of some pollutants are due to miscalculation corrections into diesel stationary engines at compressor stations.

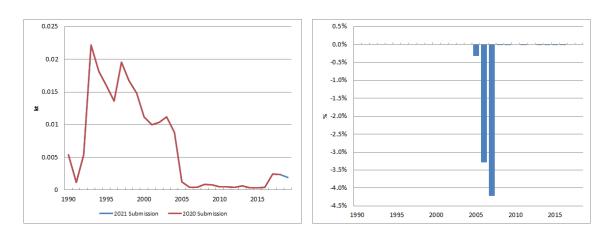


Figure 3.6.37 Evolution of the difference in 1A3ei SOx emissions

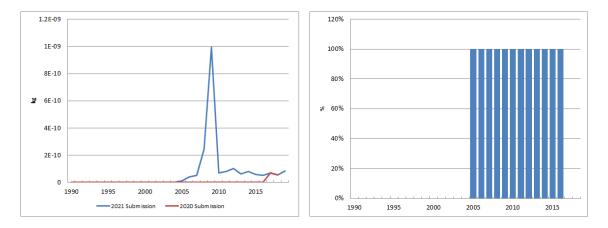
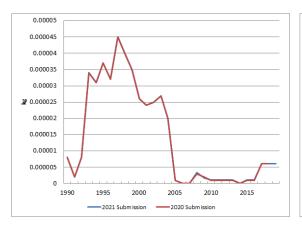



Figure 3.6.38 Evolution of the difference in 1A3ei PCBs emissions

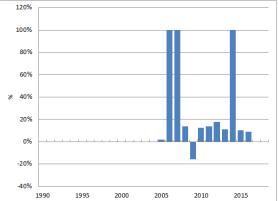
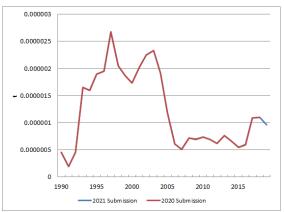



Figure 3.6.39 Evolution of the difference in 1A3ei HCB emissions

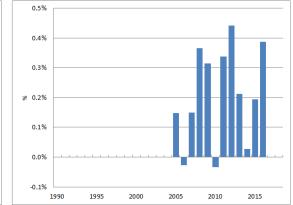
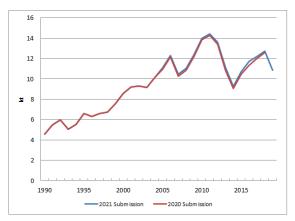


Figure 3.6.40 Evolution of the difference in 1A3ei Cd emissions


1A4a Combustion in commercial and institutional sector

Changes in all pollutant trends are due to a mix of recalculations for the whole sector. The implementation of updated emission factors to EMEP/EEA Guidebook (2019) has continued in the present Inventory edition, mainly referred to new estimations of HM and other revised pollutants. Generally, the trend of these pollutant emissions (BC, HCB, PCB, DIOX and HM) has increased for the whole period.

In addition, district heating in commercial and institutional sector has been taking into account in the present Inventory edition, affecting fuel consumptions of natural gas, diesel and biomass from 2005 onwards, and consequently, affecting to the emissions of all pollutants. Besides, a recalculation has been carried out in a single LPS for the whole period.

The decrease in fuel consumption in 2019, already pointed in the related epigraph "Combustion in other sectors", shows a drastic drop observed for most pollutant emissions for the last year.

For some pollutants, is also noteworthy the striking rise in emissions for year 2009, due to the increase in biomass consumption in this year.

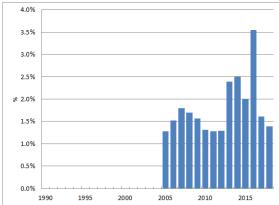
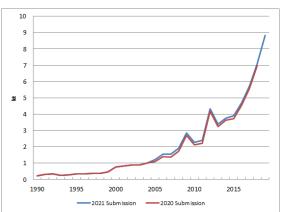



Figure 3.6.41 Evolution of the difference in 1A4a NOx emissions

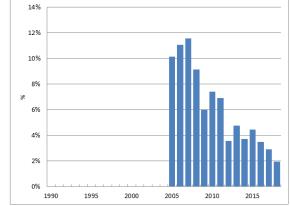
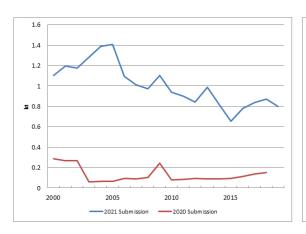



Figure 3.6.42 Evolution of the difference in 1A4a NMVOC emissions

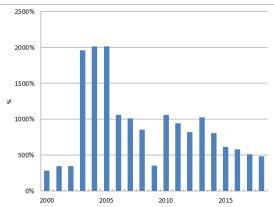
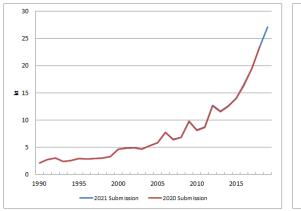



Figure 3.6.43 Evolution of the difference in 1A4a BC emissions

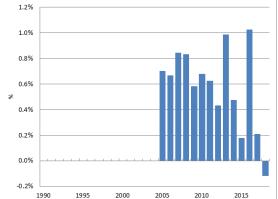
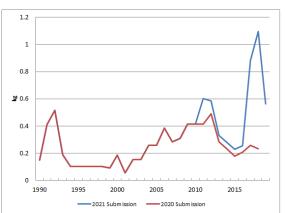



Figure 3.6.44 Evolution of the difference in 1A4a CO emissions

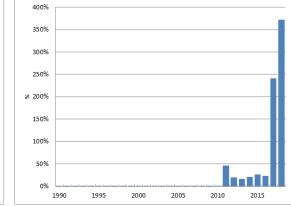
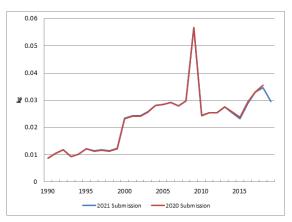



Figure 3.6.45 Evolution of the difference in 1A4a PCB emissions

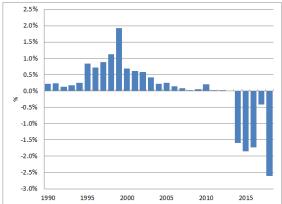
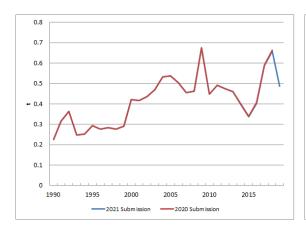



Figure 3.6.46 Evolution of the difference in 1A4a HCB emissions

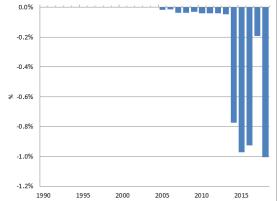
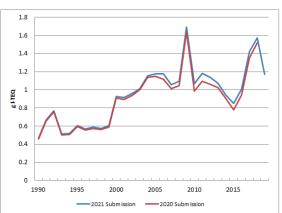



Figure 3.6.47 Evolution of the difference in 1A4a PAH emissions

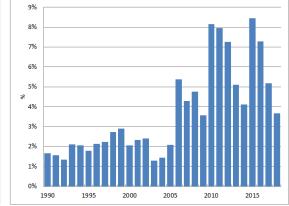
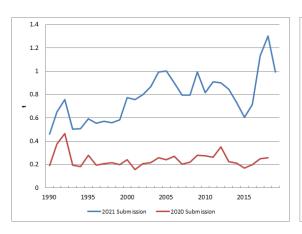



Figure 3.6.48 Evolution of the difference in 1A4a DIOX emissions

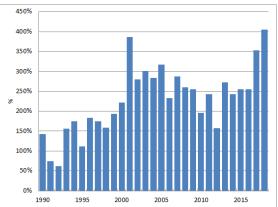
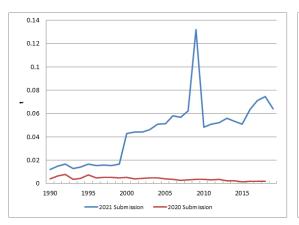



Figure 3.6.49 Evolution of the difference in 1A4a Pb emissions

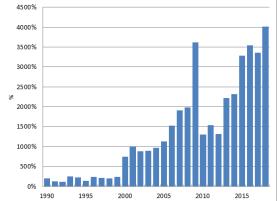
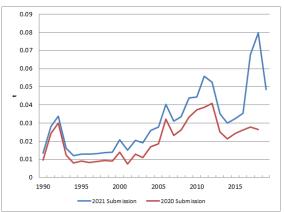
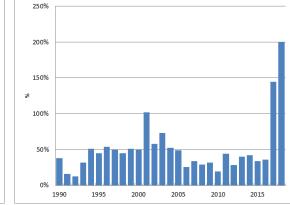
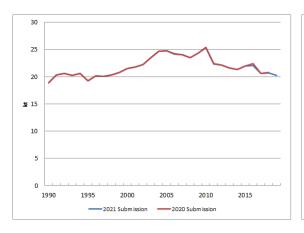



Figure 3.6.50 Evolution of the difference in 1A4a Cd emissions




Figure 3.6.51 Evolution of the difference in 1A4a Hg emissions

1A4bi Combustion in stationary equipment in residential sector

As in previous category, changes in all emission trends for residential sector are due to various recalculations. The update of emissions factors to EMEP/EEA Guidebook (2019) has led to a general increase in HM emission trends. Recalculations in district heating emissions have also affected the whole series.

Besides, new estimates of pellet emissions have been carried out in this Inventory edition, affecting biomass emission estimates for years 2010-2019. This change shows a general reduction of emissions for the pollutants affected.

The following graphs show the trend of the main pollutants affected, PM_{2.5}, HCB, PCB and heavy metals.

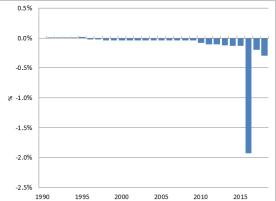
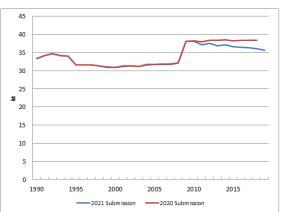



Figure 3.6.52 Evolution of the difference in 1A4bi NOx emissions

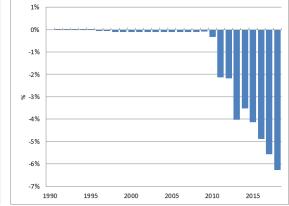
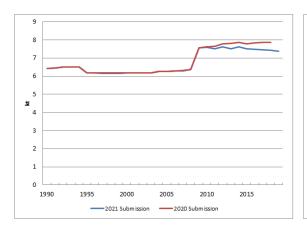



Figure 3.6.53 Evolution of the difference in 1A4bi NMVOC emissions

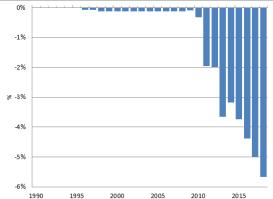
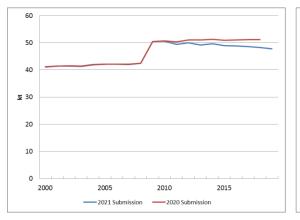



Figure 3.6.54 Evolution of the difference in 1A4bi NH₃ emissions

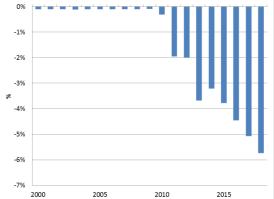
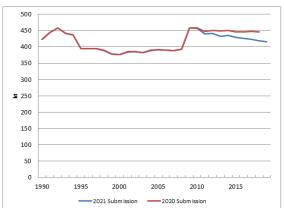



Figure 3.6.55 Evolution of the difference in 1A4bi PM_{2.5} emissions

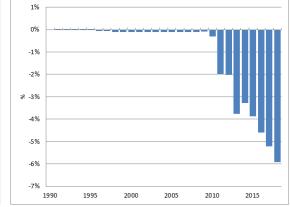
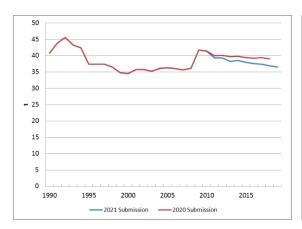



Figure 3.6.56 Evolution of the difference in 1A4bi CO emissions

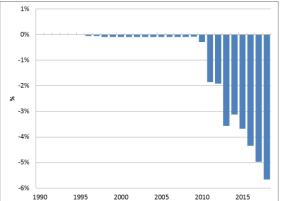


Figure 3.6.57 Evolution of the difference in 1A4bi PAH emissions

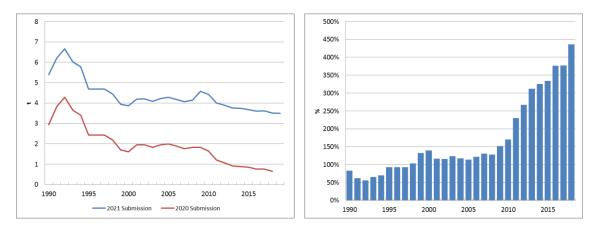


Figure 3.6.58 Evolution of the difference in 1A4bi Pb emissions

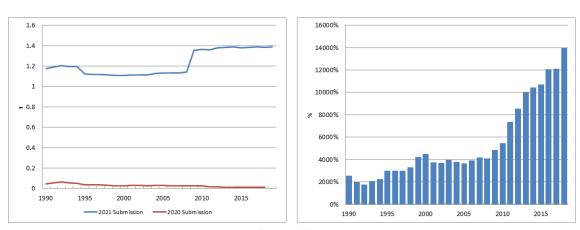


Figure 3.6.59 Evolution of the difference in 1A4bi Cd emissions

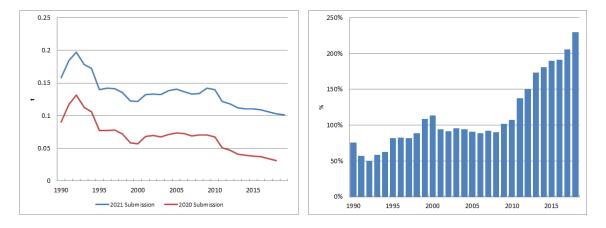
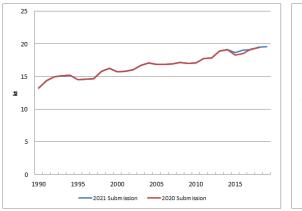



Figure 3.6.60 Evolution of the difference in 1A4bi Hg emissions

1A4ci Stationary combustion in agricultural, forestry and fishing sector

Again, in this category, as in previous Commercial/institutional and Residential categories, the emission factor update to EMEP/EEA Guidebook (2019) entails similar trend shapes for all pollutants. The graphs with the recalculation of the main pollutants, TSP, BC, PCB, HCB, DIOX, and Heavy Metals emissions are shown below.

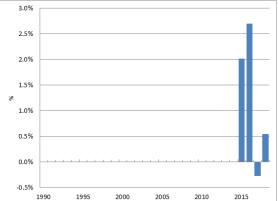
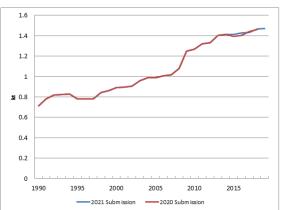



Figure 3.6.61 Evolution of the difference in 1A4ci NOx emissions

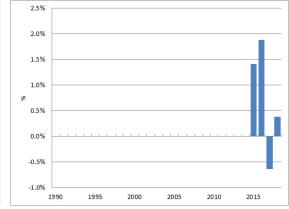
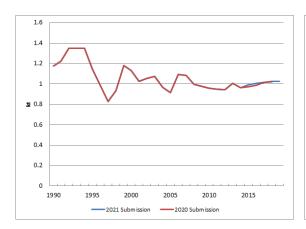



Figure 3.6.62 Evolution of the difference in 1A4ci NMVOC emissions

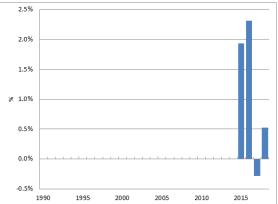
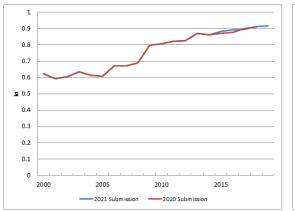



Figure 3.6.63 Evolution of the difference in 1A4ci SOx emissions

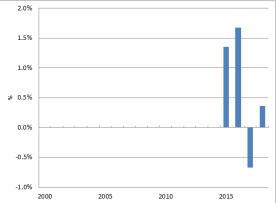
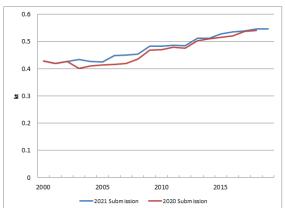



Figure 3.6.64 Evolution of the difference in 1A4ci TSP emissions

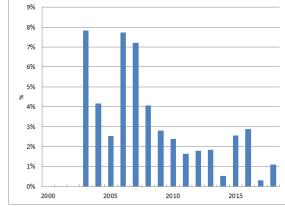
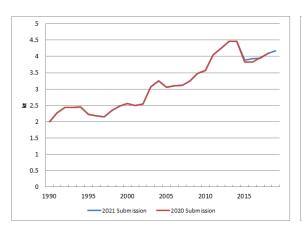



Figure 3.6.65 Evolution of the difference in 1A4ci BC emissions

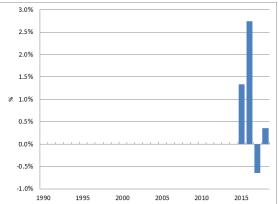
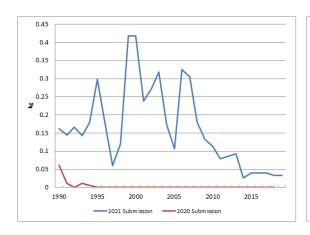



Figure 3.6.66 Evolution of the difference in 1A4ci CO emissions

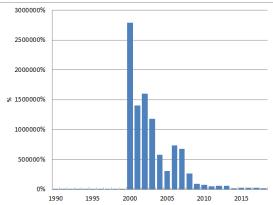
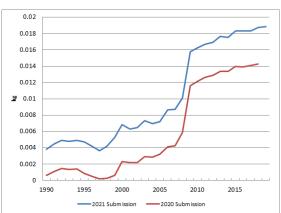



Figure 3.6.67 Evolution of the difference in 1A4ci PCB emissions

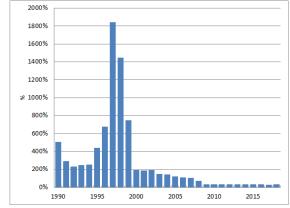
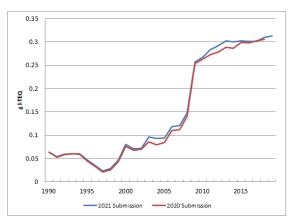



Figure 3.6.68 Evolution of the difference in 1A4ci HCB emissions

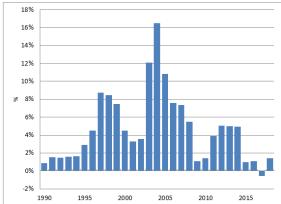


Figure 3.6.69 Evolution of the difference in 1A4ci DIOX emissions

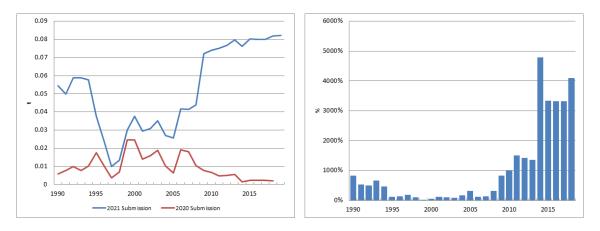


Figure 3.6.70 Evolution of the difference in 1A4ci Pb emissions

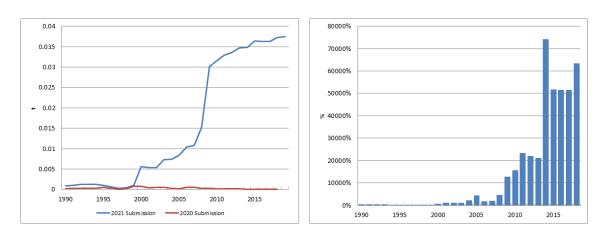


Figure 3.6.71 Evolution of the difference in 1A4ci Cd emissions

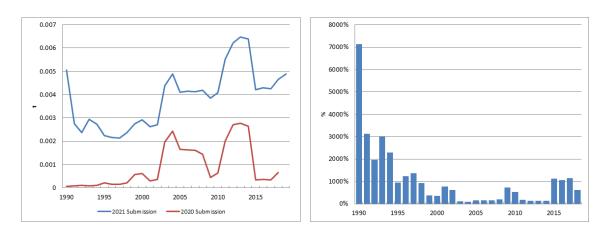


Figure 3.6.72 Evolution of the difference in 1A4ci Hg emissions

1A4cii and 1A4ciii Mobile machinery in agriculture, forestry and National fishing activities

Recalculations in these subcategories are due to various factors. In forestry mobile machinery, fuel consumption data has been updated for years 2017 and 2018 (n-2).

In the case of national fishing, following the recommendation ES-1A4ciii-2020-0002 made by the ERT included in the 2020 NECD review (pursuant to Directive (EU) 2016/2284)⁸, Tier 2 methodology has been applied for NOx, PM_{2.5}, PM₁₀, TSP and BC emission estimates. Also for national fishing sub category emission factors of PAH species and Cu have been updated according to the last version of EMEP/EEA (2019). Besides, fuel consumption data has been updated for year 2018 (n-1). The use of different approximations has supposed minimal modifications in the emissions of all pollutants for the entire series 1990-2018.

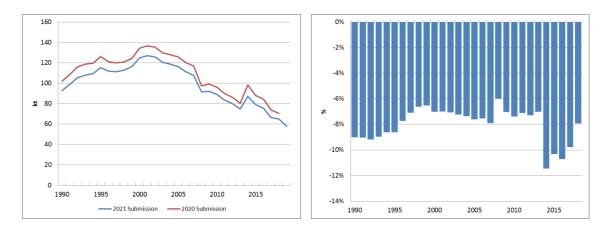


Figure 3.6.73 Evolution of the difference in 1A4cii and 1A4ciii NOx emissions

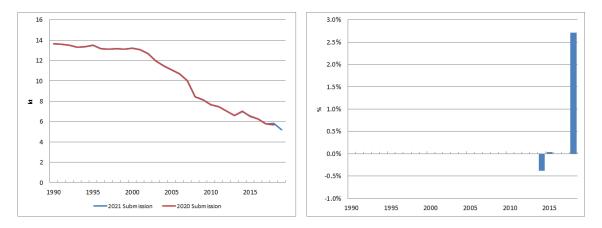
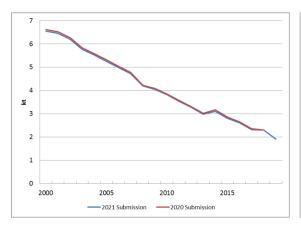



Figure 3.6.74 Evolution of the difference in 1A4cii and 1A4ciii NMVOC emissions

Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

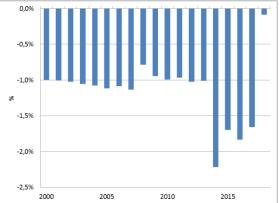
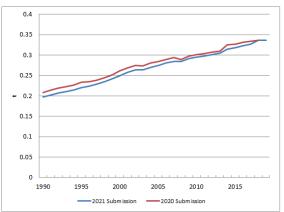



Figure 3.6.75 Evolution of the difference in 1A4cii and 1A4ciii PM_{2.5} emissions

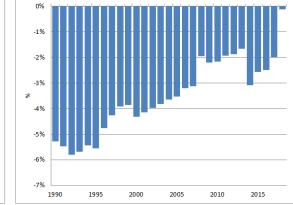
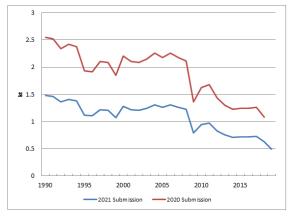



Figure 3.6.76 Evolution of the difference in 1A4cii and 1A4ciii PAH emissions

1B1b Fugitive emission from solid fuels: Solid fuel transformation

Emission factors for CO under category 1B1b have been updated according to EMEP/EEA Guidebook (2019).

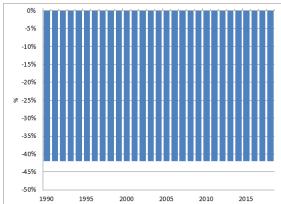


Figure 3.6.77 Evolution of the difference in 1B1b CO emissions

1B2ai Fugitive emissions oil: Exploration, production, transport. NMVOC

The recalculation is due to an update of the information by the source.

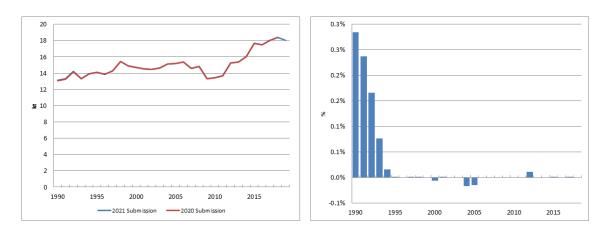


Figure 3.6.78 Evolution of the difference in 1B2ai NMVOC emissions

1B2b Natural Gas-Exploration, production, transport. NMVOC emissions

The recalculation is due to an update of the information by the source.

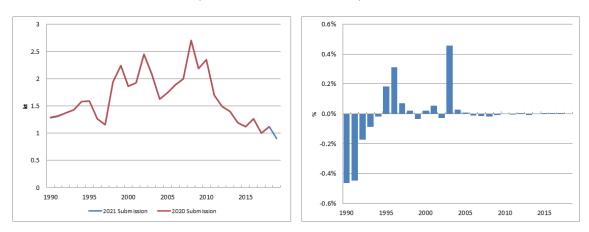


Figure 3.6.79 Evolution of the difference in 1B2b NMVOC emissions

1B2c. Venting and flaring. NMVOC and CO

The recalculation is due to an update of the information by the source and correction of error.

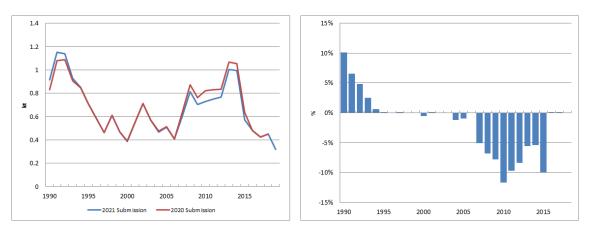


Figure 3.6.80 Evolution of the difference in 1B2c NMVOC emissions

3.7. Sector improvements

The review of the methodology for the elaboration of the fuel balance will continue, in collaboration with the relevant departments of the Secretary of State for Energy at MITERD. The collaboration with the IDAE-MITERD continues in the sense of providing specific information for the balance.

Minor improvements are progressively addressed in order to achieve full implementation of EMEP/EEA Guidebook (2019).

1A1a Public electricity and heat production

Individual questionnaires sent to conventional thermal power plants and incineration plants are being modified in order to adapt them to new information needs.

NH₃ data (measured or estimated) provided by large power plants are being collected and will be reviewed.

1A1c Manufacture of solid fuels and other energy industries

It will be carried out the segregation of RMS (Regulating and Metering Stations) belonging to the natural gas pipeline distribution network (low pressure pipelines), out from the Inventory fuel balance.

The process of collaboration with the General Subdirectorate of Energy Planning and Monitoring of MITERD will continue, in order to improve the information provided by this source and its correct adaptation to the Inventory.

1A2 Manufacturing industries and construction (combustion)

Review and standardise the emission factors.

1A2f Stationary combustion in manufacturing industries and construction: Non-metallic minerals

Study the impact of replacing emission factors for some pollutants such as PM_{10} , NH_3 and PAHs provided by the EMEP/EEA Guidebook (2019) with the country-specific factors provided by OFICEMEN.

1A3a Air traffic at airports

Continue alignment with the methodology established by EUROCONTROL, applying all the new adjustments and improvements proposed.

1A3b Road transport

The update to EMEP/EEA Guidebook 2019 methodology in road transport is still on address and it is foreseen to be finally implemented in 2022 Inventory Edition. The work, that has been carried out for two years, aims an integral change for the whole methodology, and to achieve this ambitious objective, efforts are focused along different lines of action. On the one hand, a new dataset for the national fleet will be used, which is more suitable for current EMEP/EEA classification of vehicles. Besides, updated information about mean kilometres distribution by

type of vehicle will be incorporated to the estimates. On the other hand, a full review of the previous methodology will be carried out in order to completely align emission estimates with EMEP/EEA 2019. Finally, the implementation of an emission calculation tool, following the EMEP/EEA Guidebook (2019) is also being addressed.

1A3c Railways

Continue with the collaboration with the focal point on railways, National Network of Spanish Railways (RENFE), with the aim of improving background information on fuel consumption broken down by type of machinery.

1A4bi Residential: Stationary

Following the recommendation made in the Spanish Stage 3 Review Report (2014)⁹, planned improvements for this sector are focused on making separate estimates for Household and gardening mobile machinery subcategory (1A4bii) currently included in the stationary subcategory (1A4bi).

1A4c Combustion in machinery used in agriculture, forestry and fishing activities

Work continues on an alternative methodology for estimating fuel consumption in mobile agricultural and forestry machinery (integrating information about energy requirement standards and other relevant parameters for the emission estimation algorithms).

Regarding Stationary combustion, investigation is still underway on how to gather new information about the penetration of new technologies in thermal facilities in this sector.

1A5b Other unspecified mobile sources: Military transport

Collaboration with the General Directorate of Infrastructures of MDE will continue with the aim of improving the information provided by this source, even though detailed information to distinguish and allocate emissions resulting from multilateral operations pursuant to the Charter of the United Nations is considered difficult to obtain, due to national defence reasons.

Final Review Report available in:
https://www.ceip.at/fileadmin/inhalte/ceip/00 pdf other/2014 s3/spain stage3 rr 2014.pdf

Appendix 3.1: Inventory Energy Balance (IEB)

This appendix complements the information in chapter "3. Energy" of this report by providing background detail on how fuel consumption data is obtained by the Inventory and its full consistency with the National energy balances elaborated by the Ministry for the Ecological Transition and Demographic Challenge (MITERD), and sent to IEA and EUROSTAT.

For the sake of consistency, two approaches (bottom-up and top-down) are combined. On the one hand, information is provided directly from the affected facilities or entrepreneurial sectors and those data prevails over statistics or any other source. This information includes the individualized questionnaires from different agents in the private sector and some public sources. Those are the data that Spanish Inventory considers as 'registered information'.

On the other side, following a top-down approach, all the registered information, once processed, is completed with the official energy statistics. Therefore, the total fuel consumption in the Spanish Inventory is tallied with the national fuel balance (EUROSTAT). This is because, in some cases, the registered information by the Inventory does not achieve a full coverage of all the sectors.

Following this methodology, fuel consumption is finally adjusted for categories 1A1 and 1A2. The result of this fuel balance is summarized in the figure below: the inner circle shows the percentage of information provided by the adjustment of the balance and the 'registered information' for category 1A1; the second circle refers to category 1A2; the third one corresponds to 1A1+1A2 categories and, finally, the outer circle represents the complete Inventory.

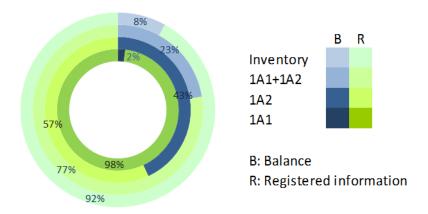


Figure 3.7.1 Percentage of fuel consumption provided by IEB and registered information for categories

This IEB involves a complex process that aims at ensuring full consistency between the fuel use considered by the Inventory and the total consumption figures from the national energy balance. The Inventory Energy Balance is performed with the national total consumption of fuels, that includes the whole Spanish territory (including the Canary Islands), and the results are then down-scaled to the EMEP domain, that does not include the Canary Islands.

The IEB always respect the consumptions pre-allocated by the National Inventory (consumption finally assigned to each sector and type of use must be equal or higher than the information registered by the National Inventory) and intends to minimize, for every fuel type, the differences with official energy statistics. Full coverage of the information in the National

Inventory for the crossing of consumer sector, type of use and fuel occurs in those sectors where complete and direct information is available from the individual plant questionnaires.

As an example, next two first figures with the partial balances for natural gas in 1A1 and 1A2 categories show the way in which some categories are tallied over the figures from the statistics, while others are tallied under the statistics.

The third figure contains the categories affected by the adjustment (1A1 and 1A2) plus fugitive emissions in Energy sector (1B) given that this sector includes non-energy emissions that international statistics consider. Finally, the total national consumption of natural gas from the official energy statistics constitutes the upper limit for the adjustment of the whole Energy sector, as can be seen in the fourth figure that shows how the sectoral differences are compensated so that global fuel consumption in the Spanish Inventory is tallied with the national fuel balance (EUROSTAT).

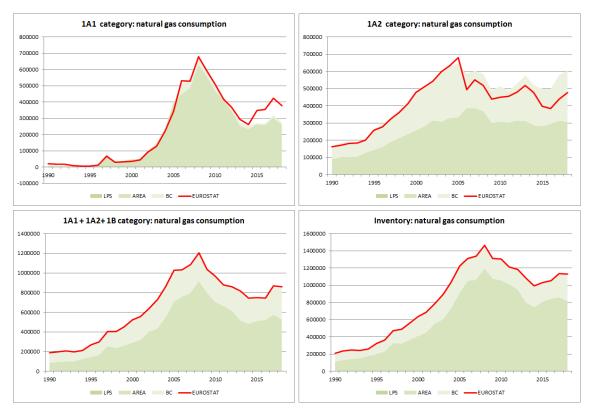


Figure 3.7.2 Adjustment of natural gas consumption as registered by the Inventory and national statistics

For a better interpretation of the graphs, the meaning of the legend is specified below:

- EUROSTAT: national energy statistics from MITERD
- LPS: information provided by plants to the Inventory
- AREA: information provided by entrepreneurial associations to the Inventory
- BC: amount to be allocated to each sector, ensuring that global fuel consumption is tallied with EUROSTAT.

The registered information by the Inventory includes the sum of LPS + AREA while total consumption considered by the Inventory includes the fuel consumption in each category (sum of LPS + AREA + BC).

4. IPPU (NFR 2)

CONTENTS

4.	IPPU (NFR 2)	223
4.1.	Sector overview	224
4.2.	Sector analysis	227
4.2		
4.2	.2. Analysis by pollutant	229
4.2	.3. Condensable component of PM ₁₀ and PM _{2.5}	
4.3.	Major changes	240
4.4.	Key categories analysis	240
A.	Mineral industry (2A)	241
B.	Chemical industry (2B)	244
C.	Metal Production (2C)	253
D.	Solvent use (2D)	261
E.	Other industrial processes and product use (2G+2H+2I+2J+2K+2L)	
4.5.	Recalculations	269
4.6.	Sector improvements	275

FIGURES

Figure 4.1.1	Relative emissions in IPPU in 2019 and its relative variation (2019 vs. 1990)	223
Figure 4.2.1	Evolution of NOx emissions by category and distribution in year 2019	230
Figure 4.2.2	Evolution of NMVOC emissions by category and distribution in year 2019	230
Figure 4.2.3	Evolution of SOx emissions by category and distribution in year 2019	
Figure 4.2.4	Evolution of NH ₃ emissions by category and distribution in year 2019	231
Figure 4.2.5	Evolution of PM _{2.5} emissions by category and distribution in year 2019	232
Figure 4.2.6	Evolution of PM ₁₀ emissions by category and distribution in year 2019	232
Figure 4.2.7	Evolution of TSP emissions by category and distribution in year 2019	233
Figure 4.2.8	Evolution of BC emissions by category and distribution in year 2019	233
Figure 4.2.9	Evolution of CO emissions by category and distribution in year 2019	234
Figure 4.2.10	Evolution of Pb emissions by category and distribution in year 2019	234
Figure 4.2.11	Evolution of Cd emissions by category and distribution in year 2019	
Figure 4.2.12	Evolution of Hg emissions by category and distribution in year 2019	
Figure 4.2.13	Evolution of DIOX emissions by category and distribution in year 2019	
Figure 4.2.14	Evolution of PAHs emissions by category and distribution in year 2019	
Figure 4.2.15	Evolution of HCB emissions by category and distribution in year 2019	
Figure 4.2.16	Evolution of PCBs emissions by category and distribution in year 2019	
Figure 4.4.1	Evolution of activity data in 2A5a and 2A5b	
Figure 4.4.2	Evolution of activity data vs Pb, Cd and PM _{2.5} emissions in 2A3	243
Figure 4.4.3	Evolution index of production (base year 1990) for main activities under 2B10a	252
Figure 4.4.4	Evolution index of activity variables of subcategory 2C1 (1990=100)	259
Figure 4.4.5	Evolution index of activity variables of subcategory 2C3, 2C5, 2C6 and 2C7a (1990=100)	260
Figure 4.4.6	Distribution of NMVOC emissions in subcategories 2D	266
Figure 4.4.7	Distribution of NMVOC emissions in 2D for the year 2019	266
Figure 4.4.8	NMVOC emissions in categories 2H1, 2H2 and 2G+2I+2J+2K+2L	269
Figure 4.5.1	Evolution of the difference in 2A2 PM _{2.5} emissions	
Figure 4.5.2	Evolution of the difference in 2A3 NMVOC emissions	
Figure 4.5.3	Evolution of the difference in 2B2 NOx emissions	271
Figure 4.5.4	Evolution of the difference in 2B10a NMVOC emissions	272
Figure 4.5.5	Evolution of the difference in 2C1 CO emissions	272
Figure 4.5.6	Evolution of the difference in 2C1 PM _{2,5} emissions	272
Figure 4.5.7	Evolution of the difference in 2C1 PM ₁₀ emissions	273
Figure 4.5.8	Evolution of the difference in 2C1 Zn emissions	
Figure 4.5.9	Evolution of the difference in 2C2 CO emissions	274
Figure 4.5.10	Evolution of the difference in 2C3 PM _{2.5} emissions	274
Figure 4.5.11	Evolution of the difference in 2C3 DIOX emissions	274
Figure 4.5.12	Evolution of the difference in 2C6 Pb emissions	275
Figure 4.5.13	Evolution of the difference in 2D3d nmvoc emissions	275

TABLES

Table 4.1.1	Coverage of NFR category in 2019	. 224
Table 4.2.1	Sector analysis	
Table 4.2.2	Assignation of KC	
Table 4.2.3	Particulate matter emission factors per source category and information on condensable	
	component	238
Table 4.3.1	Major changes in the IPPU sector in Inventory edition 2021	240
Table 4.4.1	Summary of activity variables, data and information sources for category 2A	241
Table 4.4.2	Summary of methodologies applied in category 2A	241
Table 4.4.3	Summary of activity variables, data and information sources for category 2B	244
Table 4.4.4	Summary of methodologies applied in category 2B	. 247
Table 4.4.5	Main drivers for activity and pollutant in subcategory 2B10a for 2019	. 251
Table 4.4.6	Summary of activity variables, data and information sources for category 2C	253
Table 4.4.7	Summary of methodologies applied in category 2C	254
Table 4.4.8	Summary of activity variables, data and information sources for category 2D	. 261
Table 4.4.9	Summary of methodologies applied in category 2D	263
Table 4.4.10	Summary of activity variables, data and information sources for category	
	2G+2H+2I+2I+2K+2L	267
Table 4.4.11	Summary of methodologies applied in category 2G+2H+2I+2J+2K+2L	268
Table 4.5.1	Recalculation by pollutants – IPPU	. 269

4. IPPU (NFR 2)

Chapter updated in March, 2021.

Sector IPPU at a glance

With a wide variety of industrial activities, installations, plants and uses of products, the IPPU sector in Spain has a big share to the emissions of the Spanish Inventory in many pollutants. As shown in Figure 4.1.1, IPPU sector is the main responsible of the emissions of PCBs (with a 93%), followed by NMVOC (48%), Pb (44%), Hg (40%), dioxins (39%) and Cd (30%). The emissions of the rest of the pollutants are not so significant (less than 20%, and negligible in the case of NOx, NH₃, and HCB).

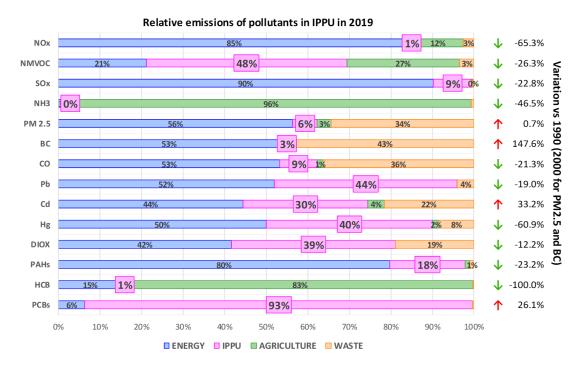


Figure 4.1.1 Relative emissions in IPPU in 2019 and its relative variation (2019 vs. 1990)

In 2019, the IPPU sector in Spain involved the activity of 27 iron and steel plants, 5 ferroalloys production plants, 3 aluminium production facilities, 10 car factories, 9 paper pulp plants, several glass and lime production facilities, a big amount and variety of food and beverages industries, as well as the production of organic and inorganic chemicals, and all the related activities and use of products from these and other industries (see Table 4.2.1).

IPPU emissions have decreased since 1990 (2000 for particulate matter) for the main pollutants (with the exception of $PM_{2.5}$), due to the applied emission reduction measures. NOx emissions show a reduction of -65%, while mercury reduction is -61% and HCB is virtually eliminated. Other pollutants, such as BC, Cd, PCBs and $PM_{2.5}$ show increases in percentage, with a special mention to the rise in BC (+148%) due to the increase in tobacco consumption over the analysed period.

4.1. Sector overview

Main issues regarding gas emissions reported for this sector are shown in the following table, in particular, NFR categories and pollutants coverage, methodology approach (method) and selection as key categories (KC).

Table 4.1.1 Coverage of NFR category in 2019

			Pollutants					
NFR Code	NFR category	Covered	Exceptions			Method	кс	
Code			IE	NA	NE			
2A1	Cement production	-	PM _{2.5} , PM ₁₀ , TSP, BC (*)	PCBs	Rest of pollutants	-		
2A2	Lime production	PM _{2.5} , PM ₁₀ , TSP, BC	-	Rest of pollutants	NOx, CO, NMVOC, SOx, Pb, Cd, Hg	T2		
2A3	Glass production	Rest of pollutants	_	PCBs	NOx, SOx, CO, DIOX, PAHs, HCB	T2		
2A5a	Quarrying and mining of minerals other than coal	PM 2.5, PM ₁₀ , TSP	_	Rest of pollutants	_	T1	√	
2A5b	Construction and demolition	PM _{2.5} , PM ₁₀ , TSP	_	Rest of pollutants	_	T1		
2A5c	Storage, handling and transport of mineral products	PM _{2.5} , PM ₁₀ , TSP	_	Rest of pollutants	-	T2		
2A6	Other mineral products: Batteries manufacturing		-	Rest of pollutants	-	T1		
2B1	Ammonia production	Ammonia production – NOx Rest of pollutants PM _{2.5}		PM _{2.5}	-			
2B2	Nitric acid production	NOx, NH ₃	-	Rest of pollutants	PM _{2.5}	T2/T3		
2B3	Adipic acid production	NO						
2B5	Carbide production	PM _{2.5} , PM ₁₀ , TSP, BC, CO		NH ₃ , PCBs	Rest of pollutants	T1/T2		
2B6	Titanium dioxide production	NOx, SOx, PM _{2.5} , PM ₁₀ ,TSP, BC	-	-	Rest of pollutants	T1/T2		
2B7	Soda ash production	NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, CO	_	Rest of pollutants	-	Т1/Т3	√	
Other chemical industry: Processes in organic and inorganic chemical industry except adipic acid		NOx, NMVOC, SOx, NH ₃ , PM _{2.5} , PM ₁₀ , TSP,BC, CO	-	-	Rest of pollutants	Т2/Т3		
2B10b	Storage, handling and transport of chemical products	-	NMVOC, PM _{2.5} , PM ₁₀ , TSP	Rest of pollutants	_	_		

NFR	NFR category		Pol	lutants		Method	кс
2C1	Iron and steel production	Rest of pollutants	BaP, BbF, BkF, IcP	-	NH ₃	T2/T3	
2C2	Ferroalloys production	PM _{2.5} , PM ₁₀ , TSP, BC, Pb, Cd, As, Cr, Cu, Ni, Zn, PAHs	BaP, BbF, BkF, IcP	HCB, PCBs	NOx, NMVOC, SOx, CO, NH ₃ , Hg, Se, DIOX,	T1	
2C3	Aluminium production	Rest of pollutants	-	NMVOC, PCBs, HCB	NH ₃ , Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn	T2/T3	
2C4	Magnesium production			NO			
2C5	Lead production	SOx, PM _{2.5} , PM ₁₀ , TSP, Pb, Cd, As, Zn, DIOX, PCBs			Rest of pollutants	T2	
2C6	Zinc production	SOx, PM _{2.5} , PM ₁₀ , TSP, Pb, Cd, Hg, As, Zn, DIOX, PCBs			Rest of pollutants	T2	√
2C7a	Copper production	SOx, PM _{2.5} , PM ₁₀ , TSP, BC, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, DIOX, PCBs			Rest of pollutants	T2	
2C7b	Nickel production			NO			
2C7c	Other metal production			NA			
2C7d	Storage, handling and transport of metal products	-	-	Rest of pollutants	PM _{2.5} , PM ₁₀ , TSP	-	
2D3a	Domestic solvent use including fungicides	NMVOC, Hg	_	Rest of pollutants	PM _{2.5}	T2	
2D3b	Road paving with asphalt	NMVOC, PM _{2.5} , PM ₁₀ , TSP, BC		Rest of pollutants	NOx, SOx, CO, DIOX, PAHs, HCB	T2	
2D3c	Asphalt roofing	NMVOC, PM _{2.5} , PM ₁₀ , TSP, BC, CO	_	Rest of pollutants	NOx, Pb, Cd, Hg, DIOX, PAHs, HCB	T1	√
2D3d	Coating applications	NMVOC	-	Rest of pollutants	-	Т2	
2D3e	Degreasing	NMVOC	-	Rest of pollutants	PM _{2.5}	T2	
2D3f	Dry cleaning	NMVOC	-	Rest of pollutants	PM _{2.5}	T2	
2D3g	Chemical products	NMVOC	-	Cd, As, Cr, Ni, Se, PAHs(*)	Rest of pollutants(**)	T2	

NFR	NFR category		Pollutants						
2D3h	Printing	NMVOC	_	Rest of pollutants	PM _{2.5} , BC	T2			
2D3i	Other solvent use	NMVOC, BaP, BbF, BkF, IcP, PAH	-	PCBs	Rest of pollutants	T1/T2			
2G	Other product use: Other use of solvents and related activities	Rest of pollutants	-	-	Se, HCB, PCBs	T2			
2H1	Pulp and paper industry	NOx, NMVOC, SOx, PM _{2.5} , PM ₁₀ , TSP, BC, CO		Heavy Metals, PCBs, DIOX	NH ₃ , BaP, BbF, BkF, IcP, PAH, HCB	т2/т3			
2H2	Food and beverages industry	NMVOC	-	Rest of pollutants	PM _{2.5} , PM ₁₀ , TSP,BC	T1			
2H3	Other industrial processes								
21	Wood processing	TSP	-	Rest of pollutants	NOx, NMVOC, SOx, NH ₃ , PM _{2.5} , PM ₁₀ , BC, CO, As, Cu	T1	✓		
2J	Production of POPs	-	-	Rest of pollutants	NOx, NMVOC, SOx, NH ₃ , CO, HCB, PCBs	-			
2К	Consumption of POPs and Heavy Metals	-	-	Rest of pollutants	Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, HCB, PCBs	-			
2L	Other production, consumption, storage, transportation or handling of bulk products: NH ₃ consumption in refrigeration		-	Rest of pollutants	-	T2			

IE: included elsewhere; NA: not applicable; NE: not estimated; NO: not occurring.

^{(*):} Emissions of particulate matter coming from cement production are included within the estimations of the associated combustion (1A2f), because they are estimated by measurements performed at the plants.

^{(**):} Polycyclic Aromatic Hydrocarbons (PAHs) are only produced by asphalt blowing activity into this category, but this process did not take place in any of the existing refineries in Spain during the Inventory period.

4.2. Sector analysis

Main features of the Industrial Processes and Products Use Sector in Spain in 2019 are listed in the following table for reference.

These main features do not consider the Canary Islands, as their territory is not under the EMEP grid.

Table 4.2.1Sector analysis

NFR Code	NFR category	Main features (2019)	Main sources of activity data
2A2	Lime production	- 17 facilities - 2,153 kt produced	 - ANCADE (National Association of Manufacturers of Limes and Derivatives of Spain) - EU ETS data - IQ
2A3	Glass production	- More than 25 facilities - 4,707 kt of glass	- IQ - ANFFECC (Association of companies of Spanish ceramic frits, glazes and ceramic pigments producers)
2A5a	Quarrying and mining of minerals other than coal	- 183.98 Mt of material quarried	- IGME
2A5b	Construction and demolition	- 24,510,000.00 m ² of floor space constructed/demolished	- INE - Ministry of Public Works
2A5c	Storage, handling and transport of mineral products	- 47.88 Mt Port traffic: mineral products handled	- Spanish State ports website
2A6	Other mineral products: Batteries manufacturing	- 7 facilities - 15,900,000 units of lead batteries manufactured	- MINCOTUR
2B1	Ammonia production	- 2 facilities - 534 kt produced	- IQ
2B2	Nitric acid production	- 4 facilities - 696 kt produced	- IQ
2B5	Carbide production	- Silicon and calcium carbide production	- IQ
2B6	Titanium dioxide production	- 1 facility	- FEIQUE
2B7	Soda ash production	- 1 facility	- SOLVAY
2B10a	Other chemical industry: Processes in organic and inorganic chemical industry except adipic acid	- 8 subsectors of inorganic production included - 18 subsectors of organic production included	- IQ - FEIQUE
2C1	Iron and steel production	- 2 integrated iron and steel plants- 26 Non-integrated iron and steel plants- 13,642 kt manufactured	- IQ - UNESID - EU-ETS data
2C2	Ferroalloys production	- 5 production plants- 279 kt produced- Production of ferrosilicon, ferromanganese and siliconmanganese	- IQ
2C3 Aluminium production		- Two type of production processes: central prebaked and Söderberg - 3 facilities	- IQ

NFR Code	NFR category	Main features (2019)	Main sources of activity data
2C5	Lead production	- Primary and secondary lead production - 189 kt produced	- IQ - Spanish Industry Report 1992 (MINER) - UNIPLOM - MITYC - "World Mineral Production" publication
2C6	Zinc production	- Primary and secondary zinc production	- IQ - SGIBP - U.S. Geological Survey Mineral Yearbook (2014)
2C7a	Copper production	- Primary and secondary copper production	- IQ - SGIBP - UNICOBRE - U.S. Geological Survey Mineral Yearbook (2014)
2D3a	Domestic solvent use including fungicides	- Estimations based on population data. 2019 Spain Population = 47.104.233	- INE
2D3b	Road paving with asphalt	Two types of bituminous mixes compiled: - Cold bituminous mixtures - Emulsions without mixture	- EAPA
2D3c	Asphalt roofing	- 153 tonnes of roofing material produced	- INE
2D3d	Coating applications	 9 categories of emissions with information on solvent content in the product 458.54 kt paint applied Information on solvent used in manufacturing of automobiles from IQ 	- ASEFAPI - Automobile industry
2D3e	Degreasing	 Information on solvent used in manufacturing of automobiles from IQ Metal treatment industries 	- Automobile industry - INE
2D3f	Dry cleaning	- Estimations of solvent consumption based on actual consumption in installations - 980 t of solvents consumed	- VOC consumption and emissions from installations under RD/117/2003
2D3g	Chemical products	- 11 compilation categories (activities within SNAP subgroup 06.03)	- INE - VOC consumption and emissions from installations under RD/117/2003
2D3h	Printing	- 59.2 kt of inks estimated (paste inks, black new inks, publication inks, varnishes and sundries and other inks)	- ASEFAPI
2D3i	Other solvent use	 Heterogeneous group including 7 different activities (see Solvent use section for details) 	- Statistical sources - AFOEX - ANEO
2G	Other product use	- Heterogeneous group including 4 different activities (see "Other" section for details)	- EUROSTAT - Spanish producers of anaesthesia
2H1	Pulp and paper industry	- 9 production plants - 1,619 kt of pulp manufactured	- ASPAPEL
2H2	Food and beverages industry	- INE	

NFR Code	NFR category	Main features (2019)	Main sources of activity data
21	Wood processing	- 2,812 kt of wood board products	- FAOSTAT
2L	Other production, consumption, storage, transportation or handling of bulk products: NH ₃ Consumption in refrigeration	- 1.201 tonnes of $\mathrm{NH_3}$ consumed in refrigeration	- Spanish producers of ammonia for refrigeration use

4.2.1. Key categories

Identified Key Categories within the IPPU sector, according to the information provided in section 1.5 of the IIR and Annex 1 are listed in the following table.

Table 4.2.2 Assignation of KC

NFR	NFR Category	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	DIOX	PAHs	НСВ	PCBs
2A	Mineral products	-	-	-	-	L	L-T	L-T	-	-	L-T	L-T	-	-	-	-	-
2B	Chemical Industry	Т	L-T	L	Т	-	-	L	-	-	-	-	Т	-	-	Т	-
2C	Metal production	-	-	L-T	-	-	L-T	L	-	L-T	L-T	L-T	L-T	L-T	L-T	-	L-T
2D	Solvents and other product use	-	L-T	-	-	-	-	-	-	-	-	-	L	-	-	-	-
2G+ 2H+ 2I+2 J+2K +2L	Other industrial processes and product use	-	L-T	L	-	-	-	_	_	-	-	_	-	-	-	-	-

L: level; T: trend

4.2.2. Analysis by pollutant

Charts of the time series by pollutants and NFR categories are shown next. Each pollutant is represented independently, broken down by main NFR categories within the sector. Additionally, a pie chart showing the weight distribution of the main categories for year 2019 is included.

Explanation boxes are included beside the graphs, providing specific details on the pollutant emissions in year 2019 and main drivers and trends during the time series. Emissions from the Canary Islands are not considered, as their territory is not under the EMEP grid.

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

Main Pollutants

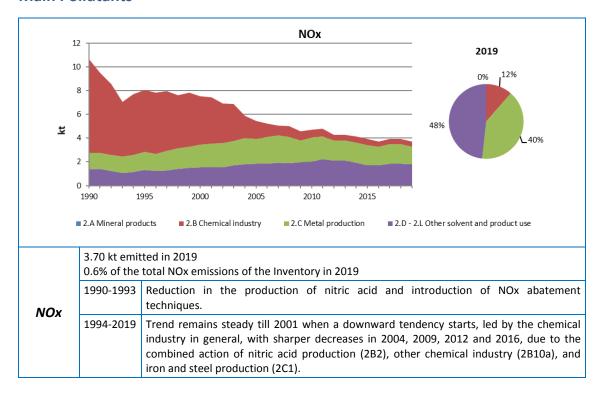


Figure 4.2.1 Evolution of NOx emissions by category and distribution in year 2019

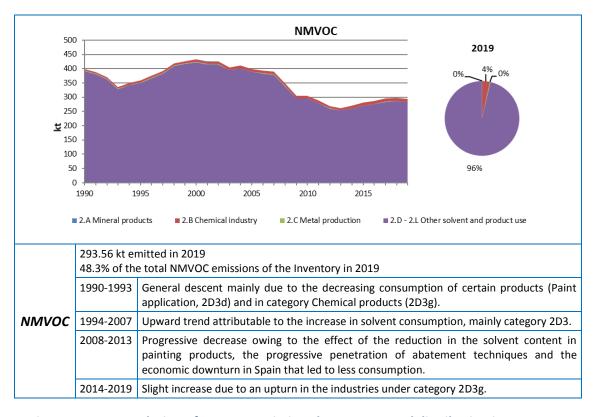


Figure 4.2.2 Evolution of NMVOC emissions by category and distribution in year 2019

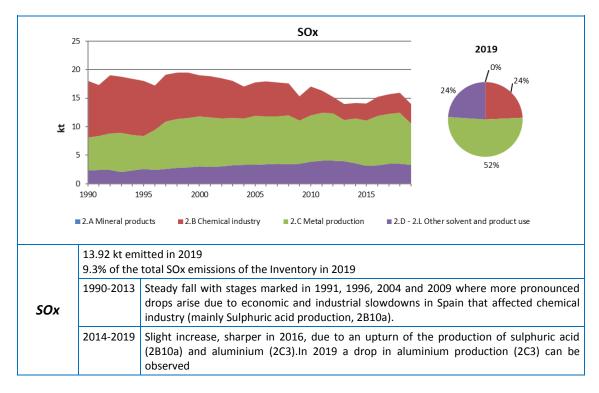


Figure 4.2.3 Evolution of SOx emissions by category and distribution in year 2019

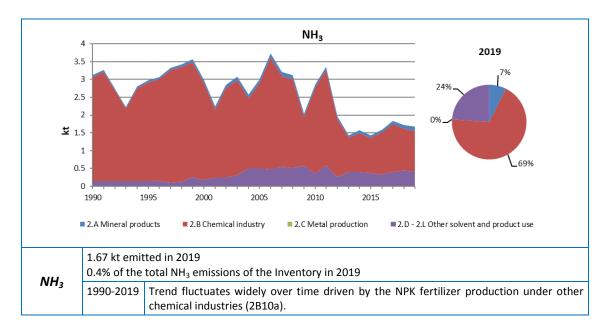


Figure 4.2.4 Evolution of NH₃ emissions by category and distribution in year 2019

Particulate Matter

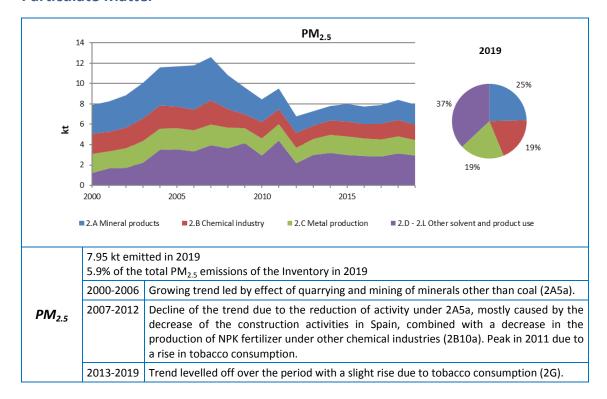


Figure 4.2.5 Evolution of PM_{2.5} emissions by category and distribution in year 2019

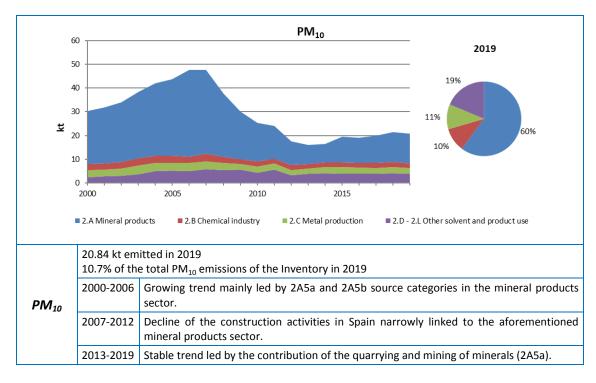


Figure 4.2.6 Evolution of PM₁₀ emissions by category and distribution in year 2019

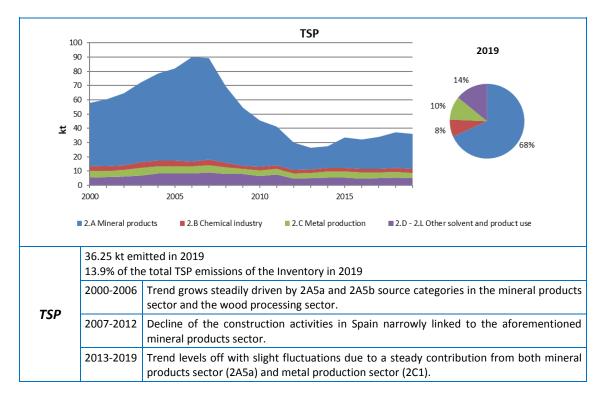


Figure 4.2.7 Evolution of TSP emissions by category and distribution in year 2019

Figure 4.2.8 Evolution of BC emissions by category and distribution in year 2019

CO and Priority Heavy Metals

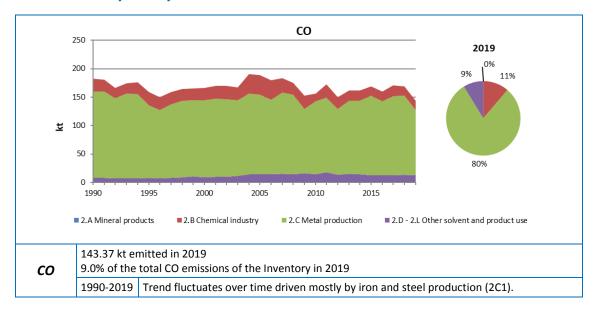


Figure 4.2.9 Evolution of CO emissions by category and distribution in year 2019

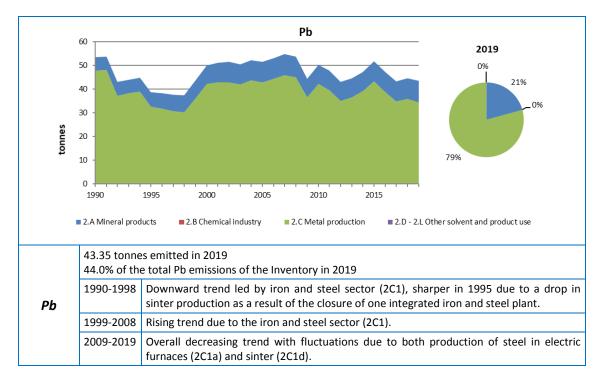


Figure 4.2.10 Evolution of Pb emissions by category and distribution in year 2019

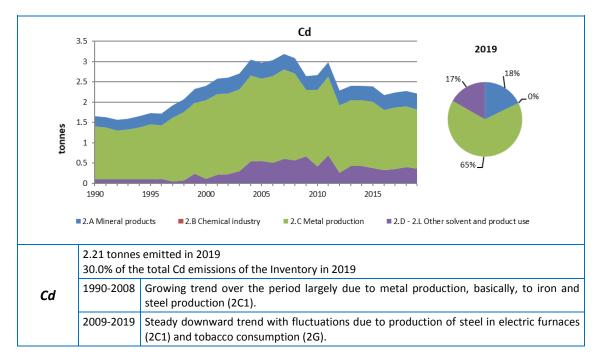


Figure 4.2.11 Evolution of Cd emissions by category and distribution in year 2019

Figure 4.2.12 Evolution of Hg emissions by category and distribution in year 2019

POPs

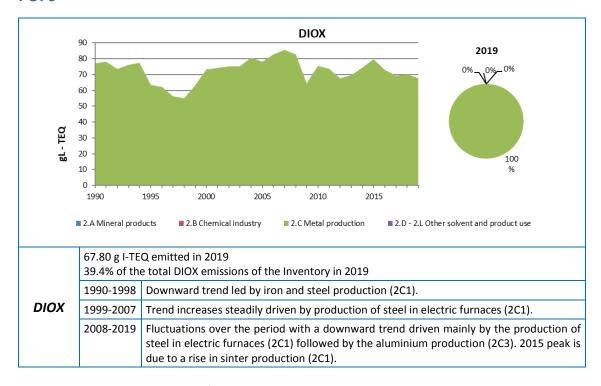


Figure 4.2.13 Evolution of DIOX emissions by category and distribution in year 2019

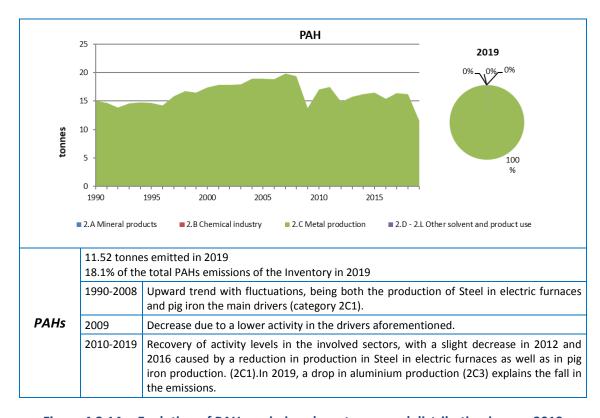


Figure 4.2.14 Evolution of PAHs emissions by category and distribution in year 2019

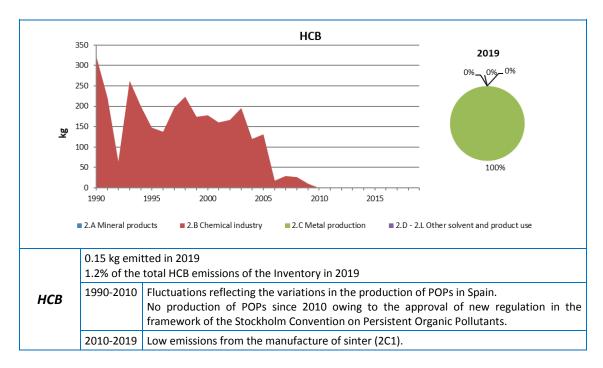


Figure 4.2.15 Evolution of HCB emissions by category and distribution in year 2019

Figure 4.2.16 Evolution of PCBs emissions by category and distribution in year 2019

4.2.3. Condensable component of PM₁₀ and PM_{2.5}

As detailed in Annex V, indication of whether the emission estimates and emission factors for PM_{10} and $PM_{2.5}$ in the IPPU sector include or exclude the condensable component can be found in the table below:

Table 4.2.3 Particulate matter emission factors per source category and information on condensable component

NFR	Source/sector	name	conde	sions: the ensable onent is	EF reference and comments
			included	excluded	
2A1	Cement production			E	
2A2	Lime production			rmation lable	EMEP/EEA GB 2019
2A3	Glass production			rmation lable	EMEP/EEA GB 2019
2A5a	Quarrying and mining of other than coal	minerals		rmation lable	EMEP/EEA GB 2016
2A5b	Construction and demol	ition		rmation lable	EMEP/EEA GB 2013
2A5c	Storage, handling and tra mineral products	ansport of		rmation lable	EMEP/EEA GB 2019
2A6	Other mineral products in the IIR)	please specify	N	IA	
2B1	Ammonia production		١	I E	
2B2	Nitric acid production		ľ	I E	
2B3	Adipic acid production		NO		
2B5	Carbide production		No information available		EMEP/EEA GB 2019
2B6	Titanium dioxide produc	tion	No information available		EMEP/EEA GB 2019
2B7	Soda ash production		No information available		EMEP/EEA GB 2019
2B10a	Chemical industry: Othe specify in the IIR)	r (please	No information available		EMEP/EEA GB 2019
2B10b	Storage, handling and trachemical products (please the IIR)		I	E	
2C1	Iron and steel production	n		rmation lable	Stack measurements of TSP and PM ₁₀ ; PM _{2.5} fractions based in CEPMEIP (2000) or EMEP/EEA GB 2019, from TSP data
				Х	EMEP/EEA GB 2019
2C2	Ferroalloys production			Х	EMEP/EEA GB 2019
2C3	Aluminium production	Primary production	No information available		Stack measurements of TSP; $PM_{2.5}$ and PM_{10} fractions based in CEPMEIP (2000), from TSP data
		Secondary production	Х		EMEP/EEA GB 2019
2C4	Magnesium production		١	10	
2C5	Lead production			Х	EMEP/EEA GB 2019
2C6	Zinc production			Х	EMEP/EEA GB 2019
2C7a	Copper production			Х	EMEP/EEA GB 2019

NFR	Source/sector name	PM emissions: the condensable component is	e EF reference and comments
2C7b	Nickel production	NO	
2C7c	Other metal production (please specify in the IIR)	NA	
2C7d	Storage, handling and transport of metal products (please specify in the IIR)	NE	
2D3a	Domestic solvent use including fungicides	NE	
2D3b	Road paving with asphalt	Х	EMEP/EEA GB 2019
2D3c	Asphalt roofing	No information available	EMEP/EEA GB 2019
2D3d	Coating applications	NA	
2D3e	Degreasing	NE	
2D3f	Dry cleaning	NE	
2D3g	Chemical products	NE	
2D3h	Printing	NE	
2D3i	Other solvent use (please specify in the IIR)	NE	
2G	Other product use (please specify in the IIR)	No information available	EMEP/EEA GB 2019
2H1	Pulp and paper industry	No information available	EMEP/EEA GB 2019
2H2	Food and beverages industry	NE	
2H3	Other industrial processes (please specify in the IIR)	NO	
21	Wood processing	NE	
2J	Production of POPs	NA	
2K	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)	NA	
2L	Other production, consumption, storage, transportation or handling of bulk products (please specify in the IIR)	NA	

4.3. Major changes

The table below summarizes the major changes performed in the IPPU sector in the current Inventory edition. During the 2019 NECD review (pursuant to Directive (EU) 2016/2284), no specific changes in the IPPU sector were recommended, apart from the general recommendation of reporting emissions on the individual PAH whenever was possible. Further details of new estimations and recalculations can be found in sections 4.4 (Key categories analysis) and 4.5 (Recalculations).

Table 4.3.1 Major changes in the IPPU sector in Inventory edition 2021

NFR Category	Activities included	Pollutant	Type of change
Iron and Steel production (2C1)	- Blast furnaces	со	Relocation to 1A2a category
		НМ	Recalculation
	- Steel production: Basic oxygen furnaces	CO, HM	Update of EF
Ferroalloys production (2C2)	- Ferroalloys production	СО	Not estimated
Coating applications (2D3d)	 Use of paints and protective coatings. 	NMVOC	Recalculation

4.4. Key categories analysis

Within this sector, the following categories have been identified as key (see table Assignation of KC for reference):

- A. Mineral Industry 2A
- B. Chemical Industry 2B
- C. Metal production 2C
- D. Solvent use 2D
- E. Other industrial processes and product use 2G+2H+2I+2J+2K+2L

Activity data sources, methodologies and a general assessment for each category are provided.

A. Mineral industry (2A)

Mineral industry is a key category for its contribution to the level and the trend of the emissions of PM_{10} , TSP, Pb and Cd, as well as for its contribution to the level of the emission of $PM_{2.5}$.

Emissions of Particulate Matter in this sector are mainly due to activities 2A5a (Quarrying and mining of minerals other than coal) followed by 2A3 (glass production) and 2A5b (Construction and demolition). As for the heavy metals emissions (Pb and Cd) are largely due to glass production activity (2A3).

A.1. Activity variables

Table 4.4.1 Summary of activity variables, data and information sources for category 2A

Activities included	Activity data	Source of information
Lime production (2A2)	- Production of lime.	- 1990-2019: IQ. - 1990-2019: EU ETS DATA. - 1990-2006: ANCADE.
Glass production (2A3)	- Production of glass.	- 1990-2019: IQ. - 1990-2019: ANFFECC.
Quarrying and mining of minerals other than coal (2A5a)	- Production of construction aggregates.	 - 1991–2014: "Panorama minero (Mining overview)". IGME. - 2015, 2016: "Estadística minera de España (Mining statistic)". MINETAD. - 1990, 2019 and beyond: subrogated data from the most recent year available.
Construction and demolition (2A5b)	- Municipal construction authorizations (square metres authorized for construction or demolition).	- 1990–2014: INE. - 2000-2019: Ministry of Public Works.
Storage, handling and transport of mineral products (2A5c)	Tonnes of material handled: - Cement and clinker Construction materials Iron ore Other mineral and waste.	- 2002-2019: Spanish State ports website.
Other mineral products – Batteries manufacturing (2A6)	 Number of batteries produced. Amount of metal used per battery. 	- 1993-1996: MITYC. - 2005-2007: MITYC. - 1997-2004: lineal interpolation. - 1990-1992: subrogated data (1993). - 2008-2019: subrogated data (2007). - 1990-2019: EPA. AP-42.

A.2. Methodology

Table 4.4.2 Summary of methodologies applied in category 2A

Pollutants	Tier	Methodology applied	Observations		
Lime production	n (2A2)				
PM _{2.5} , PM ₁₀ , TSP, BC	T2	EMEP/EEA Guidebook (2019). Chapter 2A2.	EF: - Table 3.3: default Tier 2 emission factors by tonne of lime.		
Glass production (2A3)					
(Methodologica	(Methodological factsheets: Glass manufacturing)				

Pollutants	Tier	Methodology applied	Observations
NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn	Т2	EMEP/EEA Guidebook (2019). Chapter 2A3. US EPA AP-42. Chapter 11.14 Frit Manufacturing.	EF (emission factors by tonne of glass): - Stone glass: CS, except for BC Table 3.5 (default T2) Wool glass: Table 3.5 (default T2) Container glass: Table 3.3 (default T2) Flat glass: Table 3.2 (default T2) Other glasses: for BC table 3.6 and 3.7. Rest of pollutants: Table 14-1,14-2 (default US EPA).
Quarrying and	mining o	of minerals other than coal (2	A5a)
PM	T1	EMEP/EEA Guidebook (2016). Chapter 2A5a.	EF: - Table 3.1: default Tier 1 emission factors by tonne of mineral quarried.
Construction a	nd demo	lition (2A5b)	
PM	T1	EMEP/EEA Guidebook (2013). Chapter 2A5b.	EF: - Table 3.1: default Tier 1 emission factors by square metres constructed or demolished.
Storage, handl	ing and	transport of mineral products	(2A5c)
PM	Т2	EMEP/EEA Guidebook (2019). Chapter 2A5c.	EF: - Table 3.4: default Tier 2 emission factors by tonnes of mineral products handled.
Other mineral	products	– Batteries manufacturing (2	2.46)
Cd, Pb	T1	PARCOM – ATMOS (1992). Section 2.9.6.	EF: - Emissions factor by tonne of metal used in the manufacturing of batteries For Ni-Cd batteries, the lowest value of EF has been chosen assuming abatement techniques installed in factories.

A.3. Assessment

Activities 2A5a and 2A5b are narrowly related to each other and both linked to the construction sector. The production of aggregates grows along with the surface to be constructed. As shown in the next figure, from 1996 to 2006 the production of aggregates suffered a steep rise as did the authorized surface for construction. In 2007, just in the prelude of the Spanish economic downturn, activity variables start a sharp fall until 2010, when trend softens, recovering a light increase from 2014 onwards.

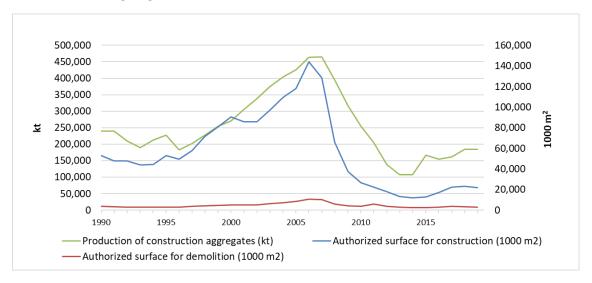


Figure 4.4.1 Evolution of activity data in 2A5a and 2A5b

Emissions from activity 2A3 are driven by the fluctuations of productivity inherent to the glass sector.

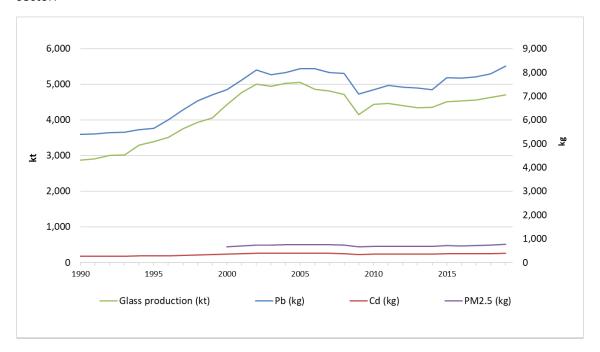


Figure 4.4.2 Evolution of activity data vs Pb, Cd and PM_{2.5} emissions in 2A3

B. Chemical industry (2B)

The chemical industry is a key category for its contribution to the level and the trend of the emissions of NMVOC. It is as well key category to the level of the emissions of SOx and PM_{10} and to the trend of NOx, NH₃, Hg and HCB.

B.1. Activity variables

Table 4.4.3 Summary of activity variables, data and information sources for category 2B

Activities included	Activity data	Source of information
Nitric acid (2B2)	- Nitric acid production by type of process (low pressure, medium pressure and high pressure).	- 1990: IQ from the production plants 1991-2000: Ministry of Industry and FEIQUE 2001-2007: IQ from the production plants and FEIQUE 2008-2019: IQ from the production plants.
Carbide production (2B5)	- Production of silicon and calcium carbide.	 - 1990–2019: IQ from the production plants for the production of silicon carbide. - 1990-2002: publication "The chemical industry in Spain" for calcium carbide. - 2003-2004: publication "Chemistry engineering yearbook" for calcium carbide. - 2005-2019: IQ from the production plants for the production of calcium carbide.
Titanium dioxide production (2B6)	- Production of titanium dioxide.	- 1990-2002: publication "The chemical industry in Spain" 2003-2007: MINCOTUR 2008-2019: FEIQUE.
Soda ash production (2B7)	- Production of soda ash.	- 1990-2019: IQ from the production plant.
Manufacture of sulphuric acid (2B10a)	- Sulphuric acid production.	- 1990-2019: IQ from the production plants. - 1990-2019: FEIQUE.
Ammonium sulphate (2B10 a)	- Ammonium sulphate production	- 1990-2002: publication "The chemical industry in Spain". - 2003-2007: DG of Industry (MITYC) - 2008-2019: INE's Industrial Survey
Ammoniun nitrate (2B10a) - Ammonium nitrate production		 1990-2000:Sub-Directorate General for Basic and Processing Industries at the Ministry of Industry and Energy. 2001-2002: publication "The chemical industry in Spain"; IQ from the production plants. 2003-2007: DG of Industry (MITYC); IQ from the production plants 2008-2019: IQ from the production plants.
Ammonium phosphate (2B10 a)	- Ammonium phosphate production	- 1900: IQ from the production plants 1991-2001: publication "The chemical industry in Spain" 2001-2019: IQ from the production plants; FEIQUE.

Activities included	Activity data	Source of information
NPK fertilisers (2B10a)	- NPK fertilisers production	 - 1990-2000: publication "The chemical industry in Spain". - 2001-2002: publication "The chemical industry in Spain"; IQ from the production plants. - 2003-2007: DG of Industry (MITYC); IQ from the production plants. - 2008-2019: INE's Industrial Survey; IQ from the production plants.
Urea (2B10a)	- Urea production	- 1990-2019: IQ from the production plants.
Carbon black (2B10a)	- Production of carbon black.	- 1990-2019: IQ from the plant.
Production of chlorine (2B10a)	- Data on production capacity with mercury cells.	 - 1990–1997: Chemical Engineering Annual Report. - 1998-2004: ANE. - 2005–2012: IQ from the production plants. - 2013-2017: MITERD (Data from the Spanish Chlor-Alkali industry reported under OSPAR Convention).
Phosphate fertilisers (2B10a)	- Phosphate fertilisers production	 - 1990-2005: Chemical Engineering Annual Report; publication "The chemical industry in Spain". - 2006-2019: INE's Industrial Survey.
Ethylene (2B10 a)	- Ethylene production	- 1990-2002: publication "The chemical industry in Spain" 2003-2019: IQ from the production plants.
Propylene (2B10a)	- Propylene production	- 1990-2002: publication "The chemical industry in Spain"; Sub-Directorate General for Basic and Processing Industries at the Ministry of Industry and Energy; FEIQUE; National Encyclopaedia of Oil, Petrochemistry and Gas, OILGAS - 2002-2019: FEIQUE; IQ from production plants.
Vinylchloride (2B10a)	- Vinyl chloride production	 - 1990-2002: publication "The chemical industry in Spain". - 2003-2008: FEIQUE. - 2009-2019: FEIQUE; IQ from production plant.
Polyethylene low density (2B10a)	- Polyethylene low density production	 - 1990-2002: publication "The chemical industry in Spain". - 2003: publication "The plastics in Spain" (ANAIP) - 2004-2005: ANAIP - 2006-2019: FEIQUE; IQ from production plant.
Polyethylene high density (2B10a)	- Polyethylene high density production	 - 1990-2002: publication "The chemical industry in Spain". - 2003: publication "The plastics in Spain" (ANAIP) - 2004-2005: ANAIP - 2006-2019: FEIQUE; IQ from production plant.
Polyvinylchloride (2B10a)	- Polyvinylchloride production	- 1990-2019: FEIQUE; IQ from production plant.

Activities included	Activity data	Source of information
Polypropylene (2B10a)	- Polypropylene production	- 1990-2002: publication "The chemical industry in Spain" 2003: publication "The plastics in Spain" (ANAIP) - 2004-2005: ANAIP - 2006-2019: FEIQUE; IQ from production plant.
Styrene (2B10a)	- Styrene production	- 1990-2002: publication "The chemical industry in Spain". - 2003-2007: National producer - 2008-2019: IQ from production plant
Polystyrene (2B10a)	- Polysterene production	- 1990-2002: publication "The chemical industry in Spain" 2003: publication "The plastics in Spain" (ANAIP) - 2004-2005: ANAIP - 2006-2019: FEIQUE; IQ from production plant.
Styrene butadiene (2B10a)	- Styrene butadiene production	- 1990-2002: publication "The chemical industry in Spain" 2003-2006: FEIQUE 2007-2019: IQ from production plants.
Styrene-butadiene latex (2B10a)	- Styrene-butadiene latex production	- 1990-2002: publication "The chemical industry in Spain" 2003-2019: Chemical Engineering Yearbook
Styrene-butadiene rubber (SBR) (2B10a)	- Styrene-butadiene rubber (SBR) production	- 1990-2002: publication "The chemical industry in Spain" 2003-2019: IQ from production plant.
Acrylonitrile butadiene styrene (ABS) resins (2B10 a)	- Acrylonitrile butadiene styrene (ABS) resins production	- 1990-2002: publication "The chemical industry in Spain" 2003: publication "The plastics in Spain" (ANAIP) - 2004-2005: ANAIP - 2006-2019: FEIQUE
Ethylene oxide (2B10a)	- Ethylene oxide production	- 1990-2002: publication "The chemical industry in Spain" 2003-2019: FEIQUE.
Formaldehyde (2B10a)	- Formaldehyde production	- 1990-2002: publication "The chemical industry in Spain" 2003-2019: FEIQUE.
Ethylbenzene (2B10a)	- Ethylbenzene production	- 1990-1995: Chemical Engineering Yearbook. - 1996-2012: FEIQUE - 2013-2019: IQ from production plant.
Phtalic anhydride (2B10a)	- Phtalic achydride production	- 1990-1996: publication "The chemical industry in Spain". - 1997-2017: FEIQUE - 2018-2019: IQ from production plant.
Acrylonitrile (2B10a) - Acrylonitrile production		- 1990-2002: publication "The chemical industry in Spain" 2003-2005: FEIQUE 2006-2009: IQ from production plant.
Production of persistent organic compounds (2B10a)	- Production of persistent organic compounds production	- 1990-2009: FEIQUE

B.2. Methodology

Table 4.4.4 Summary of methodologies applied in category 2B

Pollutants	Tier	Methodology applied	Observations
Nitric acid pro	duction (2B2)	
(Methodologic	al factshe	eet: Nitric acid production)	
NOx	Т3/Т2	- EMEP/EEA Guidebook (2019). Chapter 2B.	 EF: For those plants that provide measured emissions, whenever the information was not available, an implicit emission factor has been applied, estimated either from 1990 data or from 2008 data, depending on the plant's activity period. Default emission factors were used when no information from plants was available. Tables 3.9 – 3.12.
NH ₃	Т3/Т2	- EMEP/CORINAIR Guidebook (2007). Chapter B-442.	Emission measurements and information on abatement techniques since 2001 for certain plants. Default emission factors were used when no information from plants was available. Table 2.
Carbide produ	ction (2B	5)	
CO PM _{2.5} , PM ₁₀ , TSP, BC	T1 T2	- Emission factor used by Norway. - EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Provided in a technical communication of the CORINAIR group. EF: - Table 3.18 Table 3.1.
Titanium dioxi	de produ	ction (2B6)	
NOx, SOx, TSP PM _{2.5} , PM ₁₀ , BC	T2 T1	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.20 (sulphate process) Table 3.1.
Soda ash prod	uction (2	 B7)	
NH ₃ , TSP, CO PM _{2.5} , PM ₁₀ , BC	T3	- Country specific Emission Factors. - EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Information provided by plant Table 3.1.
	of sulphu	ric acid (2B10a)	
SOx	Т3	- Country specific Emission Factors, for each manufacturing process.	 EF: Implied emission factor for each plant based on measured emissions. It is applied whenever emissions are not available. Emissions (three different methods): Measured emissions since 2001 for the majority of the plants. Measured emissions declared to the PRTR. Measured emissions declared on environmental statements.
Ammonium su (Methodologic phosphate and	al factshe		sers, ammonium nitrate, ammonium sulphate, ammonium
TSP	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.26 Abatement efficiencies Table 6.62.
PM ₁₀ , PM _{2.5} , BC	T1	- EMEP/EEA Guidebook (2019). Chapter 2B.	- Table 3.1.

Pollutants	Tier	Methodology applied	Observations
Ammoniun nit (Methodologic phosphate and	al factshe	•	sers, ammonium nitrate, ammonium sulphate, ammonium
NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC	ТЗ	- Country specific Emission Factors.	EF: - 1990-2000, implied emission factors based on plant measurements. Emissions measurements provided by plant from 2001
	al factshe		sers, ammonium nitrate, ammonium sulphate, ammonium
phosphate and	rurea)		
NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC	Т3	- Country specific Emission Factors.	EF: - 1990-2001, implied emission factors based on plant measurements.
			- Emissions measurements provided by plant for the years 2002,2004,2007,2009, 2011 and 2013.
NPK fertilisers (Methodologic phosphate and	al factshe	eets: <u>Production of NPK fertili</u>	sers, ammonium nitrate, ammonium sulphate, ammonium
NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC	Т3	- Country specific Emission Factors.	EF: - 1990-2000, implied emission factors based on plant measurements over the period 2001-2010.
			Emissions measurements provided by plant from 2001 onwards.
Urea (2B10a) (Methodologic phosphate and		eets: <u>Production of NPK fertili</u>	sers, ammonium nitrate, ammonium sulphate, ammonium
NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC	Т3	- Country specific Emission Factors.	EF: - 1990-2000, implied emission factors based on plant measurements over the period 2001-2009.
			Emissions measurements provided by plant from 2001 onwards.
Carbon black p	productio	n (2B10a)	
NOx, SOx, PM _{2.5} , PM ₁₀ , TSP, BC	Т3	- Country specific Emission Factors.	EF: - 1990-2006, implied emission factor based on plant measurements.
			Emissions measurements provided by plant from 2007 onwards.
NMVOC, CO	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.30.

Pollutants	Tier	Methodology applied	Observations	
Chlorine production (2B10a)				
Hg	Т2	- 1990 – 1997: PARCOM – ATMOS 1998 – 2004: OSPAR Commission report "Mercury Losses from the Chlor-Alkali Industry 2004") 2005 – 2011: IQ from the 7 existent production plants framed in the Voluntary Agreement for the environmental protection and control of emissions of the Spanish Chlor-alkali industry 2012 ANE (Electrochemical National Association) 2013-2017: MITERD (Emission factors from the Spanish Chlor-Alkali industry reported under	EF: - 1990-1997: emission factors by production capacity with mercury cells from PARCOM – ATMOS 1998-2017: emission factors by production capacity provided by each of the production plants using mercury cells for the different sources of information described before.	
	/2	OSPAR Convention).		
Phospahte fert	-			
TSP, PM ₁₀ , PM _{2.5} BC	T2 T1	- EMEP/EEA Guidebook (2019). Chapter 2B	EF: - Table 3.35 - Table 3.1	
Ethylene (2B10	_		- Table 3.1	
NMVOC	T2	- EMEP/EEA Guidebook	EF:	
MINIVOC	12	(2019). Chapter 2B	- Table 3.36	
Propylene (2B1	.0a)			
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2B	EF: - Table 3.36	
Vinylchloride (2	2B10a)			
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2B	EF: - Table 3.37	
Polyethylene lo	ow densi	· · · ·		
NMVOC, TSP	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.39	
PM _{2.5} , PM ₁₀ , BC	T1		- Table 3.1.	
Polyethylene h	igh dens	ity (2B10a)		
NMVOC, TSP	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.40	
PM _{2.5} , PM ₁₀ , BC	T1		- Table 3.1.	
Polyvinylchlori	de (2B10	a)		
NMVOC, TSP, PM _{2.5} , PM ₁₀	Т2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.41 - Table 3.42	
ВС	T1		- Table 3.1.	
Polypropylene	(2B10a)	•		
NMVOC, TSP	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.43.	

Pollutants	Tier	Methodology applied	Observations			
вс		(2019). Chapter 2B.	- Table 3.1.			
Styrene (2B10a						
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.44.			
Polystyrene (2)	B10a)	, ,				
NMVOC, TSP	T2	- EMEP/EEA Guidebook	EF:			
PM _{2.5} , PM ₁₀ ,	T1	(2019). Chapter 2B.	- Table 3.45.			
BC	'-		- Table 3.1			
Styrene butadi	ene (2B1	0a)				
NMVOC	T2	- EMEP/EEA Guidebook	EF: - Table 3.48.			
Ct	: !	(2019). Chapter 2B.	- Table 5.46.			
Styrene-butadi		l	T			
NMVOC	T2	- EMEP/EEA Guidebook	EF: - Table 3.49.			
Chamana hara h	: ···· / ·	(2019). Chapter 2B.	- I ANIC 3.43.			
		per (SBR) (2B10a)	T			
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.50.			
Acrylonitrile bu	utadiene	styrene (ABS) resins (2B10a)				
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.51.			
Ethylene oxide	(2B10a)	<u> </u>	10000000			
NMVOC	T2	- BAT Reference Document	EF:			
	. –	for the Production of LVOC (2017). Chapter 7.	- Table 7.4.			
Formaldehyde	(2B10a)	(<i>)</i>				
NMVOC, CO,	T2	- EMEP/EEA Guidebook	EF:			
TSP	12	(2019). Chapter 2B.	- Table 3.55.			
PM _{2.5} , PM ₁₀ , BC	T1		- Table 3.1			
Ethylbezcene (2B10a)					
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.56.			
Phtalic anhydr	ido (2011		14010 5.50.			
NMVOC	T2	- EMEP/EEA Guidebook	EF:			
NIVIVOC	12	(2019). Chapter 2B.	- Table 3.57.			
Acrylonitrile (2	B10a)					
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2B.	EF: - Table 3.59.			
Production of a	persisten	t organic compounds (2B10a)				
NMVOC, HCB	T2	- PARCOM-ATMOS-92	EF:			
INIVIVOC, FICE	12	1 AICOIVI-A 1 IVIO3-32	- Table 2.7.1.			

B.3. Assessment

This category includes processes for both organic and inorganic chemical industries, though in the light of the total share of emissions in the category, the most representative is the subcategory 2B10a, which is the one responsible for the key category status.

The following table shows in red the activities included under subcategory 2B10a (Chemical industry: other) which share more than 18% of the emissions for each pollutant in 2019 within the IPPU sector. In blue are highlighted those pollutants for which the category is key.

Table 4.4.5 Main drivers for activity and pollutant in subcategory 2B10a for 2019

Industry	Activity	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со
Inorganic chemical industry	Sulfuric acid	-	-	Х	-	-	-	-	-	-
	Ammonium sulphate	-	-	_	_	Х	Х	Х	Χ	-
	Ammonium nitrate	-	-	_	Х	-	-	_	-	-
	Ammonium phosphate	-	-	_	_	-	-	_	_	_
	NPK fertilisers	-	-	_	_	-	-	_	-	_
	Urea	-	-	_	Х	-	-	_	-	_
	Carbon black production	Х	-	Х	_	-	-	_	-	Х
	Chlorine production	-	-	_	_	-	-	_	-	_
	Phosphate fertilizers	-	-	_	_	-	-	_	-	-
Organic chemical industry	Ethylene	-	-	_	_	-	-	_	-	-
	Propylene	-	-	_	_	-	-	_	_	_
	Vinylchloride	-	-	_	_	-	-	_	_	_
	Polyethylene low density	-	Х	_	_	-	-	_	-	-
	Polyethylene high density	-	-	_	_	-	-	_	-	-
	Polyvinylchloride	-	-	_	_	-	-	_	-	-
	Polypropylene	-	Х	_	_	Х	Х	Х	Х	_
	Styrene	-	-	_	_	-	-	-	-	-
	Polystyrene	-	-	_	_	-	-	_	-	-
	Styrene butadiene	-	-	_	_	-	-	_	-	-
	Styrene-butadiene latex	-	-	_	_	-	-	-	-	-
	Styrene-butadiene rubber (SBR)	-	-	_	_	-	_	_	-	_
	Acrylonitrile butadiene styrene (ABS) resins	-	_	-	-	-	-	-	-	-
	Ethylene oxyde	-	-	_	_	-	-	_	_	-
	Formaldehyde	-	_	_	-	_	-	-	-	-
	Ethylbenzene	-	_	_	-	-	-	-	-	_
	Phtalic anhydride	_	-	_	-	_	-	-	-	-
	Acrylonitrile	-	-	_	-	_	-	-	-	_
	Production of persistent organic compounds	-	-	_	-	-	-	-	-	_

The following figure illustrates the evolution of the five most significant activity variables, taking the data from 1990 as base year.

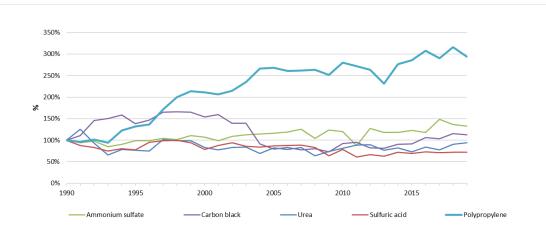


Figure 4.4.3 Evolution index of production (base year 1990) for main activities under 2B10a

Within this category, some adjustments for the emission factors have been done, as is the case for nitric acid production (2B2), where updated values due to mistakes detected over the period 1991-2000 submit recalculations.

In subcategory 2B10a, it is noteworthy the updated emission factor value for NMVOC in the activity ethylene oxide production, with the approval of the plant production. In addition, other recalculations have taken place due to updated data by providers.

It is important to note that from 2018 onwards within chlor-alkali industry in Spain, no mercury cell facilities operate, pursuant the Best Available Technique (BAT) conclusions applicable to chlor-alkali (Implementing Decision 2013/732/EU adopted under the Directive 2010/75/EU on industrial emissions) which states that the mercury-cell process is not BAT, so that mercury-cell technique cannot be used after 11 December 2017. Therefore no Hg emissions are reported since.

C. Metal Production (2C)

The Metal Production industry is a key category for its contribution to the level and the trend of the emissions of SOx, PM₁₀, CO, Pb, Cd, Hg, DIOX, PAHs and PCBs. It is also a key category for its contribution to the level of the emissions of TSP.

In the following pages further details are given regarding activities which are main drivers within this sector:

- The sinter production
- The pig iron production (blast furnace charging and pig iron tapping)
- The steel production (both basic oxygen and electric furnaces)
- The steel rolling (both hot and cold processes)
- The manufacturing of ferroalloys
- The aluminium production (both primary and secondary)
- The lead production (both primary and secondary)
- The zinc production (both primary and secondary)
- The copper production (both primary and secondary)

C.1. Activity variables

Table 4.4.6 Summary of activity variables, data and information sources for category 2C

Activities included	Activity data	Source of information
Sinter production (2C1)	- Sinter production from integrated iron and steel plants (information individually treated as large point sources).	- 1990–2019: IQ.
Pig iron production (2C1)	- Pig iron production by plant.	- 1990–2019: IQ.
Steel production-Basic oxygen furnaces (2C1)	- Steel production from integrated iron and steel plants (information individually treated as large point sources).	- 1990–2019: IQ from the two existent integrated iron and steel plants.
Steel production-Electric furnaces (2C1)	- Steel production from non- integrated iron and steel sector (information individually treated as large point sources).	- 1990–1993: Data from MINETAD. - 1994–2019: Data from UNESID.
- Amounts of steel submitted to the processes of hot and cold lamination. Information from integrated and non integrated iron and steel plants, individually treated as large point sources.		 - 1990–2019: IQ from the two existent integrated iron and steel plants. - For non-integrated iron and steel sector, the Inventory uses data from: - MINETAD for 1990-1993. - UNESID for 1994-2019.
Ferroalloys production (2C2) - Production by type of ferroalloy Carbon content of the inputs and outputs of the process.		- 1990–2019: IQ from the six existing production plants.

Activities included	Activity data	Source of information
Aluminium production (2C3)	 Primary production by type of process (prebaked anodes: side worked, central worked or Söderberg anodes). Secondary production. 	 - 1990–2019: IQ from three existing production plants of electrolytic aluminium. - 1990: Employer's association. - 1991-1994: SGIBP-MINER. - 1995-2009: ASERAL.
		- 2010-2019: National institute of Statistics industry product survey.
Lead production (2C5)	- Lead production (both primary and secondary).	Primary lead: - 1990-1991: "Spanish Industry Report 1992". Secondary lead: - 1990-2014: Data from UNIPLOM, MITYC and "World Mineral Production" publication 2015-2019: IQ from five existing production plants of secondary lead.
Zinc production (2C6)	- Zinc production (both primary and secondary).	Primary zinc: - 1990-2008: IQ from the existing plants and data from SGIBP 2009-2019: IQ from the only existing plant. Secondary zinc: - 1990-2019: IQ from one of the plants and data from U.S. Geological Survey Mineral Yearbook (2014).
Copper production (2C7a)	- Copper production (both primary and secondary).	Primary copper: - 1990-2019: IQ from the only existing plant. Secondary copper: - 1990-2019: Data from SGIBP, UNICOBRE and U.S. Geological Survey Mineral Yearbook (2014).

C.2. Methodology

Table 4.4.7 Summary of methodologies applied in category 2C

Pollutants	Tier	Methodology applied	Observations		
Steel production	Steel production-Sinter production (2C1)				
(Methodology fa	ctsheet:	Sinter production)			
NMVOC	Т2	 - 1990–2002: EMEP/EEA Guidebook (2019) Chapter 2C1. - 2003: Measurements of emissions from the only existing plant. - 2004–2019: Derived from the measurements of 2003. 	EF: - EMEP/EEA Guidebook (2019) Chapter 2C1. Table 3.2 National derived emission factors using 2003 data.		
HM (Heavy Metals)	T2/ T3	- 1990–2002: Derived from the measurements of 2003 in one of the plants/ EMEP/EEA Guidebook (2019) Chapter 2C1 for the other two plants 2003: Measurements of emissions from the only existing plant 2004–2019: Derived from the measurements of 2003.	EF: - EMEP/EEA Guidebook (2019) Chapter 2C1. Table 3.2 National derived emission factors using 2003 data.		

Pollutants	Tier	Methodology applied	Observations
TSP/PM ₁₀	T2/ T3	- 1990–1997: EMEP/EEA Guidebook (2019) Chapter 2C1 for two plants 2000-2002: Derived from the measurements of 2003 in the only existing plant 2003: Measurements of emissions from the only production plant 2004–2019: Derived from the measurements of 2003.	EF: - EMEP/EEA Guidebook (2019) Chapter 2C1. Table 3.2 National derived emission factors using 2003 data.
PM _{2.5}	T2	 1990–1997: EMEP/EEA Guidebook (2019) Chapter 2C1 for two plants. 2000-2019: CEPMEIP database for particles. 	EF: - EMEP/EEA Guidebook (2019) Chapter 2C1. Table 3.2 CEPMEIP data has been used to calculate the ratio between PM _{2.5} and PM ₁₀ emissions
ВС	T2	- EMEP/EEA Guidebook (2019) Chapter 2C1.	EF: - Table 3.2.
PCBs	T2	- EMEP/EEA Guidebook (2019) Chapter 2C1.	EF: - Table 3.2.
DIOX	T2/ T3	- 1990–2002: Derived from the measurements of 2003 in one of the plants/ EMEP/EEA Guidebook (2019) Chapter 2C1 for two plants 2003: Measurements of emissions from the only existing plant 2004–2019: Derived from the measurements of 2003 EMEP/EEA Guidebook (2019) Chapter 2C1. Table 3.2.	- National derived emission factors using 2003 data.
PAHs	Т3	 - 1990–2002: Derived from the measurements of 2003 in one of the plants. - 2003: Measurements of emissions from the only existing plant. - 2004–2019: Derived from the measurements of 2003. 	- National derived emission factors using 2003 data.
Steel production	-Pig iror	production (2C1)	
(Methodology fa	ctsheet:	Pig iron production)	
SOx	Т3	 - 1990–2002: Derived from the measurements of 2003. - 2003: Measurements of emissions from the only existing plant. - 2004–2019: Derived from the measurements of 2003. 	EF: - National derived emission factors using 2003 data.
TSP, PM ₁₀ , PM _{2.5} , BC	Т3	 - 2000–2002: Derived from the measurements of 2003. - 2003: Measurements of emissions of PM₁₀ and TSP from the only existing plant. - 2004–2019: Derived from the measurements of 2003. 	EF: - National derived emission factors for PM ₁₀ and TSP using 2003 data.
нм	ТЗ	- 1990–2002: Derived from the measurements of 2003 2003: Measurements of emissions from the only existing plant 2004–2019: Derived from the measurements of 2003.	EF: - National derived emission factors using 2003 data.

Pollutants	Tier	Methodology applied	Observations
PAHs	T1	- EMEP/CORINAIR Guidebook 2006.	EF: - Table 8.2.
Steel production	-Basic o	xygen furnaces (2C1)	
(Methodology fa	ctsheet:	Basic oxygen furnaces in steel plants)	
NOx, NMVOC	T2/ T3	 - 1990–2002: Derived from the measurements of 2003 of one of the production plants. - 2003: Measurements of emissions from one of the existing plants. - 2004–2019: Derived from the measurements of 2003 of one of the existing plants. 	EF: - National derived emission factors using 2003 data from one of the existing plants.
SOx	T2/ T3	- 1990–2002: Derived from the measurements of 2003 of one of the existing plants 2003–2019: Measurements of emissions of SOx from one of the existing plants/ Derived from the measurements of 2003 for the other plants.	EF: - National derived emission factors using 2003 data from one of the existing plants.
TSP, PM ₁₀	T2/ T3	 1990–2002: Derived from the measurements of 2003. 2003: Measurements of emissions from both existing plants. 2004–2019: Derived from the measurements of 2003. 	EF: - National derived emission factors using data from 2003.
PM _{2.5} , BC	T2	- CEPMEIP database for particles.	EF: CEPMEIP data has been used to calculate the ratio between: - PM _{2.5} and PM ₁₀ emissions BC and PM _{2.5} emissions.
co	ТЗ	 - 1990–2002: Derived from the measurements of 2003. - 2003: Measurements of emissions from one of the existing plants. - 2004–2019: Derived from the measurements of 2003. 	EF: - National derived emission factors using data from 2003.
нм	Т2	- 1990–2002: Derived from the measurements of 2003 2003: Measurements of emissions from both existing plants 2004–2019: Derived from the measurements of 2003.	EF: - National derived emission factors using data from 2003.
PAHs	Т3	- 1990–2002: Derived from the measurements of 2003 2003: Measurements of emissions from one of the existing plants 2004–2019: Derived from the measurements of 2003.	EF: - National derived emission factors using data from 2003.
Steel production (Methodology fa		furnaces (2C1) Electric arc furnaces)	
MP, PM, BC, CO, HM, DIOX, PAHs, PCBs	T2	- EMEP/EEA Guidebook (2019) Chapter 2C1.	EF: - Table 3.19.

		- EMEP/EEA Guidebook (2019) Chapter 2C1. Integrated iron and steel plants: - 1990–2002: Derived from the measurements of 2003 2003: Measurements of emissions 2004–2019: Derived from the measurements of 2003.	EF: - Tables 3.22. EF: - National derived emission factors using data from 2003.
Hot rolling mills NMVOC	T2	- EMEP/EEA Guidebook (2019) Chapter 2C1. Integrated iron and steel plants: - 1990–2002: Derived from the measurements of 2003. - 2003: Measurements of emissions. - 2004–2019: Derived from the measurements of 2003.	- Tables 3.22. EF: - National derived emission factors using data
NMVOC		Chapter 2C1. Integrated iron and steel plants: - 1990–2002: Derived from the measurements of 2003 2003: Measurements of emissions 2004–2019: Derived from the measurements of 2003.	- Tables 3.22. EF: - National derived emission factors using data
		Chapter 2C1. Integrated iron and steel plants: - 1990–2002: Derived from the measurements of 2003 2003: Measurements of emissions 2004–2019: Derived from the measurements of 2003.	- Tables 3.22. EF: - National derived emission factors using data
TSP	T2	 - 1990–2002: Derived from the measurements of 2003. - 2003: Measurements of emissions. - 2004–2019: Derived from the measurements of 2003. 	- National derived emission factors using data
		Non-integrated iron and steel plants: - EMEP/EEA Guidebook (2019) Chapter 2C1.	- Table 3.22.
PM ₁₀ , PM _{2.5}	Т2	Integrated iron and steel plants: - 1990–2002: Derived from the measurements of 2003 2003: Measurements of emissions 2004–2019: Derived from the measurements of 2003. Non-integrated iron and steel plants: - EMEP/EEA Guidebook (2019) Chapter 2C1.	EF: - National derived emission factors using data from 2003. Table 3.1 has been used to calculate the ratio between: - PM ₁₀ and TSP emissions PM _{2.5} and PM ₁₀ emissions.
нм	Т3	 - 1990–2002: Derived from the measurements of 2003. - 2003: Measurements of emissions from one of the existing plants. - 2004–2019: Derived from the measurements of 2003. 	EF: - National derived emission factors using data from 2003.
Cold rolling mills			
TSP	T2	- EMEP/EEA Guidebook (2019) Chapter 2C1.	EF: - Table 3.21.
PM ₁₀ , PM _{2.5}	T2	- EMEP/EEA Guidebook (2019) Chapter 2C1.	Table 3.1 has been used to calculate the ratio between: - PM ₁₀ and TSP emissions PM _{2.5} and PM ₁₀ emissions.
Ferroalloys product	tion (2	2(2)	
(Methodology factsh	heet:	Ferroalloys production)	
PM, BC	T1	- EMEP/EEA Guidebook (2019) Chapter 2C2.	EF: Table 3.1.
НМ	T1	- "Experiences with the Heavy Metals Inventory in Slovakia".	- Best available default emission factors.
PAHs	T1	- Holoubek I. <i>et al</i> . (1993).	- Best available default emission factors.

Pollutants	Tier	Methodology applied	Observations
Aluminium produ	ıction (2	2C3)	
(Methodology fa	ctsheet:	Aluminium production)	
Primary producti	on		
NOx, SOx, PM, BC, CO, PAHs	T2/ T3	- Measurements provided by each production plant. - EMEP/EEA Guidebook (2019) Chapter 2C3.	EF: - For SOx and PM: national emission factors derived from the data provided by the production plants. When no information was available, the implicit emission factor of the closest year for which information was available was applied The remaining pollutants have been estimated by default emission factors: Tables 3.2, 3.3.
Secondary produ	ction	Chapter 2001	sy actual cimision factors. Fables 3.2, 3.3.
PM, BC, DIOX	T2/ T3	- EMEP/EEA Guidebook (2019) Chapter 2C3.	EF: - Table 3.4.
Lead production	(2C5)		
(Methodology fa	ctsheet:	Lead production)	
Primary producti			
PM, As, Cd, Hg, Pb, Zn, DIOX, PCBs	Т2	- EMEP/EEA Guidebook (2019) Chapter 2C5.	EF: - Tables 3.2.
Secondary produ	ction		
SOx, PM, As, Cd, Pb, Zn, DIOX, PCBs	Т2	- EMEP/EEA Guidebook (2019) Chapter 2C5.	EF: - Tables 3.5.
Zinc production (2C6)		
(Methodology fa	ctsheet:	Zinc production)	
Primary producti			
SOx , PM, Cd, Hg, Pb, Zn, DIOX, PCBs	Т2	- EMEP/EEA Guidebook (2019) Chapter 2C6.	EF: - Tables 3.3.
Secondary produ	ction		
SOx, PM, As, Cd, Hg, Pb, Zn, DIOX, PCBs	Т2	- EMEP/EEA Guidebook (2019) Chapter 2C6.	EF: - Tables 3.5.
Copper production	on (2C7c	a)	
Primary producti	on		
SOx, PM, BC, As, Cd, Cr, Cu, Hg, Ni, Pb, Zn, DIOX	T2	- EMEP/EEA Guidebook (2019) Chapter 2C7a.	EF: - Tables 3.2.
Secondary produ	ction		
SOx, PM, BC As, Cd, Cu, Ni, Pb, DIOX, PCBs	Т2	- EMEP/EEA Guidebook (2019) Chapter 2C7a.	EF: - Tables 3.3.

C.3. Assessment

The following figure illustrates the evolution of the most important activity variables (production) included within NFR category 2C1.

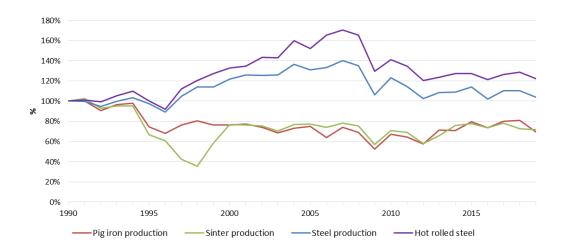


Figure 4.4.4 Evolution index of activity variables of subcategory 2C1 (1990=100)

Both pig iron casting and sinter process, which have a close relationship, have suffered important variations over the time series, with the only exception in 1997 when the closure of the sinter production line in one of the two existing integrated iron and steel plants led to a rough decrease of production. In 2019 pig iron production decreased by 14.2%, while sinter production decreased by 1.7%.

Steel production, that includes both basic oxygen and electric arc furnaces, has also undergone important variations throughout the time series, where it is worth highlighting a significant decrease since 2008, corresponding with the economic and industrial slowdowns in Spain. In 2019, there was a 6.1% decrease in production.

In addition, it is important to point out that steel production in electrical arc furnaces is the main driver of PCBs emissions within metal production industry, which accounts for 82% of total national emissions (2019). These estimates are based on default emissions factor from EMEP/EEA Guidebook 2019 (table 3.19, Chapter 2.C.1). Nevertheless the Spanish Inventory has gathered measured emissions from some production plants which yield IEF several times lower than default values, this suggesting a possible overestimation. However, as there is currently no complete information on measured emissions, the emission factor of EMEP/EEA Guidebook 2019 has still been used for the estimations. Further research on this issue is planned for future editions of the Inventory (please refer to section 4.6)

Regarding the non-ferrous metallurgical industry (2C3, 2C5, 2C6 and 2C7a), the next figure shows the trend of its production.

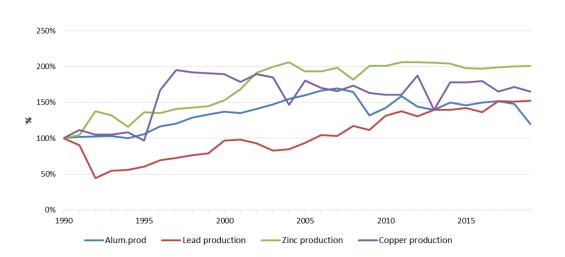


Figure 4.4.5 Evolution index of activity variables of subcategory 2C3, 2C5, 2C6 and 2C7a (1990=100)

It can be seen that aluminium production shows a progressive increase until 2007 when the trend is reversed due to the economic and industrial slowdowns in Spain. From 2011 onwards, production recovers an increasing trend. However, from 2018 a slight decline begins, becoming drastic in 2019 (- 19%) due to the financial problems that two of the production plants are currently facing.

As for zinc and lead production, a similar trend is observed, showing a gradual growth over time, with the exception that lead drastically decreased its production in 1992 when primary production was completely abandoned.

Finally, in terms of the evolution of copper, a strong increase has been observed since 1995, for which primary production is responsible. Since then, great variations have been observed throughout the Inventory period.

D. Solvent use (2D)

Solvent use sector is a key category for its contribution to the level and the trend of the emissions of NMVOC as well as for its contribution to the level of Hg emissions. It represents 42% of the total of Non-Methane Volatile Organic Compounds Inventory emissions and 3% of the total Hg Inventory emissions in 2019.

There have not been any relevant methodological change in this edition but it should be noted that activity data in coating application category (2D3d) have been revised according to information from the Spanish Association of Paints Producers (ASEFAPI). This has resulted in a modification of the series that has meant an appreciable reduction in NMVOC emissions.

D.1. Activity variables

Table 4.4.8 Summary of activity variables, data and information sources for category 2D

Activities included	Activity data	Source of information
Domestic solvents use including fungicides (2D3a)	- Spanish population	- 1990-2019: INE
Road paving with asphalt (2D3b)	- Bitumen consumption for Cold Bituminous mixtures and emulsified asphalt.	Cold Bituminous mixtures: - 2001, 2006-2019: "Asphalt in figures". EAPA 1990-2005: estimation by interpolation based on information from ASEFMA. Emulsified asphalt: - 1990-2019: ratio emulsified asphalt/ Cold Bituminous mixtures estimated based on ASEFMA information.
Asphalt roofing (2D3c)	- Bitumen products in roll.	- 1990-2019: INE.
Paint application in construction and buildings (decopaint) Other industrial paint application (2D3d)	- Annual paint consumption disaggregated by sector of consumption, VOC content, density, water quantity and evolution of these characteristics by type of paint and share between water-based vs. solvent-based paint.	 - 1990-2019: ASEFAPI. - 1990, 2000 and 2010: European Council of the Paint, Printing Ink and Artists Colours Industry (CEPE). - 2005, 2009: % VOC from a Spanish producer of industrial and anticorrosive coatings.
Paint application in automobiles (2D3d)	 Annual paint consumption for the whole sector disaggregated by subsector of consumption. 	- 1990-1996: ASEFAPI. - From 1997 this information is complemented by ten IQ provided by automobile manufacturers.
Metal degreasing (2D3e)	 Number of employees in the metal degreasing sector. Solvents consumed for metal degreasing in the production processes of automobiles. 	 - 1990-1996: "Renta Nacional de España y su Distribución Provincial". BBVA Foundation. Sectors 7 ("Metal Products and Machinery") and 8 ("Transport Material"). - 1997 and following: INE (Industrial survey of companies). - From 1997 this information is complemented by ten IQ provided by automobile manufacturers.
Dry cleaning (2D3f)	- Solvents consumed in the installations.	- Official data in compliance with Royal Decree 117/2003-transposition of the VOC solvents emissions directive.

Activities included	Activity data	Source of information
Chemical products (2D3g)	- Polyester processed in Spain.	- 2003-2005: ANAIP. - 1990-2002; 2006-2019: INE (Industrial Product Survey).
	- Polyvinylchloride processed.	 - 1990-2002: INE (Industrial Product Survey). - 2002-2005: ANAIP. - 2006-2011: National Encyclopaedia of Oil, Petrochemistry and Gas, OILGAS. - 2003-2019: FEIQUE. - 2012-2019: Cataluña Statistical Institute.
	- Polyurethane foam processed.	- 1990-2005: ANAIP. - 2005-2019: PRODCOM Statistics.
	- Polystyrene foams.	- 1990-2019: ANAPE.
	- Rubber manufactured.	- 1990-2019: COFACO.
	- Solvents used in the pharmaceutical sector.	 1990-2006: Extrapolation based on annual variation of number of pharmaceutical sector employees. 2007-2019: Official data in compliance with Royal Decree 117/2003 transposition of the VOC solvents emissions directive.
	- Paints, inks and glues manufactured.	- 1990-2019: INE (Industrial survey of companies).
	- Leather tanning.	 1990-2006: Extrapolation based on previous data of tanned leather (m²) from the Spanish tanner council and other publications. 2007-2019: Official data in compliance with Royal Decree 117/2003- transposition of the VOC solvents emissions directive.
Printing industry (2D3h)	- Sales of the different types of inks (paste inks, black new inks, gravure publication inks, other liquid inks, other printing inks and varnishes and sundries).	- 1990-2019: ASEFAPI
Other solvent use (2D3i)	- Glass and mineral wool production.	- 1990-1996: MINETAD statistics. - 1997-2019: IQs glass manufacturing plants.
	- Solvents consumed in sunflower, rapeseed, soy and olive oil production Amount of oil produced.	- 1990-2019: AFOEX. - 1990-2019: ANEO and AICA.
	- Creosote and organic solvents used in the treatment of wood.	- 1990-1998: AITIM. - 1999-2019: ANEPROMA.
	- Number of vehicles manufactured.	- IQ from vehicles manufacturing plants.
	- Glues application	- 1990-2019: INE (Industrial survey of companies).

D.2. Methodology

Table 4.4.9 Summary of methodologies applied in category 2D

Pollutants	Tier	Methodology applied	Observations
Domestic solve	nt use in	cluding fungicides (2D3a)	
(Methodologic	al factshe	eets of a part of the category:	Domestic solvent use)
NMVOC, Hg	Т2	Inventory Team expert judgment and EMEP/EEA Guidebook (2019). Chapter 2D3a.	EF (expressed by habitant): NMVOC - 1990-2007 EMEP 2019 Table 3.1. - 2008-2019: Country-specific emission factor provided by ESIG. AD used is the population from Spain. This is the reason why It is represented as NA in NECD Annex I tables. It is not possible to relate it with activity units in the NFR tables (kt of solvents used). Currently, 2019 EF estimated is 1,408 NMVOC kg per habitant. Hg - Country specific factor estimated by AMBILAMP.
Road paving w	ith asph	alt (2D3b)	,
PM _{2.5} , PM ₁₀ , TSP, BC, NMVOC	T2	EMEP/EEA Guidebook (2019). Chapter 2D3b.	EF: - Tables 3.2, 3.3 and 3.4. Abatement: - Tables 3.5, 3.6.
Asphalt roofing	g (2D3c)		
(Methodologic	al factshe	eets of a part of the category:	Manufacture of asphalt roofing for waterproofing)
PM _{2.5} , PM ₁₀ , TSP, BC, NMVOC	T1	EMEP/EEA Guidebook (2019). Chapter 2D3c.	EF: - Table 3.1.
(Methodologic	al factshe	cation in shipbuilding; Paint ap	Paint application in car manufacturing; Paint application in oplication in car repairing and Paint application in wood)
NMVOC	Т2	Inventory Team expert judgment and EMEP/EEA Guidebook (2019). Chapter 2D3d.	EF: - Estimation made by the Inventory team based on default values progressively reduced along the time series according to threshold VOC concentrations established by the Royal Decree 227/2006, information from CEPE on distribution of the consumption by type of paint and VOC contents for each type and degree of penetration of abatement techniques assumed for every year Tables 3.8, 3.9 and 3.15. Abatement: - Tables 3.20.
Paint applicati	on in con	struction and buildings (deco	p-paint) (2D3d)
NMVOC	Т2	Inventory Team expert judgment.	EF: - Estimation made by the Inventory team based on threshold VOC concentrations established by the Royal Decree 227/2006, information from CEPE on distribution of the consumption by type of paint and VOC contents for each type, and share between water-based vs. solvent-based paint.
Paint applicati	on in the	manufacture of automobiles	(2D3d)
NMVOC	T2	Solvent balance from 12 IQ.	Emissions: - Emission calculated by a solvent balance (solvent consumed – solvent recovery).

Pollutants	Tier	Methodology applied	Observations
Metal degreas	ing (2D3	e)	
NMVOC	T2	- CORINAIR Manual. - From 1997 IQ to automobiles manufacturers.	EF: - Derived from the CORINAIR manual, assuming a 47 kg of solvent per employee and an NMVOC emission ratio of 90%. Emissions: - The EFs are complemented with the information on solvent consumption for degreasing purposes provided by automobile manufacturers.
Dry cleaning (2	2D3f)		
(Methodologic	al factshe	eets of a part of the category:	Dry cleaning)
NMVOC	T2	Inventory Team expert judgment.	Official data in compliance with Royal Decree 117/2003-transposition of the VOC solvents emissions directive.
Chemical prod	ucts (2D3	3g)	
			Use of solvents in the manufacture or treatment of chemical anufacturing; Solvents use in leather tanning)
Chemical prod	ucts (2D3	g) Polyester processing	
NMVOC	T2	EMEP/EEA Guidebook (2019). Chapter 2D3g.	EF: - Table 3-2.
Chemical prod	ucts (2D3	g) Polyvinylchloride processi	ing
NMVOC	T1	EMEP/EEA Guidebook (2019). Chapter 2D3g.	EF: - Table 3-1.
Chemical prod	ucts (2D3	g) Polyurethane foam proce	ssing
NMVOC	T2	EMEP/EEA Guidebook (2019). Chapter 2D3g.	EF: - Table 3-3.
Chemical prod	ucts (2D3	g) Rubber processing	
NMVOC	T2	EMEP/EEA Guidebook (2019). Chapter 2D3g.	EF: - Tables 3-5 and 3-6 Abatement techniques applied (Table 3-21) from 1999 and 2003 onwards, VOC solvents Directive and Royal Decree 117/2003 dates of entry into force (Process optimization and New processes).
Chemical prod	ucts (2D3	g) Pharmaceutical products	manufacturing
NMVOC	T2	Inventory Team expert judgment.	Official data in compliance with Royal Decree 117/2003-transposition of the VOC solvents emissions directive.
Chemical prod	ucts (2D3	g) Paints, inks and glues ma	nufacturing
NMVOC	T2	EMEP/EEA Guidebook (2019). Chapter 2D3g.	EF: - Table 3-11 Abatement techniques applied (Table 3-20) from 2003 onwards, Royal Decree 117/2003 dates of entry into force (Use of good practices).
Chemical prod	ucts (2D3	g) Leather tanning	
NMVOC	T2	Inventory Team expert judgment.	Official data in compliance with Royal Decree 117/2003-transposition of the VOC solvents emissions directive.
Printing indust	ry (2D3h)	
NMVOC	T2	- ASEFAPI. - EMEP/CORINAIR Guidebook (2007). Chapter B643.	 EF: - ASEFAPI provided a specific emission factor for water borne inks, which is used for the Inventory to estimate the EF series 1990-2019. - Mean values, depending on the techniques.

Pollutants	Tier	Methodology applied	Observations	
Other solvents	Other solvents use (2D3i) Glass and mineral wool enduction			
(Methodologic	al factshe	eets of a part of the category:	Solvents use in glass and mineral wool enduction)	
NMVOC	T2	EMEP/EEA Guidebook (2019). Chapter 2D3i, 2G.	EF: - Tables 3-2 and Table 3-3.	
Other solvents	use (2D3	Bi) Fat, edible and non-edible	oil extraction	
(Methodologic	al factshe	eets of a part of the category:	Extraction of fats and oils)	
NMVOC	T2	Country specific emission factors based on solvents consumed and tonnes of seeds treated.	EF expressed in kg NMVOC/tonnes of seeds.	
Other solvents	use (2D3	Bi) Preservation of wood		
NMVOC, ,BaP, BbF, BkF, IcP, PAH	T2	Inventory Team expert judgment and EMEP/EEA Guidebook (2019). Chapter 2D3i, 2G.	EF: - Estimation made by the Inventory team using data from ANEPROMA.	
Other solvents	use (2D3	Bi) Underseal treatment and c	conservation of vehicles	
NMVOC	T2	Mass balance.	- Mass balance based on solvents consumed in IQs from vehicles manufacturing plants.	
Application of	glues and	d adhesives (2D3i)		
NMVOC	Т2	EMEP/EEA Guidebook (2019). Chapter 2D3i.	EF: - Estimation made by the Inventory team based on default values (Table 3-11) which are progressively reduced along the time series according to threshold VOC concentrations established by the Royal Decree 227/2006 and the degree of penetration of abatement techniques assumed for every year.	

D.3. Assessment

Coating application (2D3d) activity data has been reviewed for the entire series according to information from main sectoral association (ASEFAPI), therefore there have been changes in the NMVOC emission contribution balance. Traditionally this activity was the most relevant in terms of emissions, however now it has been practically equalled with activities 2D3a and 2D3g. It is foreseeable that in the short and medium term, the domestic use of solvents will be the main NMVOC emitting subactivity within the 2D activity (see figure 4.4.6), owing to the difficulties in implementing NMVOC restrictions in products for domestic use, without affecting the internal market rules. Spain would expect further EU legislation on this matter to be developed, and has asked the Commission for support in the achievement of its emission reduction commitments.

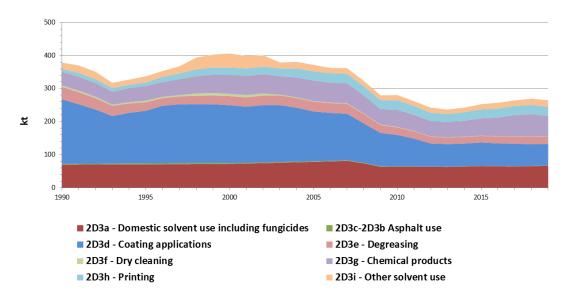


Figure 4.4.6 Distribution of NMVOC emissions in subcategories 2D

The following figure illustrates more clearly the weight of each subcategory under 2D for the year 2019.

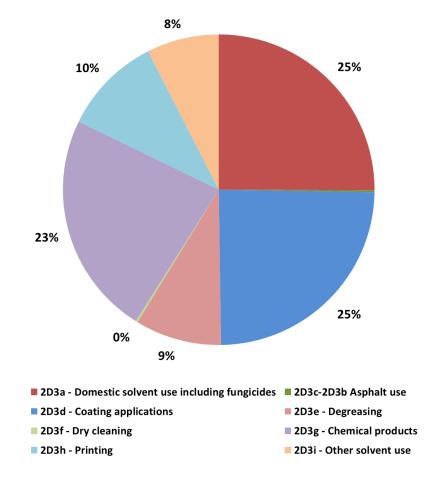


Figure 4.4.7 Distribution of NMVOC emissions in 2D for the year 2019

Regarding recalculations, it is important to highlight the change in 2D3d category with a noticeable reduction in NMVOC emissions across category 2D for the entire series (See section 4.5 Recalculations).

E. Other industrial processes and product use (2G+2H+2I+2J+2K+2L)

This group of NFR categories is significant for its emissions of NMVOC, being key category for its contribution to the level and the trend of NMVOC. It is as well key category to the level of SOx emissions. The main activities encompassed within this category are:

- Manufacturing of paper pulp and paperboard.
- Fermentation processes in the food and beverage industry (bread, biscuits, sugar, coffee roasting, wine, and spirits).

E.1. Activity variables

Table 4.4.10 Summary of activity variables, data and information sources for category 2G+2H+2I+2J+2K+2L

Activities Activity data		Source of information
Tobacco (2G)	- Total tobacco consumption.	- Eurostat data.
Fireworks (2G)	- Fireworks used in Spain.	- Eurostat data.
Chipboard (2H1)	- Chipboard production.	 - 1991-1996: Sub-Directorate General for Basic and processing Industries at the Ministry of Industry and Energy. - Rest of years in the time series: ASPAPEL.
Paper pulp production (2H1)	- Paper pulp production by type of process (kraft process, acid sulphite process, neutral sulphite and semi-chemical process).	- IQ from 9 production plants.
Manufacture of bread and other food products (2H2)	- Production of bread, biscuits, sugar and coffee roasting.	Bread, Biscuits - 1990-1994: Overlap technique following the trend published in "La Alimentación en España" (MITERD) 1995-2019: INE's Industrial Survey. Coffee roasting: - 1990-2019: INE's Industrial Survey. Sugar: - 1990-2009: INE's Industrial Survey 2010-2019: IQ from production plants.
Manufacture of wine, beer and spirits (2H2)	- Production of wine (white, red and rose), beer and spirits (whisky, brandy, others).	- 1990-1994: Overlap technique following the trend published in Statistical Yearbook of MITEC or "La Alimentación en España" (MITERD). - 1995 -2019: INE's Industrial Survey.
Wood processing (21)	- Wood-board processed products.	- FAOSTAT Data provided by sector facilities.
Refrigeration products (2L)	- Tonnes of $\mathrm{NH_3}$ used in refrigerating industry.	- Data provided by sector facilities.

E.2. Methodology

Table 4.4.11 Summary of methodologies applied in category 2G+2H+2I+2J+2K+2L

Pollutants	Tier	Methodology applied	Observations					
Tobacco (2G)								
(Methodologic	(Methodological factsheets of a part of the category: <u>Tobacco combustion</u>)							
NOx, NMVOC, NH ₃ , PM, BC, CO, Cd, Cu, Ni, Zn, DIOX, PAHs	T2	- EMEP/EEA Guidebook (2019). Chapter 2.D3.i.	EF: - Table 3.15.					
Fireworks (2G)								
(Methodologic	al factshe	eets of a part of the category:	<u>Use of pyrotechnical products</u>)					
NOx, SOx, PM, BC, CO, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn	T2	- EMEP/EEA Guidebook (2019). Chapter 2.D3.i.	EF: - Table 3.14.					
Chipboard (2H	1)							
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2H1.	EF: - Table 3.4.					
Paper pulp pro	duction	(2H1)						
NOx, NMVOC, SOx, PM	T2	- EMEP/EEA Guidebook (2019). Chapter 2H1.	EF: - Table 3.2, 3.3.					
Manufacture o	of bread a	and other food products (2H2	2)					
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2H2.	EF: - Table 3.11, 3.18, 3.20, 3.23.					
Manufacture o	of wine, b	peer and spirits (2H2)						
NMVOC	T2	- EMEP/EEA Guidebook (2019). Chapter 2H2.	EF: - Table 3.25, 3.26, 3.29, 3.31, 3.32.					
Wood processi	ing (2I)							
TSP	Т2	- EMEP/EEA Guidebook (2019). Chapter 2I.	- Emission factors derived from information on measurements provided by the production plants for 2016 (lineal extrapolation for the rest of the years).					
Other producti	ion, cons	umption, storage, transporta	tion or handling of bulk products (2L)					
	(Methodological factsheets of a part of the category: <u>Use of products different from halogenated hydrocarbons for refrigeration</u>)							
NH ₃	T2	- Inventory Team expert judgment.	- Emission factors derived from Central purchasing and services of refrigeration (ASOFRIO) based on measurements provided by the production plants.					

E.3. Assessment

The main driver for NMVOC emissions is the category Food and beverage industry (2H2), as illustrated in the following figure. This subcategory is a mixture of many activities with different emissions factors, so the fluctuations in emissions are conditioned by changes in the share of each product in the total production.

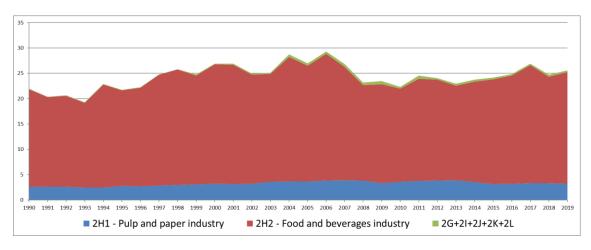


Figure 4.4.8 NMVOC emissions in categories 2H1, 2H2 and 2G+2I+2J+2K+2L

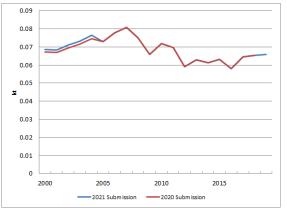
Regarding SOx emissions the main driver within this group is the category Pulp and paper industry (2H1), being the responsible for its key category status by level.

Some recalculations have taken place caused by updated data by providers for categories: 2H1, 2H2 and 2I.

4.5. Recalculations

The next table shows the main recalculations carried out in this Inventory edition, specifying pollutants affected and the reason for recalculation.

Table 4.5.1 Recalculation by pollutants – IPPU


Pollutants affected	Recalculation					
2A2 Lime production	2A2 Lime production					
PM _{2.5} , PM ₁₀ , TSP, BC	Recalculations due to Activity Data error correction for 2000-2004.					
2A3 Glass production						
NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC	Recalculations due to Activity Data update for 2011-2018 provided by data supplier.					
2A5a Quarrying and mining of I	minerals other than coal					
PM _{2.5} , PM ₁₀ , TSP	Recalculations due to Activity Data update for 2018 from National Statistics.					
2A5c Storage, handling and tra	nsport of mineral product					
PM _{2.5} , PM ₁₀ , TSP	Recalculations due to Activity Data update for 2018 from National Statistics.					
2B2 Nitric acid production						
NOx	Recalculations caused by Emission Factor error correction for 1991-2000.					
2B10a Chemical industry: Other	•					
NMVOC, PM _{2.5} , PM ₁₀ , TSP, BC	 Emissions recalculation due to: Ethylene oxide production: updated EF value for NMVOC with the approval of the plant production Phosphate fertilisers production: activity data update by data provider for 2018. 					
	- Acrylonitrile butadiene styrene (ABS) resins production: mistake correction of activity data for ABS resins production and ethylbenzene in 2015 and 2016.					
2C1 Iron and steel production						
All pollutants	 Blast furnaces: Relocation of CO to 1A2a category Recalculation of HM Basic oxygen furnaces: Update of EF for CO and HM EAF (Electric arc furnaces): Update of Activity Data for steel production in 2018. Rolling mills: Recalculation of PM2,5 and PM10 for the time series 2000-2004 					

Pollutants affected	Recalculation				
2C2 Ferroalloys production					
СО	Deletion of CO emissions according to EMEP/EEA 2019 Guidebook				
2C3 Aluminium production					
PM _{2.5} , PM ₁₀ , TSP, BC, DIOX	Update of Activity Data in Secondary Aluminium production from 2010 onwards				
2C6 Zinc production					
Pb	Correction of Pb EF according to EMEP/EEA 2019 Guidebook				
2D3a Domestic solvent use					
NMVOC	Recalculation due to updating of ESIG's data for 2018.				
2D3b Road paving with asphalt					
NMVOC, PM _{2.5} , PM ₁₀ , TSP, BC	Recalculations due to last year updating and 2017 activity data error correction.				
2D3d Coating applications					
NMVOC	Recalculation due to updating the information supplied by data provider.				
2D3g Chemical products					
NMVOC	Recalculations due to error correction				
2D3i Other solvent use					
NMVOC	Recalculation due to updating the information supplied by data provider and				
PAHs	error correction				
2H1 Paper pulp production					
NMVOC	Recalculation due to updating the information supplied by data provider.				
2H2 Food and beverages indust	2H2 Food and beverages industry				
NMVOC Recalculations due to Activity Data update for 2018 from National Statistics.					
2I Wood processing	?I Wood processing				
TSP	Recalculations due to Activity Data update from Statistics.				

As described above, major differences found between 2021 and 2020 editions for sector NFR 2 affect a wide range of pollutants. Next figures show recalculations in absolute values and in relative terms respectively for categories where either recalculation have been carried out for methodological reasons or have a significant weight within IPPU sector. Impacts of these changes have already been explained in this Chapter.

2A2 Lime production. PM_{2.5}, PM₁₀, TSP, BC

New estimates for the period 2000-2004 caused by activity data error correction.

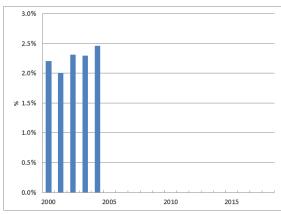


Figure 4.5.1 Evolution of the difference in 2A2 PM_{2.5} emissions

2A3 Glass production. NMVOC, NH_3 , $PM_{2.5}$, PM_{10} , TSP, BC

New estimates for the period 2011-2018 caused by activity data error correction.

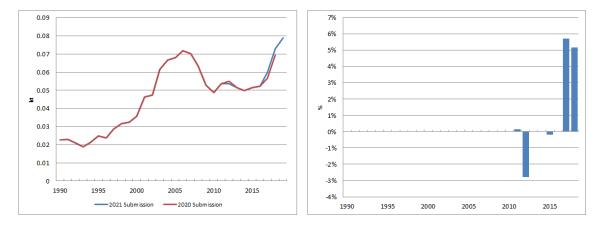


Figure 4.5.2 Evolution of the difference in 2A3 NMVOC emissions

2B2 Nitric acid production. NOx

New estimates for NOx emissions have taken place caused by error correction of EF values for the period 1991-2000.

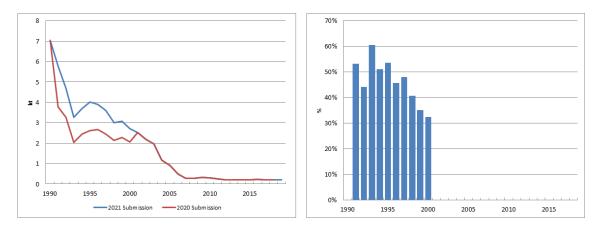
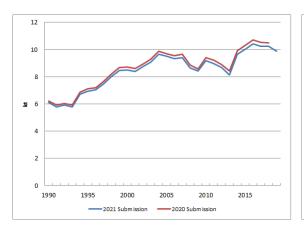



Figure 4.5.3 Evolution of the difference in 2B2 NOx emissions

2B10a Chemical industry: Other. NMVOC, PM_{2.5}, PM₁₀, TSP, BC

New estimates for NMVOC emissions caused by updated EF value with the approval of the plant production more in line with their actual emissions.

All the other recalculation are due to updating the information supplied by data provider.

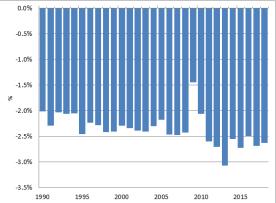
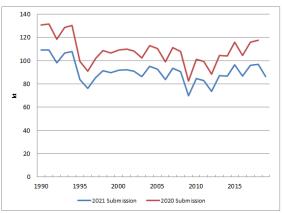



Figure 4.5.4 Evolution of the difference in 2B10a NMVOC emissions

2C1 Iron and steel production. CO, PM_{2.5}, PM₁₀, HM

The relocation of CO from blast furnaces to category 1A2a, as well as the update of the CO EF for basic oxygen furnaces, according to EMEP/EEA 2019 Guidebook, yielded on average a reduction of 16% within the activity (2C1).

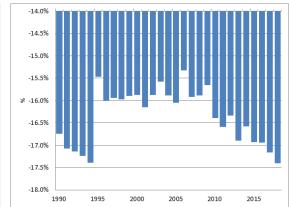


Figure 4.5.5 Evolution of the difference in 2C1 CO emissions

Within the activity of rolling mills, an error has been detected in the $PM_{2.5}$ and PM_{10} emissions for the time series 200-2004, which leads to a decrease in these emissions.

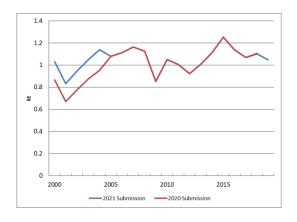
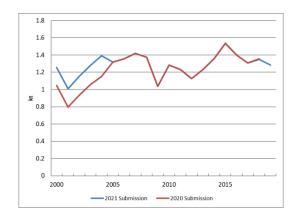



Figure 4.5.6 Evolution of the difference in 2C1 PM_{2,5} emissions

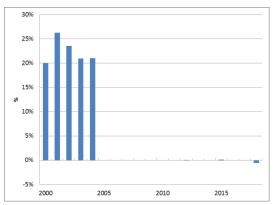
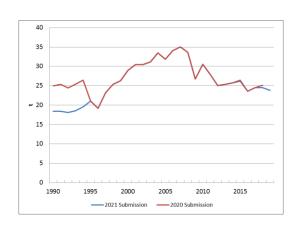



Figure 4.5.7 Evolution of the difference in 2C1 PM₁₀ emissions

Update of EF for HM in blast furnaces and basic oxygen furnaces.

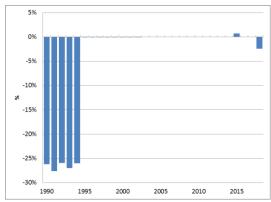
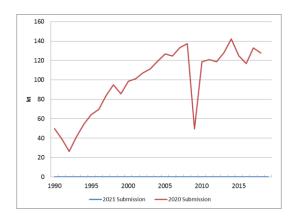



Figure 4.5.8 Evolution of the difference in 2C1 Zn emissions

Additionally, Activity Data for EAF (electric arc furnaces) has been updated for the year 2018, affecting NMVOC, NOx, SOx, CO, PM, HM, DIOX, PAH and PCB emissions.

2C2 Ferroalloys production. CO

CO emissions have not been accounted for due to a methodological update to EEA/EMEP 2019 Guidebook where no information for CO emission factor is provided. This decision is supported by the IPCC 2006 Guidelines, where it is stated that CO emissions are converted to CO_2 .

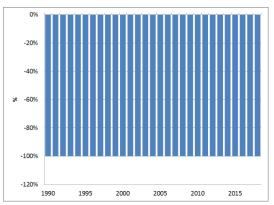
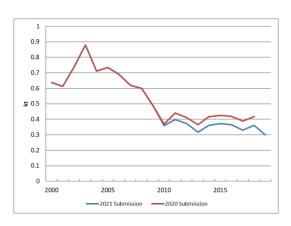



Figure 4.5.9 Evolution of the difference in 2C2 CO emissions

2C3 Aluminium production, PM_{2.5}, PM₁₀, TSP, BC, DIOX

Update of Activity Data in secondary aluminium production from 2010 onwards.

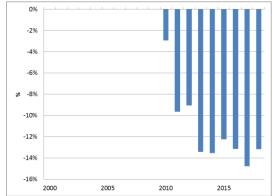
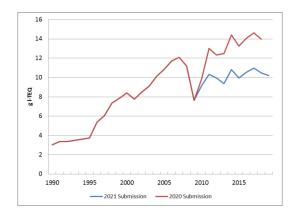



Figure 4.5.10 Evolution of the difference in 2C3 PM_{2.5} emissions

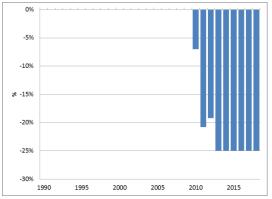
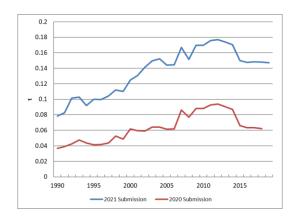



Figure 4.5.11 Evolution of the difference in 2C3 DIOX emissions

2C6 Zinc production. Pb

Correction of the units for the Pb EF, according to EMEP/EEA 2019 Guidelines

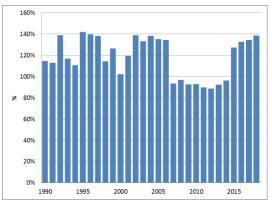
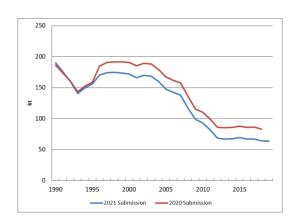



Figure 4.5.12 Evolution of the difference in 2C6 Pb emissions

2D3d Coating application. NMVOC

There has been a significant recalculation into this activity due to an update of the activity variable by the sectoral association that provides such information, which has updated its criteria for estimating the amounts of paint used in different activities. Their estimation methodology is based on economic billing and due to the numerous changes that the market has had in different present and past stages, they have retroactively revised their calculation equations.

The following figure represents the change:

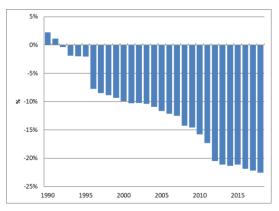


Figure 4.5.13 Evolution of the difference in 2D3d nmvoc emissions

4.6. Sector improvements

The main improvements planned for this sector are:

- Updating category 2A5a to EMEP/EEA 2019 by applying a TIER 2 method.
- Updating category 2A5b to EMEP/EEA 2019.
- Research a country specific emission factor to calculate PCB emissions in electric arc furnaces within category 2C1.
- Review and enhance some methodologies into 2D category under the NECD Capacity building Project's counselling in which the Inventory of Spain is taking part.

5. AGRICULTURE (NFR 3)

CONTENTS

5.2.1 Key categories 5.2.2 Analysis by pollutant 5.2.3 Condensable component of PM ₁₀ and PM _{2.5} 5.3 Major changes 5.4 Key categories analysis A. Manure management (3B) B. Crop production and agricultural soils (3D) C. Field burning of agricultural waste (3F) 5.5 Recalculations	5.	1	AGRICULTURE (NFR 3)	. 283
5.2.1. Key categories		5.1.	Sector overview	283
5.2.1. Key categories		5.2.	Sector analysis	285
5.2.2. Analysis by pollutant 5.2.3. Condensable component of PM ₁₀ and PM _{2.5} 5.3. Major changes 5.4. Key categories analysis A. Manure management (3B) B. Crop production and agricultural soils (3D) C. Field burning of agricultural waste (3F) 5.5. Recalculations		5.2.1	·	
5.3. Major changes		5.2.2		
5.4. Key categories analysis		5.2.3	. Condensable component of PM ₁₀ and PM _{2.5}	294
A. Manure management (3B) B. Crop production and agricultural soils (3D) C. Field burning of agricultural waste (3F) 5.5. Recalculations		5.3.	Major changes	295
B. Crop production and agricultural soils (3D) C. Field burning of agricultural waste (3F) 5.5. Recalculations		5.4.	Key categories analysis	295
C. Field burning of agricultural waste (3F)		A.	Manure management (3B)	296
5.5. Recalculations		В.	Crop production and agricultural soils (3D)	309
		C.	Field burning of agricultural waste (3F)	316
5.6. Sector improvements		5.5.	Recalculations	317
		5.6.	Sector improvements	332

FIGURES

Figure 5.1.1	Relative emissions in Agriculture in 2019 and its relative variation (2019 vs. 1990)	
Figure 5.2.1	Evolution of NOx emissions by category and distribution in year 2019	
Figure 5.2.2	Evolution of NMVOC emissions by category and distribution in year 2019	
Figure 5.2.3	Evolution of SOx emissions by category and distribution in year 2019	288
Figure 5.2.4	Evolution of NH ₃ emissions by category and distribution in year 2019	
Figure 5.2.5	Evolution of PM _{2.5} emissions by category and distribution in year 2019	
Figure 5.2.6	Evolution of PM ₁₀ emissions by category and distribution in year 2019	289
Figure 5.2.7	Evolution of TSP emissions by category and distribution in year 2019	290
Figure 5.2.8	Evolution of BC emissions by category and distribution in year 2019	290
Figure 5.2.9	Evolution of CO emissions by category and distribution in year 2019	291
Figure 5.2.10	Evolution of Cd emissions by category and distribution in year 2019	291
Figure 5.2.11	Evolution of Hg emissions by category and distribution in year 2019	. 292
Figure 5.2.12	Evolution of Pb emissions by category and distribution in year 2019	. 292
Figure 5.2.13	Evolution of PAHs emissions by category and distribution in year 2019	293
Figure 5.2.14	Evolution of DIOX emissions by category and distribution in year 2019	293
Figure 5.2.15	Evolution of HCB emissions by category and distribution in year 2019	
Figure 5.4.1	Variation in animal number from 1990 (%)	300
Figure 5.4.2	Variation of NH ₃ emissions for Non-Dairy Cattle (3B1b)	304
Figure 5.4.3	Variation of NH ₃ emissions for Swine (White swine & Iberian swine) (3B3)	304
Figure 5.4.4	3B-NH ₃ emissions (2019) by animal category	
Figure 5.4.5	Emission rate per quantity of milk obtained	
Figure 5.4.6	Variation ratio of N applied by fertilizers with respect to 1990	312
Figure 5.4.7	N applied by source (kt/year)	. 312
Figure 5.4.8	Emissions of nitrogen compounds by agricultural N-fertilization activity and manure	
-	management in 2019 (kt N)	313
Figure 5.4.9	Contribution of NH ₃ emissions (2019) by N applied to soil	
Figure 5.4.10	Dry matter burnt	
Figure 5.5.1	Evolution of the difference in 3B NOx emissions	. 319
Figure 5.5.2	Evolution of the difference in 3B NMVOC emissions	. 320
Figure 5.5.3	Evolution of the difference in 3B NH₃ emissions	. 320
Figure 5.5.4	Evolution of the difference in 3B PM _{2.5} emissions	
Figure 5.5.5	Evolution of the difference in 3B PM ₁₀ emissions	
Figure 5.5.6	Evolution of the difference in 3B TSP emissions	
Figure 5.5.7	Evolution of the difference in 3B4d (Goats) NOx emissions	
Figure 5.5.8	Evolution of the difference in 3B4d (Goats) NMVOC emissions	
Figure 5.5.9	Evolution of the difference in 3B4d (Goats) NH ₃ emissions	
Figure 5.5.10	Evolution of the difference in 3B4d (Goats) PM _{2.5} emissions	
Figure 5.5.11	Evolution of the difference in 3D NOx emissions	
Figure 5.5.12	Evolution of the difference in 3D NMVOC emissions	
Figure 5.5.13	Evolution of the difference in 3D NH ₃ emissions	
Figure 5.5.14	Evolution of the difference in 3Da1 (Inorganic n-fertilizers) NH ₃ emissions	
Figure 5.5.15	Evolution of the difference in 3Da2a (Animal manure applied to soils) NOx emissions	
Figure 5.5.16	Evolution of the difference in 3Da2a (Animal manure applied to soils) NMVOC emissions	
Figure 5.5.17	Evolution of the difference in 3Da2a (Animal manure applied to soils) NH ₃ emissions	
Figure 5.5.18	Evolution of the difference in 3Da2b (Sewage sludge applied to soils) NOx emissions	
Figure 5.5.19	Evolution of the difference in 3Da2b (Sewage sludge applied to soils) NH ₃ emissions	
Figure 5.5.20	Evolution of the difference in 3Da2c (Other organic fertilizers applied to soils (including	
	compost)) NOx emissions	326
Figure 5.5.21	Evolution of the difference in 3Da2c (Other organic fertilizers applied to soils (including	
	compost)) NH ₃ emissions	. 326
Figure 5.5.22	Evolution of the difference in 3Da3 (Urine and dung deposited by grazing animals) NOx	
60. 0 0.0.22	emissions	326
Figure 5.5.23	Evolution of the difference in 3Da3 (Urine and dung deposited by grazing animals) NMVOC	520
1 1gui C 3.3.23	emissions	327
Figure 5.5.24	Evolution of the difference in 3Da3 (Urine and dung deposited by grazing animals) NH ₃	527
1 1501 C 3.3.27	emissions	327
Figure 5.5.25	Evolution of the difference in 3De NMVOC emissions (cultivated crops)	
Figure 5.5.26	Evolution of the difference in 3Dc (Farm-level agricultural operations including storage,	527
5u. C J.J.ZU	handling and transport of agricultural products) (unique PM category of 3D) PM _{2.5} emissions	328
Figure 5.5.27	Evolution of the difference in 3Dc (Farm-level agricultural operations including storage,	520
64. 6 3.3.27	handling and transport of agricultural products) (unique PM category of 3D) PM ₁₀ emissions	328
		520

Figure 5.5.30 handling and transport of agricultural products) (unique PM category of 3D) TSP Evolution of the difference in 3Df (Use of pesticides) HCB emissions (new estima Evolution of the difference in 3F NOx emissions	tion) 329
Figure 5.5.30 Evolution of the difference in 3F NOx emissions	329
Figure 5.5.31 Evolution of the difference in 3F NMVOC emissions	370
Figure 5.5.32 Evolution of the difference in 3F SOx emissions	
Figure 5.5.33 Evolution of the difference in 3F NH ₃ emissions	
Figure 5.5.34 Evolution of the difference in 3F PM _{2.5} emissions	
Figure 5.5.35 Evolution of the difference in 3F PM ₁₀ emissions	332
Figure 5.5.36 Evolution of the difference in 3F TSP emissions	
Figure 5.5.37 Evolution of the difference in 3F Cd emissions	332
Figure 5.5.38 Evolution of the difference in 3F PAH emissions	332
TABLES	
Table 5.1.1 Coverage of NFR category in 2019	
Table 5.2.1 Sector analysis	
Table 5.2.2 Assignation of KC	
Table 5.2.3 Information on condensable component of PM	
Table 5.3.1 Major changes in Agriculture sector in Inventory edition 2021	295
Table 5.4.1 Summary of activity variables, data and information sources for category	
management)	
Table 5.4.2 Summary of methodologies applied in category 3B (Manure management)	
Table 5.4.3 Country specific technical information and zootechnical documents	
Table 5.4.4 Values of livestock numbers, N excretion rates and use of MMS by animal	300
Table 5.4.5 Reduction of ammonia emissions for white swine	
Table 5.4.6 BAT ammonia reduction and Fraction manure application for white swine	
Table 5.4.7 Housing days by animal	
Table 5.4.8 Gross energy intake (MJ/head/day) by animal	308
Table 5.4.9 Excreted VS (kg/head/day) by animal	308
Table 5.4.10 Fraction of silage feeding by animal	308
Table 5.4.11 Summary of activity variables, data and information sources for category	
production and agricultural soils)	
Table 5.4.12 Summary of methodologies applied in category 3D (Crop production and agricult	
Table 5.4.13 N applied to soil by 3D category (kt/year)	
Table 5.4.14 N applied to soil by type N-fertilizer and climate-pH provincial (t/year) in 2019	313
Table 5.4.15 Description of applied BATs in 3Da1 (Inorganic N-fertilizers (includes urea application)	ation)) 314
Table 5.4.16 Summary of activity variables, data and information sources for category 3F	
Table 5.4.17 Summary of methodologies applied in category 3F	316
Table 5.4.18 Dry matter burnt evolution (kt)	317
Table 5.5.1 Recalculation by pollutants	318

5. AGRICULTURE (NFR 3)

Chapter updated in March, 2021.

Sector Agriculture at a glance

Agriculture sector mainly accounts for 96% of NH₃ and 27% of NMVOC inventoried emissions as expected due to the magnitude of the primary sector in Spain. In 2019, this sector (without Canary Islands) involved 7.3 millions of cattle and equine animals heads breeding, 17.9 millions of small livestock, 30.8 millions of swine, 154.0 millions of poultry, 16.8 million of hectares of crops and 1.8 millions of tonnes of N inorganic and organic fertilizers applied to soils.

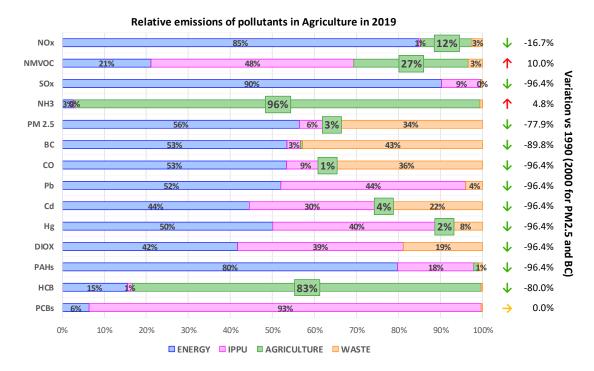


Figure 5.1.1 Relative emissions in Agriculture in 2019 and its relative variation (2019 vs. 1990)

Additionally, agriculture activities in 2019 produced 83% of the total emissions of HCB, linked to HCB impurities in pesticides use (activity 3Df) and 12% of NOx emissions, half of them correspond to emissions from mineral fertilization of agricultural soils and more than a quarter due to organic fertilizers applied to soils, including grazing.

When comparing 2019 to 1990 results (2000 in case of Particulate Matter), most of the emissions trends show a clear reduction along the time series (around -80 or -90%) directly linked to the progressive abandonment of burning agricultural residues on field. Only NH_3 and NMVOC emissions record an upwards trend since 1990, due to the changes in livestock.

5.1. Sector overview

Main issues regarding gas emissions reported for this sector are shown in the following table, in particular, NFR categories and pollutants coverage, methodology approach (Method) and selection as key categories (KC).

Table 5.1.1 Coverage of NFR category in 2019

		Pollutants					
NFR Code	NFR Category			Exceptions	Method		КС
Coue		Covered	IE	NA	NE		
3B1a	Dairy cattle	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1/T2	
3B1b	Non-dairy cattle	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1/T2	
3B2	Sheep	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1/T2	
3B3	Swine	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1/T2	
3B4a	Buffalo			NO			
3B4d	Goats	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	_	Rest of pollutants	_	T1/T2	
3B4e	Horses	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1/T2	✓
3B4f	Mules and asses	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1/T2	
3B4gi	Laying hens	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1/T2	
3B4gii	Broilers	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1/T2	
3B4giii	Turkeys		IE (und	er 3B4giv)			
3B4giv	Other poultry	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	_	Rest of pollutants	_	T1/T2	
3B4h	Other animals			NO			
3Da1	Inorganic N-fertilizers (includes also urea application)	NOx, NH₃	-	Rest of pollutants	_	T1/T2	
3Da2a	Animal manure applied to soils	NOx, NH₃	-	Rest of pollutants	-	T1/T2	
3Da2b	Sewage sludge applied to soils	NOx, NH₃	-	Rest of pollutants	-	T1	
3Da2c	Other organic fertilizers applied to soils (including compost)	NOx, NH₃	-	Rest of pollutants	-	T1	
3Da3	Urine, dung deposited by grazing animals	NOx, NH₃	-	Rest of pollutants	-	T1/T2	
3Da4	Crop residues applied to soils	-	_	Rest of pollutants	NH ₃	-	✓
3Db	Indirect emissions from managed soils	NA					
3Dc	Farm-level agricultural operations including storage, handling, transport of agricultural products	PM _{2.5} , PM ₁₀ , TSP	-	Rest of pollutants	-	T1	
3Dd	Off-farm storage, handling, transport of bulk agricultural products	NA					
3De	Cultivated crops	NMVOC	-	Rest of pollutants	NH ₃	Т2	
3Df	Use of pesticides	НСВ	_	Rest of pollutants	-	T1	

			Pollutants				Method	
NFR Code	NFR category	Carranad	Exceptions			кс		
	Couc		Covered	IE	NA	NE		
;	BF	Field burning of agricultural residues	NOx, NMVOC, SOx, NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, CO, HM, PAHs, DIOX	-	Rest of pollutants	-	T1	√

IE: included elsewhere; NA: not applicable; NE: not estimated; NO: not occurring.

5.2. Sector analysis

Main features of Agriculture sector in Spain in 2019 are listed in the following table for reference. These main features do not consider the Canary Islands, as their territory is not under the EMEP grid.

Table 5.2.1 Sector analysis

NFR Code	NFR category	Main features (2019)	Main sources of activity data
3B1	Cattle	- 6.64 million (M) of cow heads.	- Zootechnical document ¹ - Livestock Surveys ²
3B2	Sheep	- 15.44 M of sheep heads.	- Zootechnical document. - Livestock Surveys.
3B3	Swine	- 30.81 M of swine heads.	- Zootechnical document. - Livestock Surveys.
3B4d	Goats	- 2.45 M of goats heads.	- Zootechnical document. - Livestock Surveys.
3B4e 3B4f	Equidae	- 0.62 M of equidae heads.	 Zootechnical document. REGA³ (Livestock Farm Registry). RIIA³ (Animal Individual Identification Registry).
3B4g	Poultry	- 154.05 M of poultry.	- Zootechnical document. - MAPA's Statistical Yearbook⁴. - REGA (Livestock Farms Registry).
3Da1	Inorganic N-fertilizers (includes also urea application)	- 1.01 M tonnes of N inorganic fertilizers applied to soil.	- MAPA's Statistical Yearbook.- Husbandry Surveys.- Nitrogen and Phosphorous Balance in
3Da2a	Animal manure applied to soils	- 0.44 M tonnes of N manure applied to soil.	Spanish Agriculture (BNPAE) Yearbook Zootechnical document.
3Da2b	Sewage sludge applied to soils	- 0.02 M tonnes of N compost applied to soil.	- National Sewage Register (MITERD). - SG Circular Economy information (MITERD).
3Da2c	Other organic fertilizers applied to soils (compost)	- 0.02 M tonnes of N sewage sludge applied to soil.	
3Da3	Urine and dung deposited by grazing animals	- 0.32 M tonnes of N manure by grazing animals applied to soil.	

¹ See Table 5.4.3.

² Husbandry Surveys (May and November): https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/ganaderia/encuestas-ganaderas/

http://www.mapa.gob.es/es/ganaderia/temas/trazabilidad-animal/registro/

Ministry for Agriculture, Fisheries and Food Statistical Yearbook: http://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/

NFR Code	NFR category	Main features (2019)	Main sources of activity data
3Da4	Crop residues applied to soils	- 0.19 M tonnes of N crop residues applied to soil.	
3Dc	Farm-level agricultural operations	- 16.83 M hectares of crops Surface.	- MAPA's Statistical Yearbook. - Nitrogen and Phosphorous Balance in Spanish Agriculture (BNPAE) Yearbook.
3De	Cultivated crops	- 10.40 M hectares of crops surface.	- MAPA's Statistical Yearbook.
3Df	Use of pesticides	- 281.28 tonnes of active substances with HCB impurities.	- MAPA (Ministry for Agriculture, Fisheries and Food).
3F	Field burning of agricultural residues	- 331.58 kilotonnes of dry matter burnt.	- MAPA's Statistical Yearbook. - Nitrogen and Phosphorous Balance in Spanish Agriculture (BNPAE) Yearbook.

5.2.1. Key categories

Identified key categories within the Agriculture sector, according to the information provided in section 1.5 of the IIR and Annex 1, are listed in the following table.

Table 5.2.2 Assignation of KC

NFR	NFR Category	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	DIOX	PAHs	нсв	PCBs
3B	Manure management	-	L-T	-	L-T	L	L-T	L-T	-	-	-	-	-	-	-	-	-
3D	Crop production and agricultural soils	L-T	L-T	-	L-T	-	L-T	L-T	-	-	-	-	-	_	_	L-T	_
3F	Field burning of agricultural residues	Т	-	-	Т	L-T	Т	Т	Т	Т	-	L-T	Т	-	Т	-	_

L: level T: trend

5.2.2. Analysis by pollutant

Featured below are the charts of the time series by pollutants and NFR categories. Each pollutant is represented independently, broken down by main NFR categories within the sector. Additionally, a pie chart showing the weight distribution of the main categories for the year 2019 is included.

Explanation boxes below the graphs provide specific details on the pollutant emissions for the year 2019, as well as main drivers and its trends during the time series. Emissions from the Canary Islands are not considered, as their territory is not under the EMEP grid.

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

Main Pollutants

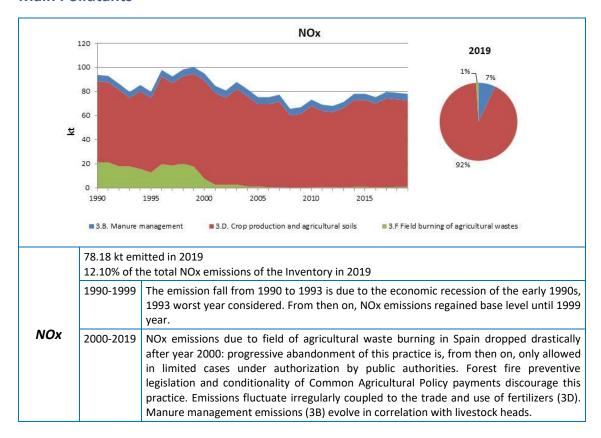


Figure 5.2.1 Evolution of NOx emissions by category and distribution in year 2019

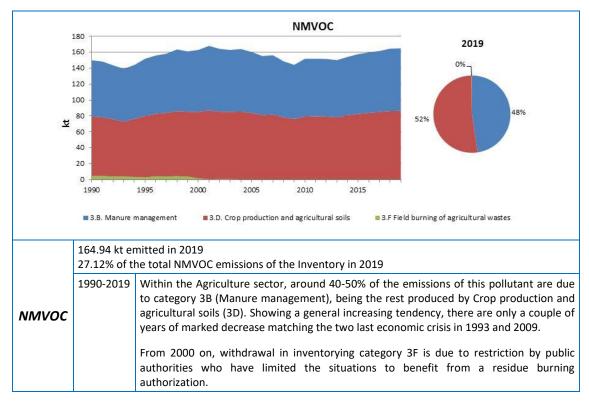


Figure 5.2.2 Evolution of NMVOC emissions by category and distribution in year 2019

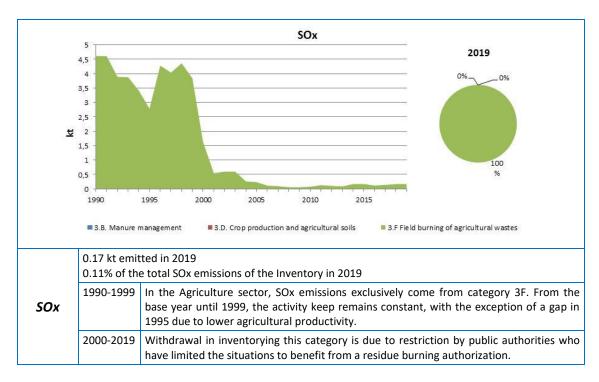


Figure 5.2.3 Evolution of SOx emissions by category and distribution in year 2019

Figure 5.2.4 Evolution of NH₃ emissions by category and distribution in year 2019

Particulate Matter

Figure 5.2.5 Evolution of PM_{2.5} emissions by category and distribution in year 2019

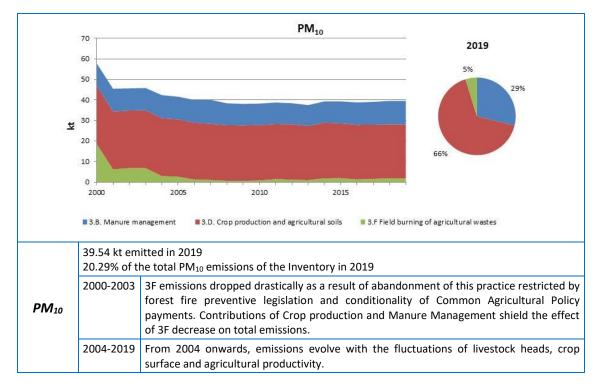


Figure 5.2.6 Evolution of PM₁₀ emissions by category and distribution in year 2019

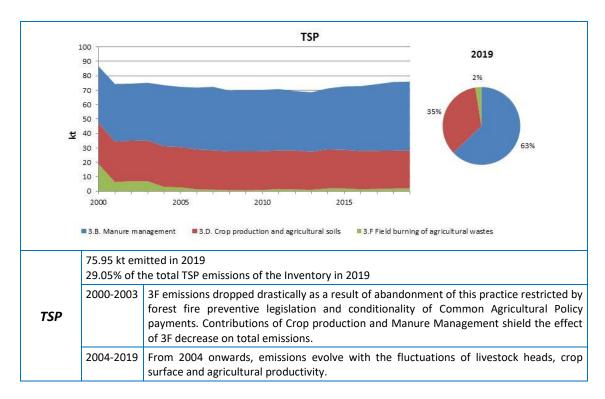


Figure 5.2.7 Evolution of TSP emissions by category and distribution in year 2019

BC

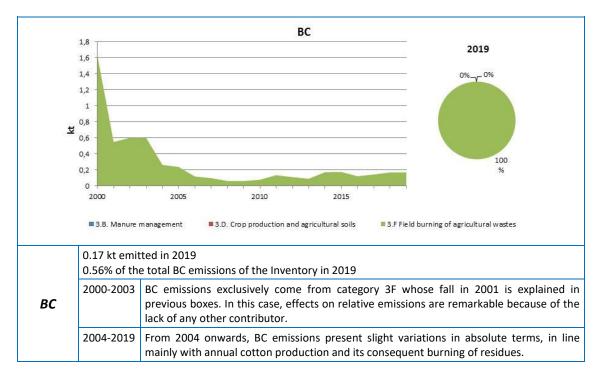


Figure 5.2.8 Evolution of BC emissions by category and distribution in year 2019

CO and Priority Heavy Metals

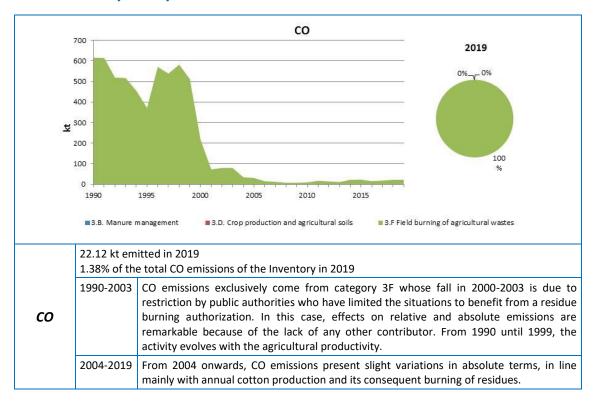


Figure 5.2.9 Evolution of CO emissions by category and distribution in year 2019

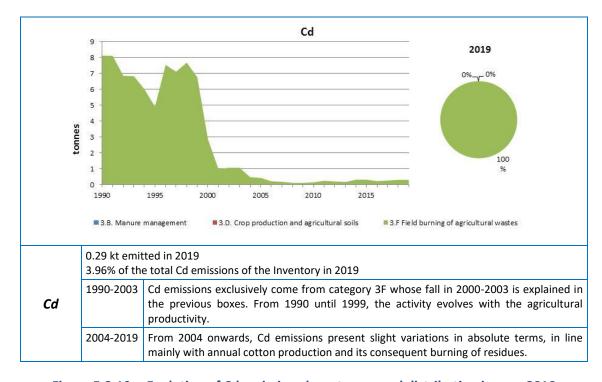


Figure 5.2.10 Evolution of Cd emissions by category and distribution in year 2019

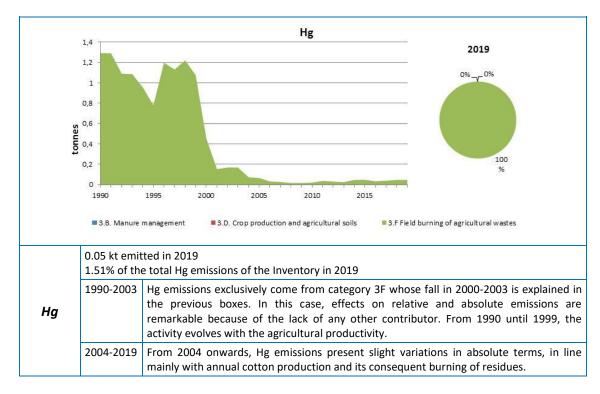


Figure 5.2.11 Evolution of Hg emissions by category and distribution in year 2019



Figure 5.2.12 Evolution of Pb emissions by category and distribution in year 2019

PAHs

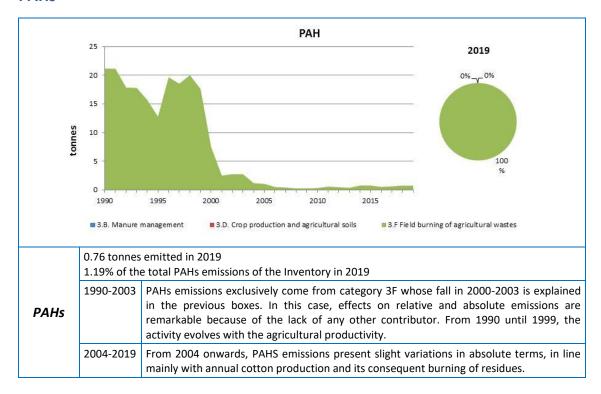


Figure 5.2.13 Evolution of PAHs emissions by category and distribution in year 2019

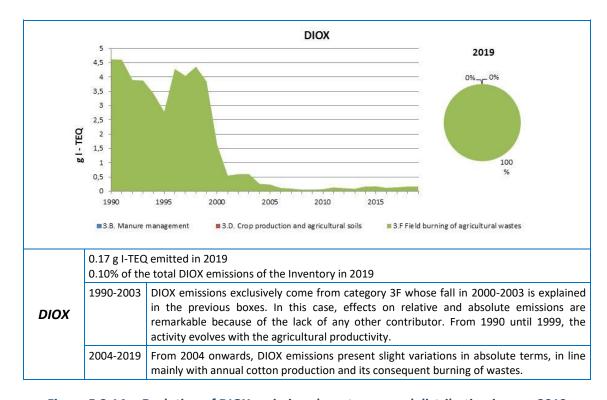


Figure 5.2.14 Evolution of DIOX emissions by category and distribution in year 2019

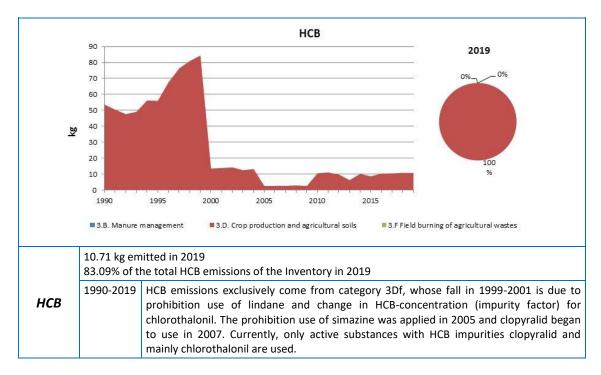


Figure 5.2.15 Evolution of HCB emissions by category and distribution in year 2019

5.2.3. Condensable component of PM₁₀ and PM_{2.5}

As detailed in Annex V, indication of whether the emission estimates and emission factors for PM_{10} and $PM_{2.5}$ in the Agriculture sector include or exclude the condensable component can be found in the table below:

Table 5.2.3 Information on condensable component of PM

NFR	Source/sector name	conde	sions: the nsable onent is	EF reference and comments																
			excluded																	
3B1a	Dairy Cattle	No information available																		EF from EEA/EMEP Guidebook (2019)
3B1b	Non Dairy Cattle	No information available		EF from EEA/EMEP Guidebook (2019)																
3B2	Sheep	No information available				EF from EEA/EMEP Guidebook (2019)														
3B3	Swine	No information available		EF from EEA/EMEP Guidebook (2019)																
3B4d	Goats	No information available		EF from EEA/EMEP Guidebook (2019)																
3B4e	Horses		rmation lable	EF from EEA/EMEP Guidebook (2019)																
3B4f	Mules and Asses	No information available		EF from EEA/EMEP Guidebook (2019)																
3B4gi	Laying Hens	No information available				110 1111011110111		EF from EEA/EMEP Guidebook (2019)												
3B4gii	Broilers	No information available				EF from EEA/EMEP Guidebook (2019)														
3B4giv	Other Poultry	No information available		EF from EEA/EMEP Guidebook (2019)																

NFR	Source/sector name	conde	sions: the nsable nent is	EF reference and comments		
		included excluded				
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	No information available		EF from EEA/EMEP Guidebook (2019)		
3F	Field burning of agricultural residues	No information available				EF from EEA/EMEP Guidebook (2019)

5.3. Major changes

The chapter on agriculture was thoroughly reviewed in the 2017 edition of the inventory to adapt it to EMEP/EEA Guidebook (2016). 2018, 2019, 2020 and current inventory edition includes new country specific parameters and correction of detected errors, as well as updates incorporated by the last publication EMEP/EEA Guidebook (2019).

The table below summarizes the major changes performed in the Agriculture sector in the current Inventory edition. Those changes resulting from the 2020 NECD review⁵ (pursuant to Directive (EU) 2016/2284) have been marked with an asterisk (*).

Table 5.3.1 Major changes in Agriculture sector in Inventory edition 2021

NFR Category	Activities included	Pollutant	Type of change
Goats (3B4d) (*)	- Manure management/Goats.	NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	Recalculation.
Animal manure applied to soils (3Da2a)	- Animal manure applied to soils.	NOx (*), NH₃, NMVOC	Recalculation.
Sewage sludge applied to soils (3Da2b)	- Sewage sludge applied to soils.	NOx, NH₃	Recalculation.
Urine and dung deposited by grazing animals (3Da3)	 Urine and dung deposited by grazing animals. 	NOx, NH₃	Recalculation.
Farm-level agricultural operations including storage, handling and transport of agricultural products (3Dc)	- Farm-level agricultural operations including storage, handling and transport of agricultural products.	PM _{2.5} , PM ₁₀ , TSP	Recalculation.

5.4. Key categories analysis

Within this sector, the following categories have been identified as key (check table 5.2.2 for reference):

- A. Manure management 3B
- B. Crop production and agricultural soils 3D
- C. Field burning of agricultural residues 3F

Activity data sources, methodologies and a general assessment for each category are provided in the following paragraphs.

⁵ Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

A. Manure management (3B)

Category 3B "Manure management" is considered as a key category for its contribution to the level of $PM_{2.5}$ emissions and for its contribution to the level and the trend of emissions of the following pollutants NMVOC, NH_3 , PM_{10} , and TSP.

A.1. Activity variables

Activity variables mainly consist on livestock census and its derived variable "Annual Average Population", per species and homogeneous categories in terms of emissions. Data from new zootechnical documents, updated REGA and Husbandry and slaughterhouse surveys, performed under European Regulation nº 1165/2008, are compiled by the Statistical Office (MAPA). Results are available in the official web of the Ministry of Agriculture, Fishing and Food.

Table 5.4.1 Summary of activity variables, data and information sources for category 3B (Manure management)

Activities included	Activity data	Source of information
Manure management / - Dairy cattle (3B1a) - Non-dairy cattle (3B1b) - Sheep (3B2) - Swine (3B3) - Goats (3B4d)	- Annual census and provincial distribution.	- Zootechnical document ⁶ - Official Husbandry Surveys ⁷ - MAPA's Statistic Yearbook ⁸
Manure management / - Horses (3B4e) - Mules and asses (3B4f)	- Annual census and provincial distribution.	 Zootechnical document. REGA⁹ (General Registry of Livestock Farming). RIIA (Registry of Individual Animal Identification).
Manure management / - Laying hens (3B4gi) - Broilers (3B4gii) - Other poultry (3B4giv)	- Monthly sacrificed livestock heads in national territory Annual census and provincial distribution.	- Zootechnical document. - MAPA's Statistic Yearbook - REGA (General Registry of Livestock Farming)

A.2. Methodology

The following table summarises the methodologies applied in this chapter. Methodology level and sources are provided for reference.

Table 5.4.2 Summary of methodologies applied in category 3B (Manure management)

Pollutants	Tier	Methodology applied	Observations
Cattle (3B1	a-3B1	b)	
NOx	T2	- Country specific methodology.	- Total and ammoniacal N-excreted and pasture distribution.
		- IPCC Reference Manual 2006.	- Manure management system (Annex 10A.2-Chapter 10-Vol 4).

⁶ See Table 5.4.3.

Official statistical information from husbandry can be consulted at: http://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/ganaderia/

⁸ http://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/

^{9 &}lt;a href="http://www.mapa.gob.es/es/ganaderia/temas/trazabilidad-animal/registro/">http://www.mapa.gob.es/es/ganaderia/temas/trazabilidad-animal/registro/

Pollutants	Tier	Methodology applied	Observations			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management-section 3.4 —Tier 2 technology specific approach— pg. 20, Table 3.10) (N-mass balance).			
NMVOC	T2	- Country specific methodology.	- Feed intake, silage feeding and pasture distribution.			
		- IPCC Reference Manual 2006.	- Manure management system (Annex 10A.2-Chapter 10-Vol 4).			
		- EMEP/EEA Guidebook (2019).	 NMVOC EF (3.B Manure management-Table 3.11). NH₃ EF (3.B Manure management-Table 3.9). Fraction of silage store. 			
NH ₃	T2	- Country specific methodology.	- Total and ammoniacal N-excreted and pasture distribution.			
		- IPCC Reference Manual 2006.	- Manure management system (Annex 10A.2-Chapter 10-Vol 4).			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.9) (N-mass balance).			
PM _{2.5} , PM ₁₀ , TSP	T1	- Country specific methodology.	- Housing period.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management-Table 3.5).			
Sheep (3B2)					
NOx	T2	- Country specific methodology.	- Total and ammoniacal N-excreted Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.10) (N-mass balance).			
NMVOC	T2	 Country specific methodology. 	- VS excreted, silage feeding, pasture distribution and manure management system.			
		- EMEP/EEA Guidebook (2019).	- NMVOC EF (3.B Manure management-Table 3.12) NH $_3$ EF (3.B Manure management-Table 3.9) Fraction of silage store.			
NH ₃	Т2	 Country specific methodology. 	- Total and ammoniacal N-excreted Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.9) (N-mass balance).			
PM _{2.5} , PM ₁₀ , TSP	T1	- Country specific methodology.	- Housing period.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management-Table 3.5).			
Swine (3B3)					
NOx	T2	- Country specific	- Total and ammoniacal N-excreted.			
		methodology EMEP/EEA Guidebook (2019).	 - Manure management system. - EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.10) (N-mass balance). 			
NMVOC	Т2	- Country specific methodology.	- VS excreted, silage feeding, pasture distribution and manure management system.			
		- EMEP/EEA Guidebook (2019).	 NMVOC EF (3.B Manure management-Table 3.12). NH₃ EF (3.B Manure management-Table 3.9). Fraction of silage store. 			
NH ₃	Т2	- Country specific methodology.	- Total and ammoniacal N-excreted Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.9) (N-mass balance).			
PM _{2.5} , PM ₁₀ , TSP	T1	- Country specific methodology.	- Housing period.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management-Table 3.5).			

Pollutants	Tier	Methodology applied	Observations			
Goats (3B4	d)					
NOx	T2	- Country specific methodology.	- Total and ammoniacal N-excreted Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.10) (N-mass balance).			
NMVOC	T2	 Country specific methodology. 	- Manure management system and silage feeding.- VS excreted.			
		- EMEP/EEA Guidebook (2019).	- NMVOC EF (3.B Manure management-Table 3.12) NH $_3$ EF (3.B Manure management-Table 3.9) Fraction of silage store.			
NH ₃	Т2	- Country specific methodology.	- Total and ammoniacal N-excreted. - Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.9) (N-mass balance).			
PM _{2.5} , PM ₁₀ , TSP	T1	 Country specific methodology. 	- Housing period.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management-Table 3.5).			
Horses (3B4	1e), M	ules and Assess (3B4f)				
NOx	Т2	 Country specific methodology. 	- Total and ammoniacal N-excreted. - Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.10) (N-mass balance).			
NMVOC	Т2	 Country specific methodology. 	- VS excreted, silage feeding, pasture distribution and manure management system.			
		- EMEP/EEA Guidebook (2019).	- NMVOC EF (3.B Manure management-Table 3.12) NH ₃ EF (3.B Manure management-Table 3.9) Fraction of silage store.			
NH ₃ T2		- Country specific methodology.	- Total and ammoniacal N-excreted Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.9) (N-mass balance).			
PM _{2.5} , PM ₁₀ , TSP	T1	- Country specific methodology.	- Housing period.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management-Table 3.5).			
Laying hens	s (3B4	gi), broilers (3B4gii)				
NOx	T2	- Country specific methodology.	- Total and ammoniacal N-excreted Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.10) (N-mass balance).			
NMVOC	T2	- Country specific methodology.	- VS excreted, silage feeding, pasture distribution and manure management system.			
		- EMEP/EEA Guidebook (2019).	- NMVOC EF (3.B Manure management-Table 3.12). - NH₃ EF (3.B Manure management-Table 3.9).			
NH ₃	T2	- Country specific methodology.	- Total and ammoniacal N-excreted Manure management system.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.9) (N-mass balance).			
PM _{2.5} , PM ₁₀ , TSP	T1	- Country specific methodology.	- Housing period.			
		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management-Table 3.5).			
Turkeys (3E	34giii),	Other poultry (3B4giv)				
NOx	Т2	- EMEP/EEA Guidebook (2019).	- Total and ammoniacal N-excreted. - EF (3.B Manure management- section 3.4 - Tier 2			

Pollutants	Tier	Methodology applied	Observations
			technology-specific approach, Table 3.10) (N-mass balance).
		- IPCC Reference Manual 2006.	- Manure management system (Annex 10A.2-Chapter 10-Vol 4).
NMVOC	T2	- IPCC Reference Manual 2006.	- VS excreted and Manure management system.
		- EMEP/EEA Guidebook (2019).	- NMVOC EF (3.B Manure management-Table 3.12). - NH₃ EF (3.B Manure management-Table 3.9).
NH ₃	T2	- EMEP/EEA Guidebook (2019).	- Total and ammoniacal N-excreted EF (3.B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.9) (N-mass balance).
		- IPCC Reference Manual 2006.	- Manure management system (Annex 10A.9-Chapter 10-Vol 4).
PM _{2.5} ,	T1	- Country specific data.	- Housing period.
PM ₁₀ , TSP		- EMEP/EEA Guidebook (2019).	- EF (3.B Manure management-Table 3.5).

The following table summarises the country specific zootechnical information provided by the collection of documents "Bases Zootécnicas para el cálculo del balance alimentario de nitrógeno y de fósforo" whose parameters are applied in emission calculations.

Table 5.4.3 Country specific technical information and zootechnical documents

Animal	Zootechnical document – Country specific technical information
Dairy cattle	Document completed and published. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en bovino.
Non-dairy cattle	Document completed and published. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en bovino.
Sheep	Document completed and published. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en ovino.
White swine	Document completed and published. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en porcino blanco.
Iberian swine	Document completed. Publication planned for the 2nd semester of 2021. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en porcino ibérico.
Goats	Document completed. Publication planned for the 2nd semester of 2021. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en caprino.
Horses	Document completed and published. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en équidos.
Mules and asses	Document completed and published. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en équidos.
Laying hens	Document completed and published. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en aves de puesta.
Broilers	Document completed and published. Bases zootécnicas para el cálculo del balance alimentario de nitrógeno y fósforo en aves de carne.

A.3. Assessment

From the base year, population of swine, horses, mules-asses, non-dairy cattle and poultry have increased in number of heads, while sheep-goats and dairy cattle steadily decrease.

¹⁰ https://www.mapa.gob.es/es/ganaderia/temas/ganaderia-y-medio-ambiente/balance-de-nitrogeno-e-inventario-de-emisiones-de-gases/default.aspx%20%20

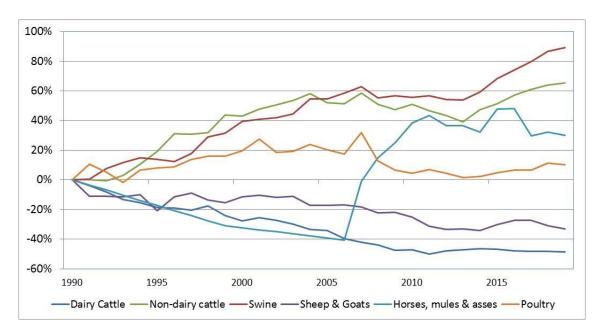


Figure 5.4.1 Variation in animal number from 1990 (%)

In the following table, the values of livestock numbers, N excretion rates, TAN fraction and use of MMS by animal (cattle and swine subcategories included) for the time series are provided¹¹.

Disaggregated values have been included for swine subcategories (iberian and white)¹²

Table 5.4.4 Values of livestock numbers, N excretion rates and use of MMS by animal

	1990	2005	2010	2015	2016	2017	2018	2019	
Dairy Cattle (3B1a)									
Population (1000s)	1,575.4	1,036.2	834.7	842.3	824.5	817.6	814.3	808.3	
N excr (kg/head/year)	84.5	100.0	112.0	113.3	113.4	113.4	113.5	113.5	
TAN (Fraction)	0.676	0.676	0.705	0.705	0.705	0.705	0.705	0.705	
Total N excr (ton/year)	133,054.8	103,638.0	93,506.4	95,462.9	93,479.1	92,721.7	92,382.7	91,703.1	
N excretion per MMS									
Anaerobic lagoon	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Liquid system	59,375.7	46,248.5	41,727.2	42,600.3	41,715.0	41,377.1	41,225.8	40,922.5	
Daily spread	11,642.3	9,068.3	8,181.8	8,353.0	8,179.4	8,113.1	8,083.5	8,024.0	
Solid storage and dry lot	61,205.2	47,673.5	43,013.0	43,913.0	43,000.4	42,652.0	42,496.0	42,183.4	
Pasture	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Digesters	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Other	831.6	647.7	584.4	596.6	584.2	579.5	577.4	573.1	
		No	on-Dairy Cat	ttle (3B1b)					
Population (1000s)	3,528.7	5,367.5	5,323.5	5,346.6	5,539.4	5,690.1	5,783.5	5,832.7	
N excr (kg/head/year)	56.7	58.7	56.7	57.4	57.1	57.1	57.2	57.2	
TAN (Fraction)	0.642	0.668	0.647	0.656	0.661	0.662	0.662	0.661	
Total N excr (ton/year)	200,201.5	314,837.4	301,942.2	306,661.7	316,574.0	324,665.0	330,813.1	333,484.4	
N excretion per MMS									
Anaerobic lagoon	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Liquid system	32,393.1	46,523.2	37,107.1	40,081.6	41,551.5	42,948.4	44,211.9	44,273.8	
Daily spread	2,313.8	3,323.1	2,650.5	2,863.0	2,968.0	3,067.7	3,158.0	3,162.4	

¹¹ Recommendation made by the ERT in the 2019 NECD. Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

Recommendation made by the ERT in the 2020 NECD. Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

	1990	2005	2010	2015	2016	2017	2018	2019
Solid storage and dry lot	50,132.2	72,000.1	57,427.6	62,031.0	64,305.9	66,467.7	68,423.1	68,518.9
Pasture	112,791.5	189,298.7	201,812.0		204,451.0	208,772.6	211,511.2	214,015.4
Digesters	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Other	2,570.9	3,692.3	2,945.0	3,181.1	3,297.7	3,408.6	3,508.9	3,513.8
	,	·	Sheep (3B2)	,	,	,	,
Population (1000s)	24,021.7	22,635.3	18,471.3	15,970.3	15,903.8	15,904.4	15,804.2	15,435.5
N excr (kg/head/year)	4.3	5.1	5.6	5.4	5.4	5.4	5.4	5.3
TAN (Fraction)	0.575	0.579	0.577	0.586	0.588	0.587	0.589	0.588
Total N excr (ton/year)	102,524.0	115,325.4	103,537.0	86,497.2	85,153.3	85,244.1	84,556.3	82,384.1
N excretion per MMS								
Anaerobic lagoon	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Daily spread	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Solid storage and dry lot	30,542.0	30,155.1	33,228.3	29,351.3	27,108.8	27,286.2	27,308.2	26,381.7
Pasture	71,982.0	85,170.2	70,308.7	57,145.9	58,044.5	57,957.9	57,248.1	56,002.4
Digesters	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Other	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
			Goats (3	B4d)				
Population (1000s)	3,525.9	2,511.9	2,569.9	2,574.1	2,807.2	2,796.8	2,553.9	2,454.2
N excr (kg/head/year)	9.3	9.5	9.7	9.0	9.2	9.4	9.3	9.2
TAN (Fraction)	0.704	0.692	0.691	0.707	0.703	0.701	0.707	0.707
Total N excr (ton/year)	32,932.9	23,819.7	24,800.2	23,097.5	25,940.6	26,250.3	23,669.9	22,689.8
N excretion per MMS								
Anaerobic lagoon	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Daily spread	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Solid storage and dry lot	6,184.5	10,684.7	15,236.3	12,556.4	15,534.5	16,531.3	15,191.9	14,795.1
Pasture	26,748.4	13,135.0	9,564.0	10,541.1	10,406.1	9,719.0	8,478.0	7,894.7
Digesters	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Other	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
		Iberian	&White Swi	ne (Sows) (3	3B3)			
Population (1000s)	1,984.7	2,665.6	2,601.2	2,455.0	2,419.2	2,509.9	2,522.6	2,577.6
N excr (kg/head/year)	19.4	19.8	18.5	18.7	18.7	18.5	18.6	18.5
TAN (Fraction)	0.691	0.722	0.733	0.730	0.730	0.729	0.729	0.730
Total N excr (ton/year)	38,547.0	52,816.6	48,042.8	45,885.6	45,322.4	46,479.5	46,798.9	47,683.7
N excretion per MMS								
Anaerobic lagoon	3,199.2	1,669.2	780.2	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	6,665.5	8,308.1	10,049.4	9,918.4	10,210.7	10,237.8	10,404.4
Daily spread	735.4	786.7	681.6	607.5	599.6	617.2	618.9	628.9
Solid storage and dry lot	5,037.8	3,756.8	2,634.9	1,700.9	1,678.8	1,728.2	1,732.8	1,761.0
Pasture	1,774.7	4,849.9	3,201.8	2,494.5	2,496.7	2,391.6	2,594.2	2,759.8
Digesters	0,0	279.2	348.0	420.9	415.4	427.7	428.8	435.8
Other (mainly pit stor.)	27,799.8	34,809.4	32,088.2	30,612.4	30,213.5	31,104.0	31,186.4	31,693.8
D 1 11 (4000)		an&White S					27.007.0	20 222 0
Population (1000s)	14,305.0	22,513.0	22,752.0	24,951.1	25,917.9	26,770.6	27,907.9	28,232.0
N excr (kg/head/year)	10.9	10.5	8.3	8.4	8.5	8.5	8.5	8.5
TAN (Fraction)	0.721	0.717	0.735	0.728	0.728	0.728	0.728	0.729
Total N excr (ton/year)	155,533.6	236,711.0	189,737.9	210,262.7	219,501.3	226,465.6	237,199.0	240,872.6
N excretion per MMS	12.054.0	7 522 7	2 404 7	0.0	0.0	0.0	0.0	0.0
Anaerobic lagoon	12,954.6	7,523.7	3,194.7	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	30,043.1	34,018.1	46,274.5	47,991.8	49,633.1	51,875.4	52,490.7
Daily spread	2,978.1	3,545.7	2,790.8	2,797.2	2,901.1	3,000.3	3,135.8	3,173.0
Solid storage and dry lot	20,399.7	16,932.7	10,788.6	7,832.3	8,123.0	8,400.8	8,780.3	8,884.4
Pasture	6,630.6	20,511.6	6,134.2	10,459.2	12,282.7	12,160.5	13,212.1	14,228.6

	1990	2005	2010	2015	2016	2017	2018	2019
Digesters	0,0	1,258.3	1,424.8	1,938.1	2,010.0	2,078.8	2,172.7	2,198.4
Other	112,570.7	156,895.9	131,386.9		146,192.7	151,192.2	158,022.7	159,897.3
	,-	· · · · · · · · · · · · · · · · · · ·		s) (partial 3		,	/ -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Population (1000s)	93.6	245.2	367.9	316.6	326.3	315.5	340.1	372.7
N excr (kg/head/year)	20.7	20.2	18.3	18.5	18.3	18.2	18.6	18.3
TAN (Fraction)	0.755	0.766	0.756	0.753	0.753	0.753	0.751	0.752
Total N excr (ton/year)	1,933.1	4,948.0	6,738.3	5,846.0	5,975.4	5,754.2	6,320.0	6,807.2
N excretion per MMS	,			,	,			
Anaerobic lagoon	13.8	3.4	61.5	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	13.6	655.2	776.2	805.7	778.8	862.9	937.4
Daily spread	3.2	1.6	53.8	46.9	48.7	47.1	52.2	56.7
Solid storage and dry lot	21.7	7.7	207.8	131.4	136.4	131.8	146.1	158.7
Pasture	1,774.7	4,849.9	3,201.8	2,494.5	2,496.7	2,391.6	2,594.2	2,759.8
Digesters	0,0	0.6	27.4	32.5	33.7	32.6	36.1	39.3
Other (mainly pit stor.)	119.7	71.2	2,530.7	2,364.5	2,454.2	2,372.3	2,628.6	2,855.4
	Iberi	an Swine (Fi	inishing/fat	tening pigs)	(partial 3B3	;)		
Population (1000s)	621.3	1,897.8	2,039.3	2,293.6	2,678.1	2,653.9	2,829.4	2,973.7
N excr (kg/head/year)	12.0	11.0	9.9	11.0	11.1	11.0	11.2	11.5
TAN (Fraction)	0.777	0.778	0.749	0.752	0.753	0.754	0.753	0.754
Total N excr (ton/year)	7,465.9	20,939.4	20,109.1	25,190.9	29,610.4	29,307.3	31,800.9	34,273.3
N excretion per MMS								
Anaerobic lagoon	72.7	14.9	243.2	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	59.4	2,589.3	3,411.9	4,013.1	3,971.2	4,305.2	4,642.4
Daily spread	16.7	7.0	212.4	206.2	242.6	240.1	260.2	280.6
Solid storage and dry lot	114.4	33.5	821.2	577.5	679.2	672.2	728.7	785.8
Pasture	6,630.6	20,511.6	6,134.2	10,459.2	12,282.7	12,160.5	13,212.1	14,228.6
Digesters	0,0	2.5	108.4	142.9	168.1	166.3	180.3	194.4
Other	631.5	310.4	10,000.4	10,393.2	12,224.7	12,097.0	13,114.4	14,141.6
		White	Swine (Sow	s) (partial 3	B3)			
Population (1000s)	1,891.1	2,420.4	2,233.2	2,138.4	2,092.9	2,194.4	2,182.5	2,205.0
N excr (kg/head/year)	19.4	19.8	18.5	18.7	18.8	18.6	18.5	18.5
TAN (Fraction)	0.688	0.718	0.729	0.727	0.727	0.726	0.726	0.726
Total N excr (ton/year)	36,613.9	47,868.6	41,304.6	40,039.5	39,347.0	40,725.3	40,478.9	40,876.6
N excretion per MMS								
Anaerobic lagoon	3,185.4	1,665.8	718.7	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	6,651.8	7,652.9	9,273.2	9,112.8	9,432.0	9,374.9	9,467.0
Daily spread	732.3	785.0	627.8	560.6	550.9	570.2	566.7	572.3
Solid storage and dry lot	5,016.1	3,749.1	2,427.1	1,569.5	1,542.4	1,596.4	1,586.8	1,602.4
Pasture	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Digesters	0,0	278.6	320.5	388.4	381.7	395.0	392.6	396.5
Other (mainly pit stor.)	27,680.1	34,738.2	29,557.5	28,247.9	27,759.3	28,731.7	28,557.9	28,838.4
Danislatic (4000)		te Swine (Fi					25 072 5	25.252.5
Population (1000s)	13,683.7	20,615.2	20,712.8	22,657.5	23,239.8	24,116.8	25,078.5	25,258.3
N excr (kg/head/year)	10.8	10.5	8.2	8.2	8.2	8.2	8.2	8.2
TAN (Fraction)	0.719	0.711	0.734	0.726	0.726	0.726	0.726	0.726
Total N excr (ton/year)	148,067.8	215,771.6	169,628.8	185,071.8	189,890.9	197,158.3	205,398.0	206,599.2
N excretion per MMS	12.004.0	7 500 0	2.054.5	0.0	0.0	0.0	0.0	0.0
Anaerobic lagoon	12,881.9	7,508.9	2,951.5	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	29,983.6	31,428.8	42,862.6	43,978.7	45,661.9	47,570.2	47,848.4
Daily spread	2,961.4	3,538.7	2,578.4	2,591.0	2,658.5	2,760.2	2,875.6	2,892.4
Solid storage and dry lot	20,285.3	16,899.2	9,967.4	7,254.8	7,443.7	7,728.6	8,051.6	8,098.7
Pasture	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Digesters	0,0	1,255.8	1,316.3	1,795.2	1,841.9	1,912.4	1,992.4	2,004.0
Other	111,939.2	156,585.4	121,386.4	130,568.1	133,968.0	139,095.2	144,908.3	145,755.8

	1990	2005	2010	2015	2016	2017	2018	2019
	1330	2003	Horses (3		2010	2017	2010	2013
Population (1000s)	243.3	263.8	622.1	663.8	665.4	582.3	594.3	584.6
N excr (kg/head/year)	54.1	54.8	54.2	52.4	53.1	53.3	53.6	53.4
TAN (Fraction)	0.655	0.655	0.657	0.655	0.656	0.656	0.656	0.656
Total N excr (ton/year)	13,171.9	14,467.4	33,692.5	34,801.7	35,306.1	31,021.0	31,881.9	31,228.3
N excretion per MMS	-, -	, -		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,	,	,
Anaerobic lagoon	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Daily spread	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Solid storage and dry lot	5,399.0	6,143.8	12,369.2	13,225.2	14,048.9	13,841.6	14,585.9	14,053.2
Pasture	7,772.9	8,323.6	21,323.3	21,576.4	21,257.2	17,179.4	17,296.0	17,175.0
Digesters	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Other	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
		M	ules and As	ses (3B4f)				
Population (1000s)	200.0	26.9	42.2	45.2	44.9	40.9	40.8	40.1
N excr (kg/head/year)	34.8	31.5	31.3	31.1	31.5	31.6	31.6	31.6
TAN (Fraction)	0.376	0.362	0.382	0.364	0.363	0.357	0.357	0.357
Total N excr (ton/year)	6,953.4	848.2	1,319.9	1,407.6	1,412.8	1,294.1	1,291.4	1,269.0
N excretion per MMS								
Anaerobic lagoon	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Liquid system	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Daily spread	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Solid storage and dry lot	3,258.8	309.7	406.3	484.6	482.4	483.6	486.1	480.2
Pasture	3,694.7	538.5	913.6	923.0	930.4	810.6	805.3	788.8
Digesters	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Other	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
		Poul	try (Laying h	nens) (3B4gi)			
Population (1000s)	46,366.5	49,307.9	49,343.2	46,432.9	45,488.3	47,409.0	46,711.7	46,361.4
N excr (kg/head/year)	0.66	0.62	0.59	0.57	0.57	0.57	0.57	0.57
TAN (Fraction)	0.790	0.785	0.776	0.774	0.774	0.774	0.774	0.774
Total N excr (ton/year)	30,405.5	30,464.2	29,205.5	26,523.7	25,997.1	27,097.2	26,700.4	26,511.3
N excretion per MMS								
Solid poultry manure	30,405.5	30,464.2	29,205.5	26,523.7	25,997.1	27,097.2	26,700.4	26,511.3
			ultry (Broile					
Population (1000s)	64,892.5	76,086.7	75,419.4	78,944.1	82,301.8	81,491.7	86,249.6	88,862.8
N excr (kg/head/year)	0.75	0.69	0.66	0.67	0.67	0.67	0.67	0.67
TAN (Fraction)	0.775	0.779	0.750	0.752	0.752	0.752	0.752	0.752
Total N excr (ton/year)	48,884.0	52,450.3	49,949.9	52,550.3	54,785.4	54,246.1	57,413.3	59,152.8
N excretion per MMS	40.004.0	F2 450 C	40.040.0	F2 F50 0	E 4 70E 1	E4 246 6	F7 442 C	F0 452.2
Solid poultry manure	48,884.0	52,450.3	49,949.9	52,550.3	54,785.4	54,246.1	57,413.3	59,152.8
Donulation (1000-)				-	y turkeys)) (10.040.5	10 034 5
Population (1000s)	18,984.6	24,245.4	18,427.8	18,380.9	18,724.6	18,534.4	19,646.5	18,821.5
N excr (kg/head/year)	1.59	1.64	1.63	1.63	1.63	1.63	1.63	1.63
TAN (Fraction)	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700
Total N excr (ton/year) N excretion per MMS	30,184.3	39,651.2	30,107.8	30,017.8	30,592.6	30,276.1	32,079.4	30,727.2
•	20 104 2	20 651 2	20 107 0	20 017 0	30 E03 E	20 276 1	22 070 4	20 727 2
Solid poultry manure	30,184.3	39,651.2	30,107.8	30,017.8	30,592.6	30,276.1	32,079.4	30,727.2

Emissions of nitrogen compounds by agricultural N-fertilization activity and manure management in 2019 are shown in a Sankey diagram in section 5.4.B (see figure 5.4.7).

All along the time series, ammonia emissions evolve in parallel with the variable of activity, livestock population; only exception is swine (white swine subcategory). From 2005 on,

Spanish inventory has taken into account abatement measures implemented in white swine farms. The measure penetration rate and the distribution pattern of manure management were estimated based on surveys performed in 2016. White swine breeding is particularly intensive and homogeneous. Results are not published but they are available in case of need. Graphics below show the progression of the two main drivers linked to ammonia emissions in category 3B.

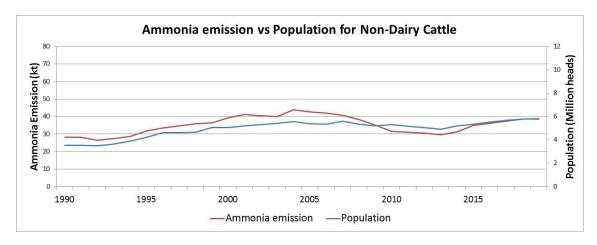


Figure 5.4.2 Variation of NH₃ emissions for Non-Dairy Cattle (3B1b)

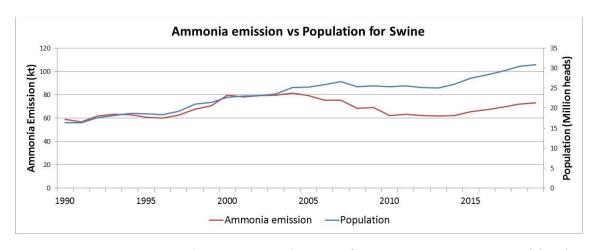


Figure 5.4.3 Variation of NH₃ emissions for Swine (White swine & Iberian swine) (3B3)

Reduction of ammonia emissions were applied to white swine MMS according to UNECE Task Force on Reactive Nitrogen Guidance of "Options for Ammonia Mitigation") (please see page 20 (table 7)¹³.

The penetration rates of those techniques considered in the BAT document were extracted from the survey conducted on swine intensive farms. BATs implemented in farms were identified and assigned a reduction factor according to the JRC document what was applied to

¹³ https://www.mapa.gob.es/gl/ganaderia/temas/ganaderia-y-medio-ambiente/tfrn unece 2014eng tcm37-436095.pdf

the default emission factor according to equation 57, pg. 33 of EMEP/EEA Guidebook (2019). A summary is provided in the following tables¹⁴.

The cited survey was primarily designed to update information about white swine farm manure management systems (data from a previous descriptive study (MARM, 2010) produced by the MAPA and ANPROGAPOR (National Producers of Swine Livestock Association)¹⁵). On the basis of the existing manure management system estimates described in the 2010 study, a phone survey was conducted in 2015. Specific items were included in the questionnaire to collect information about abatement practices for ammonia reduction both, in terms of infrastructure and best practices of manure management. Sampling method was designed on farm census via REGA (Official Registry of Livestock Farms) that provides information about geographical location, size (in terms of livestock places) and zootechnical performance. Database access is not public but information about its regulation can be found in the REGA website¹⁶.

A randomized sampling on farm units was performed in strata defined by farm zootechnical classification (due to its correlation to facility infrastructures). In every stratum, the expected selection probability according to its relative weighted size (in terms of animal places) was assigned to every farm, looking to maximize population coverage and representativeness. To get the desired number of completed questionnaires, two substitutes to account for non-response incidences (contact failure or invalid interview) were assigned to every randomized selected farm. Once processed, the results were resumed per swine category and transferred to the Inventories Unit. To ensure consistency in the time series, the BATs implementation rates were partitioned and progressively incorporated in emission estimation according to a linear regression from 2005 - 2004 (as a realistic starting year) until its fully computing in 2010, keeping constant until the present edition¹⁷.

Table 5.4.5 Reduction of ammonia emissions for white swine

	Building	Storage	Soil application
Sows (White swine)	27.08%	2.12%	7.68%
Finishing/fattening pigs (White swine)	27.70%	2.12%	9.31%
Total White swine	27.65%	2.12%	9.17%

Table 5.4.6 BAT ammonia reduction and Fraction manure application for white swine

Group	Best Available Techniques (BAT)	BAT reduction	Fraction Manure Application
	Partly slatted floor with slanted walls (shallow V-shaped gutters)	0.525	0.0399
	Frequent slurry removal (number of times a month ≥ 8)	0.250	0.0229
Building	Partly slatted floor and Flushing Gutters	0.400	0.5831
	Combined manure-canal and water-canal system	0.450	0.0013
	Acid filters additionally to shallow V-shaped gutters	0.600	0.0010

Recommendation made by the ERT in the 2019 NECD. Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

¹⁵ https://www.mapa.gob.es/es/ganaderia/publicaciones/Porcino%20Intensivo tcm30-105327.pdf

¹⁶ https://www.mapa.gob.es/es/ganaderia/temas/trazabilidad-animal/registro/default.aspx

¹⁷ Recommendation made by the ERT in the 2020 NECD. Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

Group	Best Available Techniques (BAT)	BAT reduction	Fraction Manure Application
	Air scrubbing systems	0.800	0.0125
	Rigid covering (tight lid) over slurry store	0.800	0.0238
Ctoroso	Floating covering over the slurry store	0.600	0.0026
Storage	Slurry store covered by inert materials	0.500	0.0006
	Slurry store covered by natural materials	0.400	0.0006
	Soil incorporation by ploughing (with inversion) < 4h after application	0.550	0.0289
	Soil incorporation by ploughing (non-inversion) < 4h after application	0.550	0.0235
Soil	Soil incorporation by ploughing (with inversion) 4 - 12 h after application	0.550	0.0021
application	Soil incorporation by ploughing (non-inversion) 4 - 12 h after application	0.550	0.0360
	Soil incorporation by ploughing (inversion) 12 - 24 h after application	0.300	0.0404
	Soil incorporation by ploughing (non-inversion) 12 - 24 h after application	0.300	0.0992

Relative contributions to ammonia emissions by animal category in 2019, is shown in the following chart.

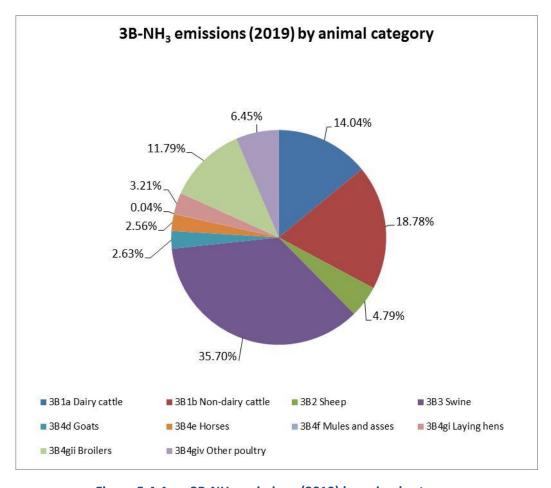


Figure 5.4.4 3B-NH₃ emissions (2019) by animal category

In addition, it should be mentioned for dairy-cattle, although the Nex (excreted nitrogen) and TAN (total ammoniacal nitrogen) per head increases, per capita milk yield has also increased, and, consequently, there is a decrease in the populations of this livestock specie while the milk production is maintained. Therefore, a reduction in the emission rate per quantity of milk obtained is achieved. This is due to the increase in the production efficiency of animals, as a result of genetic selection and improvement of farm management, as can be seen in the following graph.



Figure 5.4.5 Emission rate per quantity of milk obtained

On the other hand, in the following tables, values of housing days by animal for the time series are provided ¹⁸. These data are used to calculate NMVOC, PM_{2.5}, PM₁₀ and TSP emissions.

Table 5.4.7 Housing days by animal

	1990	2005	2010	2015	2016	2017	2018	2019
Dairy cattle	365	365	365	365	365	365	365	365
Non-dairy cattle	157	132	120	126	128	129	130	129
Sheep	99	81	96	105	100	100	102	102
Goats	91	165	218	194	216	226	231	236
Iberian swine (sows)	37	8	212	222	225	226	228	230
Iberian swine (fattening)	40	9	270	238	238	238	238	238
White swine (sows)	365	365	365	365	365	365	365	365
White swine (fattening)	365	365	365	365	365	365	365	365
Poultry (Laying hens)	365	365	365	365	365	365	365	365
Poultry (Broilers)	365	365	365	365	365	365	365	365
Poultry (other poultry)	365	365	365	365	365	365	365	365
Horses	136	142	120	125	131	150	154	151
Mules	219	215	182	211	213	226	226	226
Asses	61	66	52	58	57	66	68	68

Recommendation made by the ERT in the 2019 NECD. Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

Further, in the following tables, values of gross energy intake, excreted VS (volatile solids), and fraction of silage feeding by animal for the time series are provided¹⁹. These data are used to calculate NMVOC.

Table 5.4.8 Gross energy intake (MJ/head/day) by animal

	1990	2005	2010	2015	2016	2017	2018	2019
Dairy cattle	200.43	250.54	275.27	292.61	292.78	293.00	293.19	293.21
Non-dairy cattle	147.94	145.51	148.35	146.20	145.16	144.85	145.32	145.51

Table 5.4.9 Excreted VS (kg/head/day) by animal

	1990	2005	2010	2015	2016	2017	2018	2019
Sheep	0.32	0.38	0.41	0.38	0.38	0.38	0.38	0.38
Goats	0.44	0.43	0.41	0.39	0.39	0.39	0.38	0.37
Iberian swine (sows)	0.63	0.59	0.52	0.52	0.51	0.51	0.52	0.51
Iberian swine (fattening)	0.33	0.30	0.25	0.27	0.27	0.27	0.28	0.28
White swine (sows)	0.73	0.73	0.71	0.73	0.73	0.73	0.72	0.72
White swine (fattening)	0.40	0.42	0.33	0.33	0.33	0.33	0.33	0.33
Poultry (Laying hens)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Poultry (Broilers)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Poultry (other poultry)	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Horses	2.79	2.83	2.72	2.71	2.72	2.75	2.76	2.75
Mules and Asses	2.63	2.48	2.37	2.45	2.47	2.51	2.52	2.52

Table 5.4.10 Fraction of silage feeding by animal

	1990	2005	2010	2015	2016	2017	2018	2019
Dairy cattle	0.44	0.45	0.45	0.41	0.50	0.53	0.53	0.53
Non-dairy cattle	0.09	0.07	0.06	0.07	0.07	0.06	0.05	0.05
Sheep	0	0	0	0	0	0	0	0
Goats	0	0	0	0	0	0	0	0
Swine	0	0	0	0	0	0	0	0
Horses, Mules and Asses	0	0	0	0	0	0	0	0

Recommendation made by the ERT in the 2019 NECD. Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

B. Crop production and agricultural soils (3D)

Category 3D "Crop Production and Agricultural Soils" is considered as a key category for its contribution to the level and the trend of emissions of the following pollutants NOx, NMVOC, NH_3 , PM_{10} , TSP and HCB.

B.1. Activity Variables

Table 5.4.11 Summary of activity variables, data and information sources for category 3D (Crop production and agricultural soils)

Activities included	Activity data	Source of information
Inorganic N-fertilizers (includes urea application) (3Da1)	 Fertilizer sales (by N-fertilizer type at a national level). % of N-fertilizer applied to cultivated areas is disaggregated by N-fertilizer type, crop species and irrigation system at a provincial level. 	 - MAPA's Statistic Yearbook. - ESYRCE²⁰ (Crop Yield and Cultivated Areas Survey) Report on irrigation in Spain. - Nitrogen and Phosphorous Balance in Spanish Agriculture Book (BNPAE), several years²¹. - National Association of Fertilizer Manufacturer (ANFFE)²² Survey on Fertilizer Application.
Animal manure applied to soils (3Da2a)	 Amount of N excreted from manure by animal species, by productive category, by breeding system at a provincial level. % of N excreted aimed at fertilization. 	- Documentation cited in category 3B to estimate N excreted by livestock.
Sewage sludge applied to soils (3Da2b)	- Sewage sludge applied to soils as fertilizer.	- 1990-1992- Interpolation between data of 1989 provided by "The Environment in Spain" (MOPT, 1991) and data of 1993 provided by "Study on treatment and final disposal of urban wastewater sewage sludge" (CADIC, S.A., 1993) 1993-1996-Interpolation between the MOPT study and the first available year from "National Sewage Register" (MITERD) 1997-2012. "National Sewage Register" (MITERD) 2013-2019. 2015 "National Sewage Register" data is replicated due to lack of consolidated information from this year on.
	- Nitrogen contained in sludge.	- Sludge composition provided by "National Sewage Register" (MITERD).
	- Provincial distribution of sludge application to soils.	- Provincial proportion of national total sludge application to soil is provided by BNPAE.
Other organic fertilizers applied to soils (including compost) (3Da2c)	 - Amount of organic waste intended to compost. - Nitrogen contained in compost production. 	- Information of composting facilities and waste amount entering the composting process, provided by the SG Circular Economy.
Urine and dung deposited by grazing animals (3Da3)	- Amount of N excreted from grazing.	- Documentation cited in category 3B to estimate N excreted by livestock (3B Manure Management).
Farm-level agricultural operations (3Dc)	- Cultivated surface.	- MAPA's Statistic Year Book. - BNPAE.
Cultivated crops (3De)	- Cultivated Surface.	- MAPA´s Statistic Year Book.

²⁰ https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/

²¹ BNPAE results are annually submitted to EUROSTAT Nitrogen Balance database. The report is not published but it is available if needed.

²² ANFFE: National Association of Fertilizer Manufacturer http://www.anffe.org/

Activities included	Activity data	Source of information
		- BNPAE.
Use of pesticides (3Df)	- Amount of active substances with HCB impurities.	- MAPA (Ministry for Agriculture, Fisheries and Food).

B.2. Methodology

The following table summarises the methodologies applied in this chapter. Methodology level and sources are provided for reference.

Table 5.4.12 Summary of methodologies applied in category 3D (Crop production and agricultural soils)

Pollutants	Tier	Methodology applied	Observations
Inorganic N	I-ferti	lizers (3Da1)	
NH ₃	Т2	- EMEP/EEA Guidebook (2019).	 EF (3D Crop production and agricultural soils- Table 3-2). Reduction Factors applied according to "Options for ammonia mitigation. Guidance from the UNECE Task Force on Reactive Nitrogen" (Chapter 8: Fertilizer application)²³. Methodology factsheet: (<u>Direct emissions by mineral nitrogen fertilizers application to soil</u>)²⁴.
NOx	T1	- EMEP/EEA Guidebook (2019).	- EF (3D Crop production and agricultural soils- Table 3-1).
Animal ma	nure d	applied to soils (3Da2a)	
NH ₃	Т2	- EMEP/EEA Guidebook (2019).	 N-mass balance methodology (3B Manure management section 3.4 - Tier 2 technology-specific approach, Table 3.9). EF (3B Manure management- section 3.4 - Tier 2 technology specific approach, Table 3.9). Reduction Factors applied according to "Options for ammonia mitigation. Guidance from the UNECE Task Force on Reactive Nitrogen" (Chapter 7: Manure application techniques).
NOx	T1	- EMEP/EEA Guidebook (2019).	 N-mass balance methodology (3B Manure management section 3.4 - Technology-specific approach, Table 3.9). EF (3D Crop production and agricultural soils- section 3.3.2, Table 3.1).
NMVOC	Т2	- EMEP/EEA Guidebook (2019).	- Algorithm for NMVOC emissions (3.B Manure management). - EF (3.B Manure management-Tables 3.11 and 3.12).
Sewage slu	dge a	pplied to soils (3Da2b)	
NH ₃	T1	- EMEP/EEA Guidebook (2019).	- EF (3D Crop production and agricultural soils- section 3.3.2, Table 3.1).
NOx	T1	- EMEP/EEA Guidebook (2019).	- EF (3D Crop production and agricultural soils- section 3.3.2, Table 3.1).
Other orga	nic fei	tilizers applied to soils (includi	ng compost) (3Da2c)
NH ₃	T1	- EMEP/EEA Guidebook (2019).	- EF (3D Crop production and agricultural soils- section 3.3.2, Table 3.1).
NOx	T1	- EMEP/EEA Guidebook (2019).	- EF (3D Crop production and agricultural soils- section 3.3.2, Table 3.1).

^{23 &}quot;Options for Ammonia Mitigation. Guidance from the UNECE Task Force on Reactive Nitrogen", 2014 https://www.mapa.gob.es/gl/ganaderia/temas/ganaderia-y-medio-ambiente/tfrn_unece_2014eng_tcm37-436095.pdf.

Recommendation made by the ERT in the 2019 NECD. Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

Pollutants	Tier	Methodology applied	Observations			
Urine and dung deposited by grazing animals (3Da3)						
NH ₃	T2	- EMEP/EEA Guidebook (2019).	 N-mass balance methodology (3B Manure management section 3.4 - Tier 2 technology-specific approach, Table 3.9). EF (3B Manure management- section 3.4 - Tier 2 technology-specific approach, Table 3.9). 			
NOx	T1	- EMEP/EEA Guidebook (2019).	 N-mass balance methodology (3B Manure management section 3.4 - Technology-specific approach, Table 3.9). EF (3D Crop production and agricultural soils- section 3.3.2, Table 3.1). 			
NMVOC	Т2	- EMEP/EEA Guidebook (2019).	- Algorithm for NMVOC emissions (3.B Manure management). - EF (3.B Manure management-Tables 3.11 and 3.12).			
Farm-level	agricu	ıltural operations (3Dc)				
PM _{2.5} , PM ₁₀ , TSP	T1	- EMEP/EEA Guidebook (2019).	- EF (3D Crop production and agricultural soils, Table 3.1) Methodology factsheet: (Farm-level agricultural operations PM emissions).			
Cultivated o	rops	(3De)				
NMVOC	T2	- EMEP/EEA Guidebook (2019).	- EF (3D Crop production and agricultural soils, Table 3.3).			
Use of pest	icides	(3Df)				
НСВ	T1	- EMEP/EEA Guidebook (2019).	- Impurity factor (3Df, 3I Agriculture other including use of pesticides) Table 3.			

For the particular case of 3Da1 Inorganic N-fertilizers, to calculate nitrogen emissions (NH₃, NOx) from inorganic fertilized crops, the Spanish Inventory Team has proceeded the following way:

- Equivalence between nitrogen need according to annual yields (obtained from the 'Nitrogen and Phosphorous Balance in Spanish Agriculture Book' (BNPAE)) and nitrogen uptake by crop (presuming enough nitrogen availability) has been assumed. According to the nitrogen need by crop and province estimated by the BNPAE, a distribution pattern of nitrogen applied to soils has been designed for the total national territory, by species, by province. Due to the lack of enough information about the fertilizer type applied on every crop and province, this proportional allocation of every chemical form commercialized has been adopted.
- The "Informe sobre regadíos en España" (Spanish Irrigation Report) run by ESYRCE provides irrigation type and extension by main crops and Autonomous Communities. The Inventory crosses this information with the above paragraph results for estimation of implementation level of possible options for ammonia mitigation.
- Once the amount of nitrogen from every fertilizer type applied $\left(\frac{\text{kg N}_{\text{fertilize-type}}}{\text{year}\times\text{crop}\times\text{province}}\right)$ has been established, it is then multiplied by the appropriate emission factor taking into account the pH-soil and temperature characterization of every province in Spain (see table 5.4.14).
- Information about performance of Good Agricultural Practices of fertilizer application
 has been collected from a survey conducted by ANFFE. When the implemented extent
 of those practices has been determined, a reduction factor is assigned according to
 "Options for ammonia mitigation. Guidance from the UNECE Task Force on Reactive

Nitrogen"²⁵. If a range of reduction was available, the interval average was chosen (see table 5.4.15).

B.3. Assessment

The chart below shows the time series evolution of N-fertilizers applied to soils.

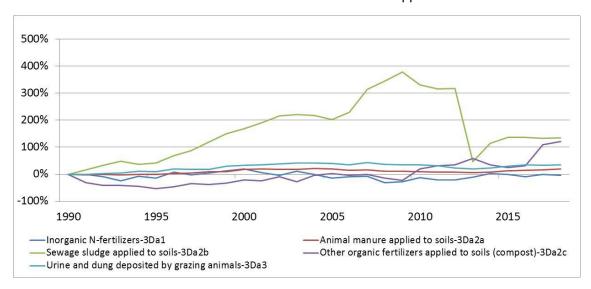


Figure 5.4.6 Variation ratio of N applied by fertilizers with respect to 1990

In relative terms, sewage sludge suffers a strong increase with respect to the base year, until 2012. From 2013 a significant decrease is observed following the entry into force of the Spanish Ministerial Order AAA/1072/2013, of 7 June, on the use of sewage sludge in the agriculture sector. Next graph shows the progression from 1990 and the impact of each subcategory on total N applied.

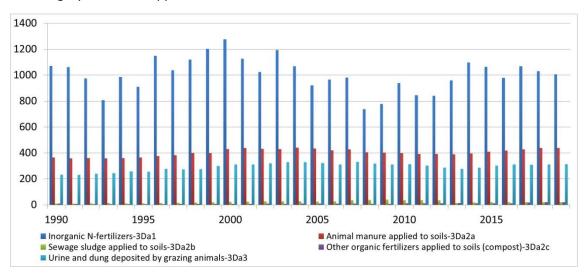


Figure 5.4.7 N applied by source (kt/year)

In the following table, the values of N applied to soil for the time series are provided in kt/year.

²⁵ "Options for Ammonia Mitigation. Guidance from the UNECE Task Force on Reactive Nitrogen", 2014.

	1990	2005	2010	2015	2016	2017	2018	2019
3Da1	1,069.25	919.79	937.19	1,063.65	978.35	1,067.76	1,029.00	1,006.19
3Da2a	364.81	433.79	397.07	408.96	417.53	426.55	437.31	437.77
3Da2b	8.32	25.13	35.80	19.73	19.62	19.42	19.54	19.54
3Da2c	8.51	8.78	10.22	10.54	11.14	17.85	18.77	18.77
3Da3	231.39	321.83	313.26	301.65	309.87	308.99	311.14	312.86
Total	1,682.28	1,709.32	1,693.54	1,804.53	1,736.51	1,840.57	1,815.76	1,795.13

Table 5.4.13 N applied to soil by 3D category (kt/year)

An approximate Sankey diagram of the nitrogen flows along the different agriculture sectors and pools (N-fertilization and manure management) and the corresponding emissions of nitrogen compounds in 2019 is shown in the following Sankey diagram.

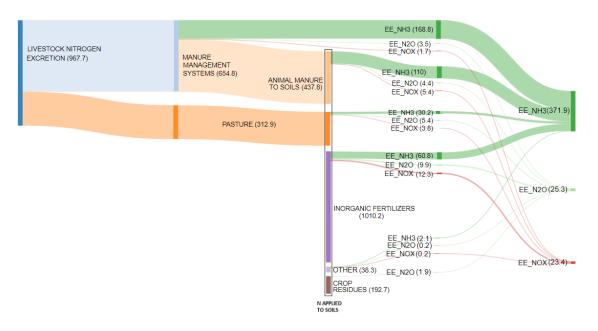


Figure 5.4.8 Emissions of nitrogen compounds by agricultural N-fertilization activity and manure management in 2019 (kt N)

Further, values of N applied to soil by type N-fertilizer and climate-pH provincial, as well as description of applied BATs are provided.²⁶

Table 5.4.14 N applied to soil by type N-fertilizer and climate-pH provincial (t/year) in 2019

Climate-pH բ	provincial	1. Ammonium sulphate (AS)	2. Ammonium nitrosulphate (ANS)	3. Calcium ammonium nitrate (CAN)	4. Ammonium nitrate (AN)	5. Urea	6. Calcium nitrate (CN)
N applied in	Normal pH	6,878.86	3,626.13	23,574.83	5,567.28	32,282.25	1,446.34

²⁶ Recommendation made by the ERT in the 2019 NECD. Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

Climate-pH բ	provincial	1. Ammonium sulphate (AS)	2. Ammonium nitrosulphate (ANS)	3. Calcium ammonium nitrate (CAN)	4. Ammonium nitrate (AN)	5. Urea	6. Calcium nitrate (CN)
cool provinces	High pH	22,354.35	11,783.91	76,611.51	18,092.09	104,908.18	4,700.19
N applied in	Normal pH	2,443.18	1,287.90	8,373.12	1,977.34	11,465.76	513.70
temperate provinces	High pH	24,229.65	12,772.46	83,038.43	19,609.83	113,708.90	5,094.48
TOTAL		55,906.04	29,470.40	191,597.90	45,246.55	262,365.08	11,754.70

Climate-pH provincial		7. Chile nitrate	8. Anhydrous ammonia (AH)	9. Nitrogen solutions	10. NK, NPK, NP mixtures	11. Other straight N compounds	TOTAL
N applied in cool	Normal pH	0.0	214.39	11,449.54	34,573.17	4,191.88	123,804.67
provinces	High pH	0.0	696.71	37,207.75	112,352.99	13,622.42	402,330.08
N applied in temperate	Normal pH	0.0	76.15	4,066.56	12,279.43	1,488.84	43,971.97
provinces	High pH	0.0	755.15	40,329.09	121,778.25	14,765.20	436,081.45
TOTAL		0.0	1,742.40	93,052.93	280,983.83	34,068.33	1,006,188.17

Table 5.4.15 Description of applied BATs in 3Da1 (Inorganic N-fertilizers (includes urea application))

MTD	Abatement measure	Fertilizer	Crops	Dry land/Irrigation	Regions (provinces)	Reduction (fraction)	Source
1	Irrigation with at least 5 mm water immediately following fertilizer application	All	All	Fertilization- Irrigation	All	0.55 (0.4-0.7)	(*)
2	Incorporation of fertilizer into the soil	Ammonium sulphate	All crops	All	Castilla y León provinces	0.65 (0.5-0.8)	(*)
3	Incorporation of fertilizer into the soil	Urea	Cereals and beans	All	Castilla y León provinces	0.65 (0.5-0.8)	(*)
4	Close-slot injection	Urea	Rice	Irrigation land	Cataluña provinces	0.8	(*)
5	Close-slot injection	Urea	Rice	Irrigation land	Valencia provinces	0.8	(*)
6	Incorporation of fertilizer into the soil	Ammonium nitrosulphate, Calcium ammonium nitrate, Urea, Nitrogen solutions, NK,NPK,NP mixtures, Other straight N compounds	Rice	Irrigation land	Andalucía provinces	0.65 (0.5-0.8)	(*)

MTD	Abatement measure	Fertilizer	Crops	Dry land/Irrigation	Regions (provinces)	Reduction (fraction)	Source
7	Incorporation of fertilizer into the soil	Ammonium nitrate, Nitrogen solutions, Other straight N compounds	Rice	Irrigation land	Aragón provinces	0.65 (0.5-0.8)	(*)
8	Incorporation of fertilizer into the soil	Ammonium nitrosulphate, Calcium ammonium nitrate, Ammonium nitrate, Urea	Rice	Irrigation land	Navarra province	0.65 (0.5-0.8)	(*)
9	Incorporation of fertilizer into the soil	Calcium ammonium nitrate	Vineyard	All	Extremadura provinces	0.65 (0.5-0.8)	(*)
10	Incorporation of fertilizer into the soil	Urea	Olive grove	Dry land	Extremadura provinces	0.65 (0.5-0.8)	(*)

^{(*) &}quot;Options for ammonia mitigation. Guidance from the UNECE Task Force on Reactive Nitrogen", 2014.

The following pie chart displays the main relative contributions within category 3D in 2019 for NH_3 emissions.

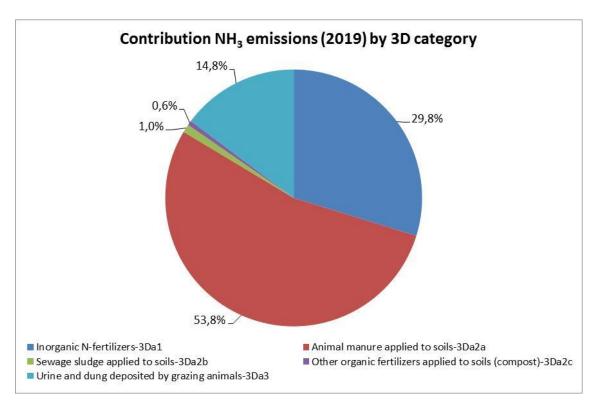


Figure 5.4.9 Contribution of NH₃ emissions (2019) by N applied to soil

C. Field burning of agricultural waste (3F)

Category 3F "Field burning of agricultural waste" is considered as a key category for its contribution to the trend of the following pollutants NOx, NH₃, PM₁₀, TSP, BC, CO, Hg and PAHs emissions and for its contribution to the level and trend of emissions of PM_{2.5} and Cd pollutant.

The practice of burning agricultural waste after crop harvesting has been soundly settled in Spanish agriculture before being excluded from the Good Agricultural Practice framework. From then on, it has been progressively restricted by forest fire preventive legislation and conditionality of CAP (Common Agricultural Policy) payments.

In fact, only residues of cotton crops are currently burnt (a minimal amount of ornamental flower residue is also burned). Residues of wooden crop pruning, such as olive or vineyards, are conveyed out of the crop field and burnt as waste in separated areas. For this reason, the emissions derived from burning the pruning residues are not included in category 3F but in category 5C2, in a coherent way to the EMEP report (see NFR 5.C.2 – Open burning of waste).

C.1. Activity variables

Table 5.4.16 Summary of activity variables, data and information sources for category 3F

Activities included	Activity data	Source of information
Field burning of agricultural residues (3F)	- Crop surface and crop yield.	- MAPA's Statistic Year Book Nitrogen and Phosphorous Balance in Spanish Agriculture Book (BNPAE).
	- Burnt fraction by crop.	- Nitrogen and Phosphorous Balance in Spanish Agriculture Book (BNPAE).
	- Annual N-amount of burnt crop residue.	- Nitrogen and Phosphorous Balance in Spanish Agriculture Book (BNPAE).
	- Nitrogen fraction by crop.	- Nitrogen fraction by crop (several authors); Ref. Man. & Good Pract. Guide IPCC; Martínez, X.; Roselló, J. and Domínguez, A. (2006); Harvest index. (2006); Krider J.N. et al.; Villalobos, F.J. et al. (2002); Wheeler, R.M. (2003); Energy Andalucia Agency (1999); Senovilla, L. and Antolín, G. (2005); La Cal, J.A. (2007).

C.2. Methodology

The following table summarises the methodologies applied in this chapter. Methodology level and sources are provided for reference.

Table 5.4.17 Summary of methodologies applied in category 3F

Pollutants	Tier	Methodology applied	Observations			
Field burning o	Field burning of agricultural residues (3F)					
NOx, NMVOC, SOx, NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, CO, HM, DIOX, PAHs	T1	- EMEP/EEA Guidebook (2019).	 - 3F Field burning of agricultural residues - section 3.2 – Methodological fundamentals. - EF default value (3.F Field burning of agricultural residues -Table 3.1). - Calculation of PAH emissions has been carried out by pollutants: benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene. 			

C.3. Assessment

The emissions of Field burning of agricultural residues (3F) in 2019 are -96.4% lower than in 1990 due to progressive abandonment of this practice as explained above. The chart below shows the time series evolution of burnt crop area in Spain.

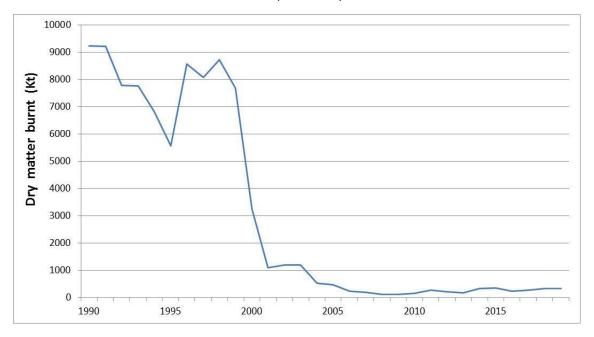


Figure 5.4.10 Dry matter burnt

This activity has been a common practice in Spain until the early 2000s. It generates emission of polluting gases without energy yield and can elicit other negative consequences such as risk of fires and erosion. For this reason, the practice has been limited to a few authorised situations within different law frameworks and the proportion of crops burnt has been significantly reduced, and subsequently the emissions derived from them. The evolution can be seen in the following table.

1990 2005 2010 2015 2016 2017 2018 2019 **CEREALS** 6,403.5 0.0 0.0 0.0 0.0 0.0 0.0 **PULSES** 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **TUBERS AND ROOTS** 1,455.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **SUGAR CANE** 57.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **OTHERS** 467.1* 1,313.8 146.9* 341.9* 235.8* 278.2* 331.6* 331.6* **TOTAL** 9,231.8 467.1 146.9 341.9 235.8 278.2 331.6 331.6

Table 5.4.18 Dry matter burnt evolution (kt)

5.5. Recalculations

The changes have been incorporated and summarized in the following table.

^(*) Since 2004, only residues of cotton crops are burnt (a minimal amount of ornamental flower residue is also burned).

Table 5.5.1 Recalculation by pollutants

Pollutants affected	Recalculation
3B Manure managemen	t (3B1a, 3B1b, 3B2, 3B3, 3B4d, 3B4e, 3B4f, 3B4gi, 3B4gii and 3B4giv)
3B1b (Non Dairy Cattle	
NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	Recalculation due to correction of errors in population data of two subcategories productives for the years 2016 and 2017.
3B3 (Swine)	Production for the feet of t
NOx, NMVOC, NH ₃ ,	Recalculation due to correction of small errors in population data for the years 1990-
PM _{2.5} , PM ₁₀ , TSP	1993, 1999, 2000 and 2005.
3B4d (Goats)	
NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	Recalculation due to completion of new zootechnical document implementation for goats with changes in grazing distribution, manure management system and N-excretion (mass balance alterations and NH ₃ , NOx and NMVOC emissions calculus variations). PM emissions calculus variations.
3B4e (Horses)	
NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	Recalculation due to correction of small error in population data for the year 2011.
3B4f (Mules and Asses)	
NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	Recalculation due to correction of small error in population data for the year 2011.
3B4gi (Laying hens)	
NOx, NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	Recalculation due to correction of small error in population data for the year 2016.
	agricultural soils (3Da1, 3Da2a, 3Da2b, 3Da2c, 3Da3, 3Dc, 3De and 3Df)
3Da1 (Inorganic N-fertili	zers (includes also urea application)
NOx, NH ₃	Recalculation due to small nitrogen balance (BNPAE) alterations in all annual series due to implementation of recalculations of emissions during last edition of the inventory which were incorporated to the nitrogen balance the following year producing regional changes in the distribution of fertilizers whose emissions are affected by T and pH of the regions. Minimal variations for NOx.
3Da2a (Animal manure	
NMVOC, NH₃	Recalculation due to completion of new zootechnical document implementation for goats, nitrogen balance (BNPAE) alterations and correction of different errors in population data both above mentioned.
NOx	Recalculation due to correction of nitrogen applied to soils for the calculation of NOx emissions (change resulting from the 2020 NECD review ²⁷).
3Da2b (Sewage sludge d	ipplied to soils)
NOx, NH₃	Sewage sludge amount applied to soils are provided by source ("National Sewage Register" (MITERD)) with several years lag. 2012 "National Sewage Register" data were replicated due to lack of consolidated information from that year on. This edition has updated the values of 2013, 2014 and 2015 according values published, and 2015 value has replicated them into 2016, 2017, 2018 and 2019.
3Da2c (Other organic fe	rtilizers applied to soils (including compost))
NOx, NH₃	Compost amount applied to soils are provided by source with two year lag. In these cases, the Inventory replicates the x-2 year values published, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according values published, and has replicated them into 2019. In addition, data of the activity variable for the year 2018 has been updated.
3Da3 (Urine and dung d	eposited by grazing animals)
NOx, NMVOC, NH ₃	Recalculation due to completion of new zootechnical document implementation for goats with changes in grazing distribution and N-excretion. In addition, this edition has done a recalculation due to changes in NH_3 -EFs from EMEP/EEA Guidebook (2019) for

²⁷ Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

Pollutants affected	Recalculation
	grazing animals emission. Correction of different errors in population data both above mentioned also affect the calculation of this category.
3Dc (Farm-level agricult	ural operations including storage, handling and transport of agricultural products)
PM _{2.5} , PM ₁₀ , TSP	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with two year lag compared with inventory report. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook and has replicated them into 2019. Furthermore, the list of crops that produce particulate matter emissions has been updated.
3De (Cultivated crops)	
NMVOC	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with two year lag compared with inventory report. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook and has replicated them into 2019.
3Df (Use of pesticides)	
HCB	Recalculation due to correction of small error in VA data for the year 2018.
3F (Field burning of agri	cultural residues)
NOx, NMVOC, SOx, NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PCDD/PCDF, PAHs	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with two year lag compared with inventory report. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook and has replicated them into 2019. On the other hand, following TERT's recommendation, recalculation due to PAHs EFs update from EMEP/EEA Guidebook (2019) was implemented. Calculation of PAH emissions was carried out by pollutants: benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene.

The following graphs display the evolution as a result of recalculations. The line chart shows emissions (kt) in absolute terms, while the bar chart displays the relative difference between emission values before and after recalculations.

3B Manure management (3B1a, 3B1b, 3B2, 3B3, 3B4d, 3B4e, 3B4f, 3B4gi, 3B4gii, and 3B4giv)

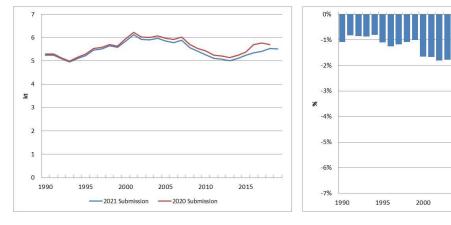


Figure 5.5.1 Evolution of the difference in 3B NOx emissions

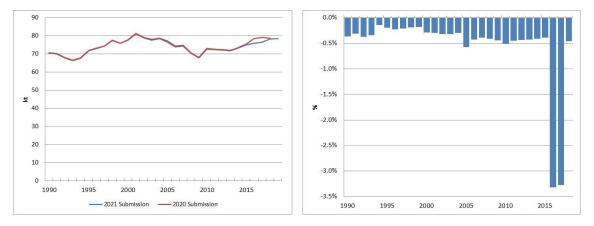


Figure 5.5.2 Evolution of the difference in 3B NMVOC emissions

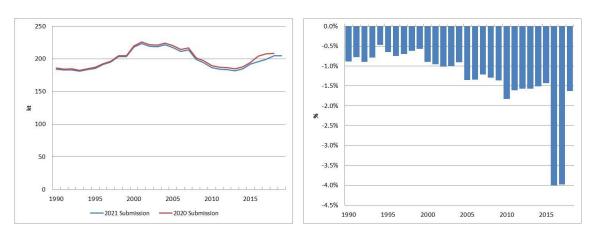


Figure 5.5.3 Evolution of the difference in 3B NH₃ emissions

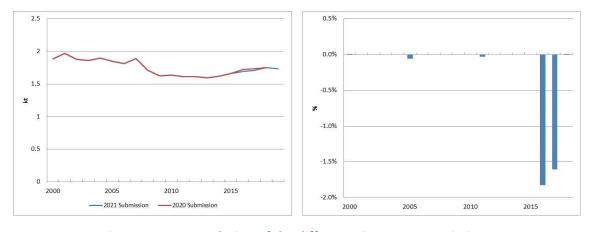


Figure 5.5.4 Evolution of the difference in 3B PM_{2.5} emissions

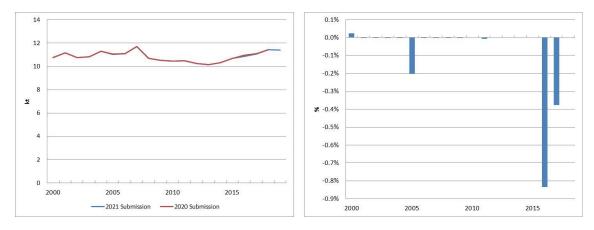


Figure 5.5.5 Evolution of the difference in 3B PM₁₀ emissions

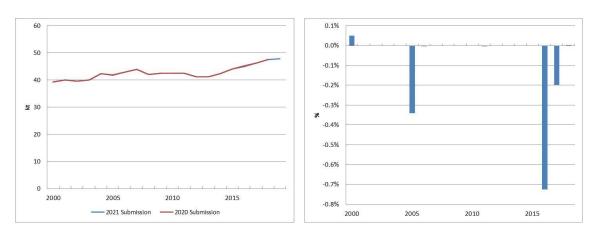


Figure 5.5.6 Evolution of the difference in 3B TSP emissions

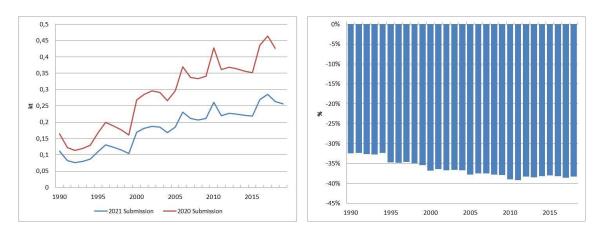


Figure 5.5.7 Evolution of the difference in 3B4d (Goats) NOx emissions

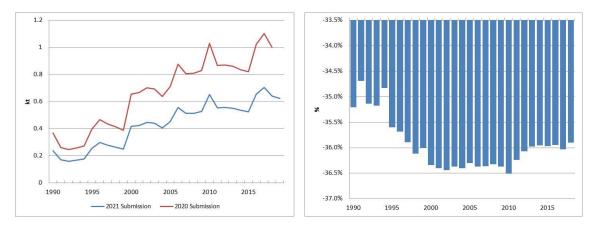


Figure 5.5.8 Evolution of the difference in 3B4d (Goats) NMVOC emissions

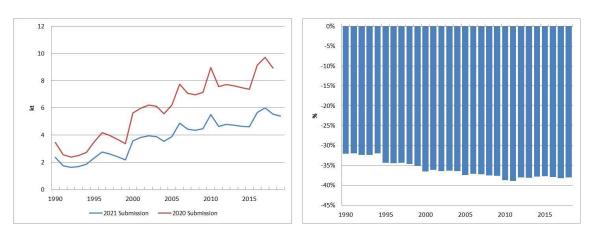


Figure 5.5.9 Evolution of the difference in 3B4d (Goats) NH₃ emissions

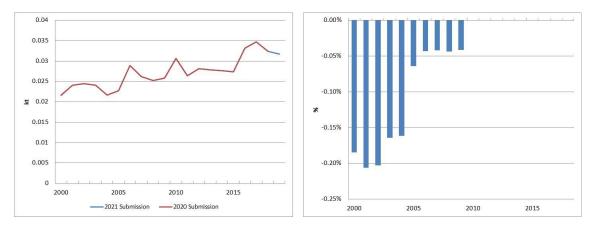


Figure 5.5.10 Evolution of the difference in 3B4d (Goats) PM_{2.5} emissions

3D Crop production and agricultural soils (3Da1, 3Da2a, 3Da2b, 3Da2c, 3Da3, 3Dc, 3De and 3Df)

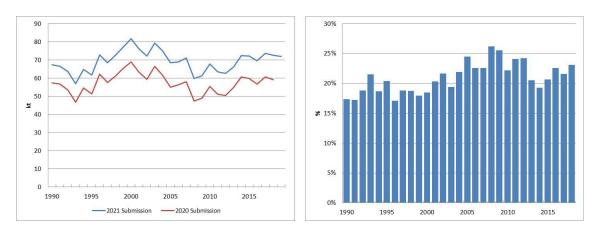


Figure 5.5.11 Evolution of the difference in 3D NOx emissions

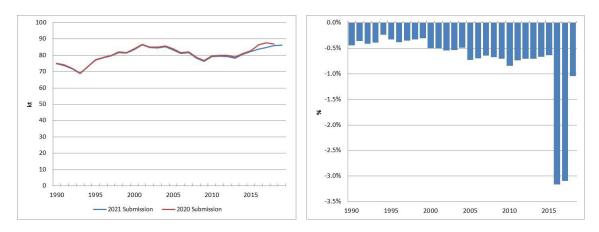


Figure 5.5.12 Evolution of the difference in 3D NMVOC emissions

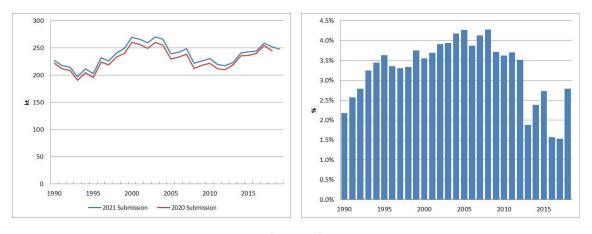


Figure 5.5.13 Evolution of the difference in 3D NH₃ emissions

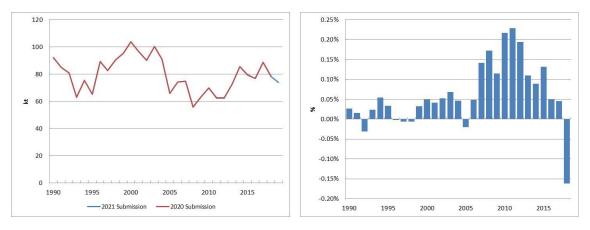


Figure 5.5.14 Evolution of the difference in 3Da1 (Inorganic n-fertilizers) NH₃ emissions

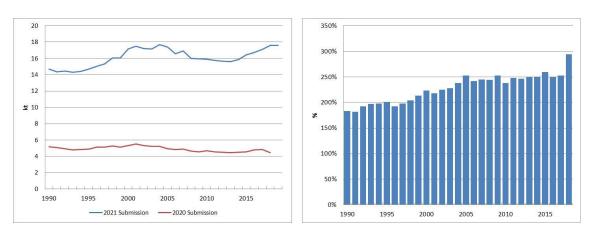


Figure 5.5.15 Evolution of the difference in 3Da2a (Animal manure applied to soils)

NOx emissions

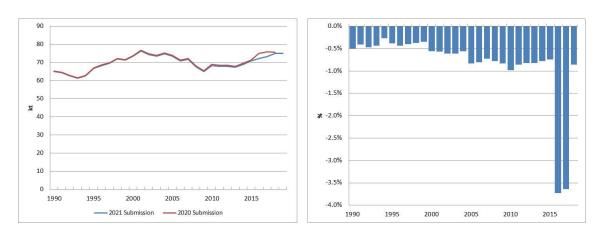
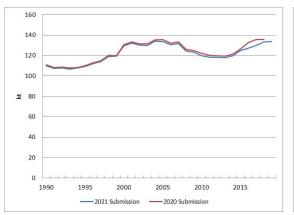



Figure 5.5.16 Evolution of the difference in 3Da2a (Animal manure applied to soils) NMVOC emissions

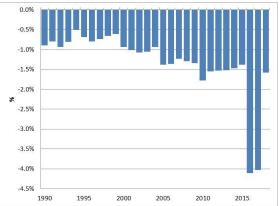
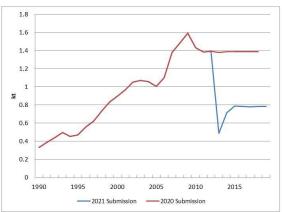



Figure 5.5.17 Evolution of the difference in 3Da2a (Animal manure applied to soils) NH₃ emissions

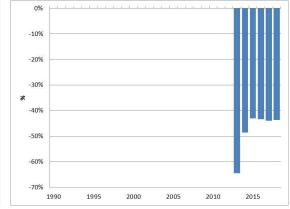
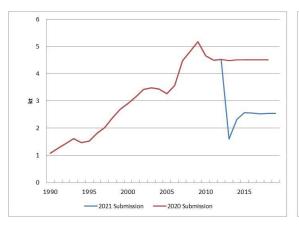



Figure 5.5.18 Evolution of the difference in 3Da2b (Sewage sludge applied to soils)

NOx emissions

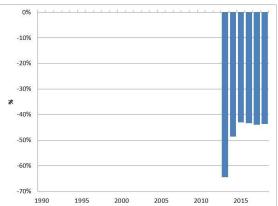


Figure 5.5.19 Evolution of the difference in 3Da2b (Sewage sludge applied to soils) NH₃ emissions

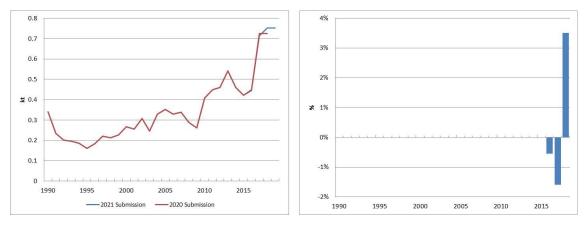


Figure 5.5.20 Evolution of the difference in 3Da2c (Other organic fertilizers applied to soils (including compost)) NOx emissions

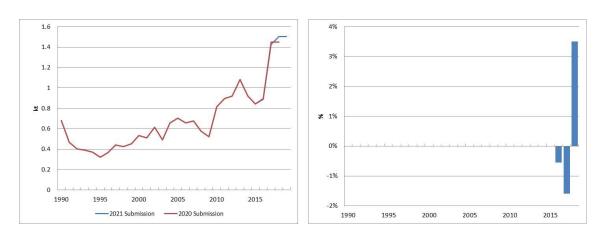


Figure 5.5.21 Evolution of the difference in 3Da2c (Other organic fertilizers applied to soils (including compost)) NH₃ emissions

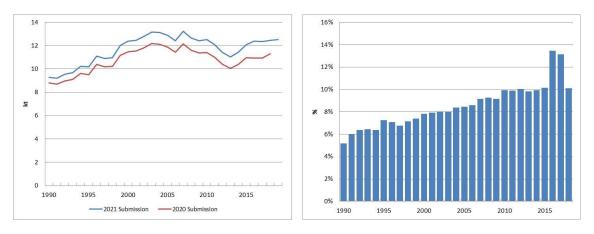


Figure 5.5.22 Evolution of the difference in 3Da3 (Urine and dung deposited by grazing animals) NOx emissions

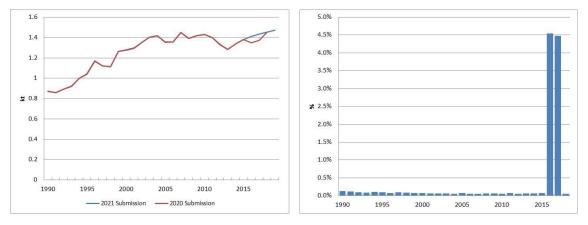


Figure 5.5.23 Evolution of the difference in 3Da3 (Urine and dung deposited by grazing animals) NMVOC emissions

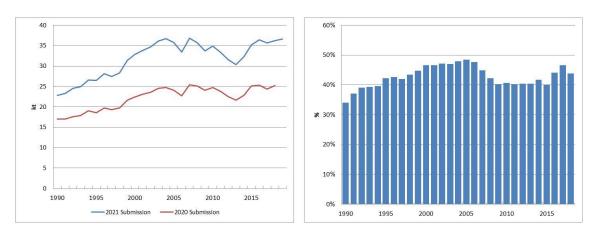


Figure 5.5.24 Evolution of the difference in 3Da3 (Urine and dung deposited by grazing animals) NH₃ emissions

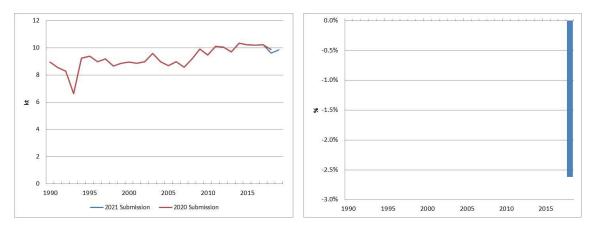


Figure 5.5.25 Evolution of the difference in 3De NMVOC emissions (cultivated crops)

Figure 5.5.26 Evolution of the difference in 3Dc (Farm-level agricultural operations including storage, handling and transport of agricultural products) (unique PM category of 3D) PM_{2.5} emissions

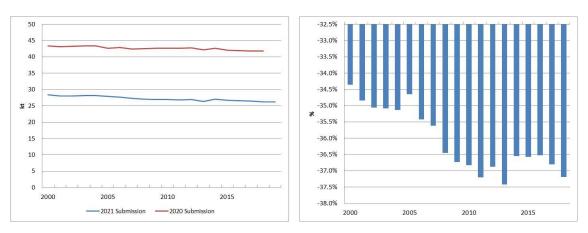


Figure 5.5.27 Evolution of the difference in 3Dc (Farm-level agricultural operations including storage, handling and transport of agricultural products) (unique PM category of 3D) PM₁₀ emissions

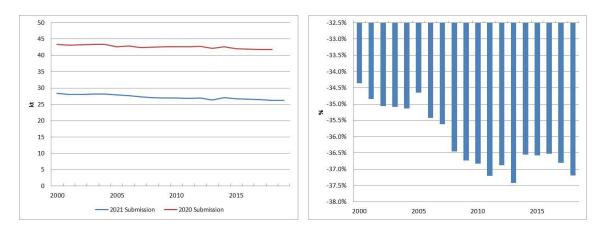


Figure 5.5.28 Evolution of the difference in 3Dc (Farm-level agricultural operations including storage, handling and transport of agricultural products) (unique PM category of 3D) TSP emissions

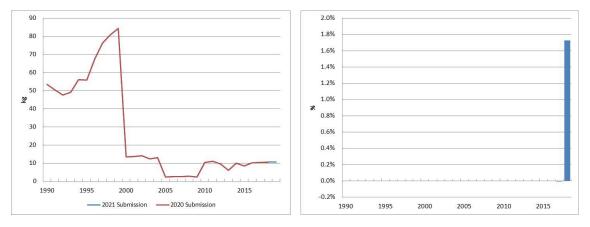


Figure 5.5.29 Evolution of the difference in 3Df (Use of pesticides) HCB emissions (new estimation)

3F Field burning of agricultural residues

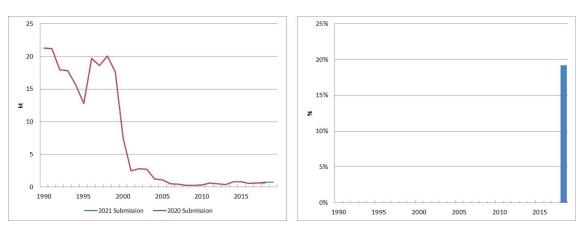


Figure 5.5.30 Evolution of the difference in 3F NOx emissions

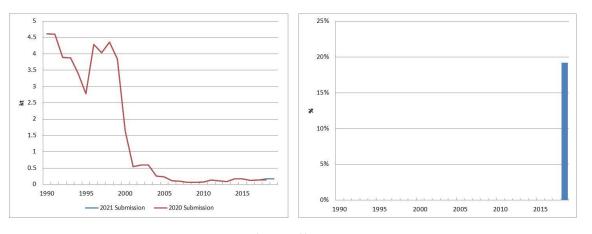


Figure 5.5.31 Evolution of the difference in 3F NMVOC emissions

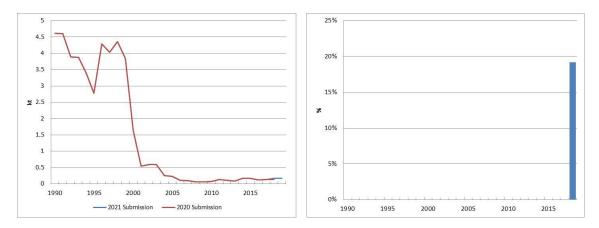


Figure 5.5.32 Evolution of the difference in 3F SOx emissions

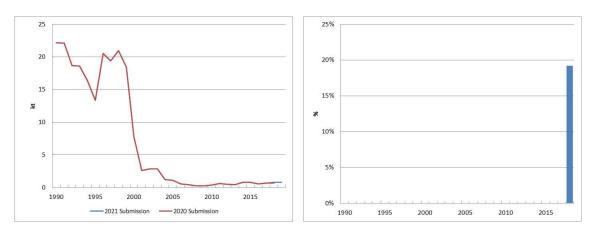


Figure 5.5.33 Evolution of the difference in 3F NH₃ emissions

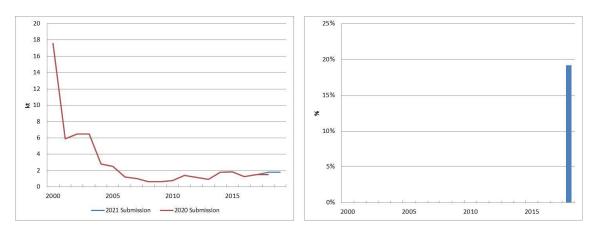


Figure 5.5.34 Evolution of the difference in 3F PM_{2.5} emissions

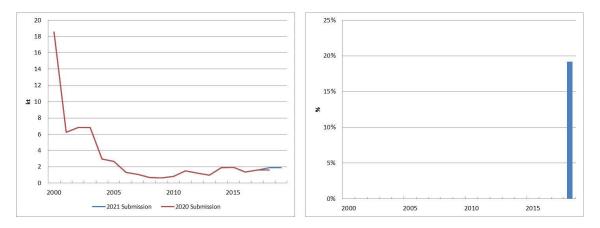


Figure 5.5.35 Evolution of the difference in 3F PM₁₀ emissions

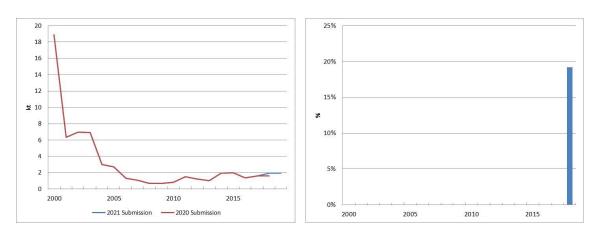


Figure 5.5.36 Evolution of the difference in 3F TSP emissions

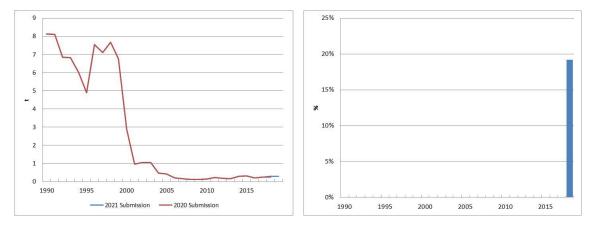
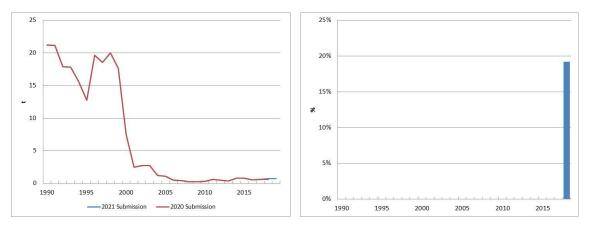
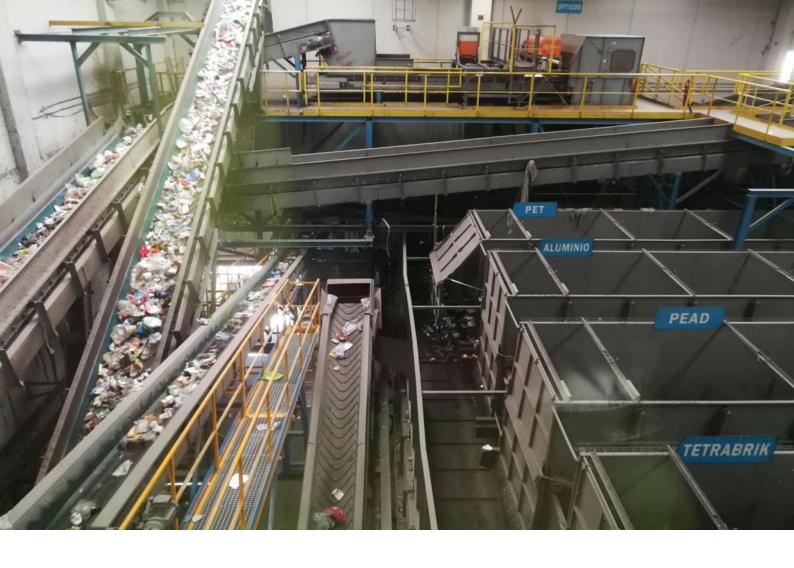


Figure 5.5.37 Evolution of the difference in 3F Cd emissions




Figure 5.5.38 Evolution of the difference in 3F PAH emissions

5.6. Sector improvements

Areas of improvement intended to be accomplished, include:

- Incorporate to inventory the information supplied by new documents of the collection "Bases para el balance alimentario de nitrógeno y fósforo" as their review is being completed.
- Incorporate to inventory the information supplied by technical documents about country specific MMS is being finished.
- Continuation with the elaboration of methodological factsheets²⁸.
- Tier 2 implementation for 3F category.

²⁸ Methodological factsheets.

6. WASTE (NFR 5)

CONTENTS

6.		WASTE (NFR 5)	339
	6.1.	Sector overview	.340
	6.2.	Sector analysis	.341
	6.2.1	. Key categories	.342
	6.2.2	. Analysis by pollutant	
	6.2.3	Condensable component of PM ₁₀ and PM _{2.5}	.350
	6.3.	Major changes	.350
	6.4.	Key categories analysis	.351
	A.	Incineration (5C)	.352
	В.	Wastewater handling (5D)	.356
	C.	Other waste (5E)	.360
	6.5.	Recalculations	.362
	6.6.	Sector improvements	.380

FIGURES

Figure 6.1.1	Relative emissions in Waste in 2019 and its relative variation (2019 vs. 1990)	. 339
Figure 6.2.1	Evolution of NOx emissions by category and distribution in year 2019	
Figure 6.2.2	Evolution of NMVOC emissions by category and distribution in year 2019	
Figure 6.2.3	Evolution of SOx emissions by category and distribution in year 2019	
Figure 6.2.4	Evolution of NH ₃ emissions by category and distribution in year 2019	
Figure 6.2.5	Evolution of PM _{2.5} emissions by category and distribution in year 2019	
Figure 6.2.6	Evolution of PM ₁₀ emissions by category and distribution in year 2019	
Figure 6.2.7	Evolution of TSP emissions by category and distribution in year 2019	
Figure 6.2.8	Evolution of BC emissions by category and distribution in year 2019	
Figure 6.2.9	Evolution of CO emissions by category and distribution in year 2019	
Figure 6.2.10	Evolution of PB emissions by category and distribution in year 2019	
Figure 6.2.11	Evolution of CD emissions by category and distribution in year 2019	
Figure 6.2.12	Evolution of HG emissions by category and distribution in year 2019	
Figure 6.2.13	Evolution of POPs emissions in 5C and 5E	
Figure 6.4.1	Evolution of activity variables in category waste incineration (5C), without cremations	
	(5C1bv)	355
Figure 6.4.2	Evolution of activity variables in category waste incineration (5C)	
Figure 6.4.3	Evolution of NMVOC emissions in category 5D	
Figure 6.4.4	Evolution of NH ₃ emissions in 5D3	
Figure 6.4.5	Evolution of activity variables in category 5D	
Figure 6.4.6	Evolution of activity variables in category 5E	
Figure 6.4.7	Evolution of DIOX and PAHs	
Figure 6.4.8	Evolution of PM emissions in 5E	
Figure 6.5.1	Evolution of the difference in 5A NOx emissions	
Figure 6.5.2	Evolution of the difference in 5A NMVOC emissions	
Figure 6.5.3	Evolution of the difference in 5A TSP emissions	
Figure 6.5.4	Evolution of the difference in 5A CO emissions	
Figure 6.5.5	Evolution of the difference in 5B1 NH ₃ emissions	
Figure 6.5.6	Evolution of the difference in 5B2 NOx emissions	
Figure 6.5.7	Evolution of the difference in 5B2 NH ₃ emissions	
Figure 6.5.8	Evolution of the difference in 5B2 TSP emissions	
Figure 6.5.9	Evolution of the difference in 5B2 CO emissions	
Figure 6.5.10	Evolution of the difference in 5C1biv NOx emissions	
Figure 6.5.11	Evolution of the difference in 5C1biv NMVOC emissions	
Figure 6.5.12	Evolution of the difference in 5C1biv SOx emissions	
Figure 6.5.13	Evolution of the difference in SC1biv TSP emissions	
Figure 6.5.14	Evolution of the difference in 5C1biv BC emissions	
Figure 6.5.15	Evolution of the difference in 5C1biv CO emissions	
Figure 6.5.16	Evolution of the difference in 5C1biv PCB emissions	
Figure 6.5.17	Evolution of the difference in 5C1biv HCB emissions	
Figure 6.5.18	Evolution of the difference in 5C1biv PAH emissions	
Figure 6.5.19	Evolution of the difference in 5C1biv DIOX emissions	
Figure 6.5.20	Evolution of the difference in 5C1biv Pb emissions	
Figure 6.5.21	Evolution of the difference in 5C1biv Cd emissions	
Figure 6.5.22	Evolution of the difference in 5C1biv Hg emissions	
Figure 6.5.23	Evolution of the difference in 5C1by NOx emissions	
Figure 6.5.24	Evolution of the difference in 5C1by NMVOC emissions	-
Figure 6.5.25	Evolution of the difference in 5C1by SOx emissions	-
Figure 6.5.26	Evolution of the difference in 5C1by PCB emissions	
Figure 6.5.27	Evolution of the difference in 5C1bv HCB emissions	
Figure 6.5.28	Evolution of the difference in 5C1by PAH emissions	
Figure 6.5.29	Evolution of the difference in 5C1by DIOX emissions	
Figure 6.5.30	Evolution of the difference in 5C1by Pb emissions	
Figure 6.5.31	Evolution of the difference in 5C1bv Cd emissions	
Figure 6.5.32	Evolution of the difference in 5C1bv Hg emissions	
Figure 6.5.33	Evolution of the difference in 5C2 NOx emissions	
Figure 6.5.34	Evolution of the difference in 5C2 NMVOC emissions	
Figure 6.5.35	Evolution of the difference in 5C2 SOx emissions	-
Figure 6.5.36	Evolution of the difference in 5C2 TSP emissions	
Figure 6.5.37	Evolution of the difference in 5C2 BC emissions	
Figure 6.5.38	Evolution of the difference in 5C2 CO emissions	
J		

Figure 6.5.39	Evolution of the difference in 5C2 PAH emissions	376
Figure 6.5.40	Evolution of the difference in 5C2 DIOX emissions	376
Figure 6.5.41	Evolution of the difference in 5C2 Pb emissions	377
Figure 6.5.42	Evolution of the difference in 5C2 Cd emissions	377
Figure 6.5.43	Evolution of the difference in 5D1 NOx emissions	377
Figure 6.5.44	Evolution of the difference in 5D1 NMVOC emissions	378
Figure 6.5.45	Evolution of the difference in 5D1 TSP emissions	378
Figure 6.5.46	Evolution of the difference in 5D1 CO emissions	378
Figure 6.5.47	Evolution of the difference in 5D3 NH₃ emissions	379
Figure 6.5.48	Evolution of the difference in 5E NMVOC emissions	379
Figure 6.5.49	Evolution of the difference in 5E NH ₃ emissions	379
Figure 6.5.50	Evolution of the difference in 5E TSP emissions	380
Figure 6.5.51	Evolution of the difference in 5E DIOX emissions	380
TABLES		
Table 6.1.1	Coverage of NFR category in 2019	340
Table 6.2.1	Sector analysis	341
Table 6.2.2	Assignation of KC	342
Table 6.2.3	Information on condensable component of PM	350
Table 6.4.1	Summary of activity variables, data and information sources for category 5C	352
Table 6.4.2	Summary of methodologies applied in category 5C	
Table 6.4.3	Summary of activity variables, data and information sources for category 5D	356
Table 6.4.4	Summary of methodologies applied in category 5D	356
Table 6.4.5	Summary of activity variables, data and information sources for category 5E	360
Table 6.4.6	Summary of methodologies applied in category 5E	360
Table 6 5 1	Posalculation by pollutants — Wasto	263

6. WASTE (NFR 5)

Chapter updated in March, 2021.

Sector Waste at a glance

The emissions of air pollutants from the waste sector are relatively major compared to the global inventory emissions in Spain in the last year. However, a significant decrease happens in the emissions of PAHs, which have been reduced almost entirely from the waste sector in comparison from last year. The waste sector has a greater weight in the emissions of PM_{2.5}, BC, CO or Cd (between 22% and 43% of the total emissions inventoried in Spain in 2019), but all these emissions are linked to just one particular activity (burnt of agricultural residues) that is still practiced in Spain.

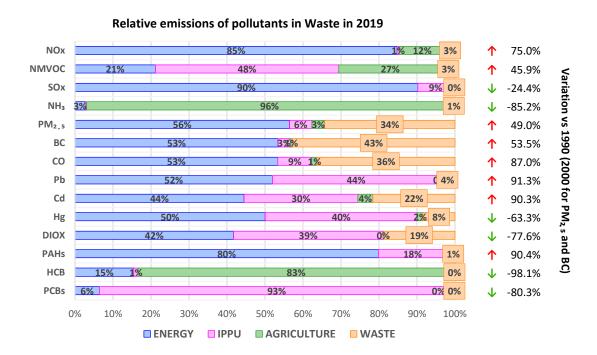


Figure 6.1.1 Relative emissions in Waste in 2019 and its relative variation (2019 vs. 1990)

Waste sector activities in Spain comprises the emissions of waste management in 118 landfills, 120 composting plants, 57 biomethanization facilities and 168 domestic wastewater treatment plants across the country. Despite this large variety of activities covered, in terms of air emissions, the open burning of agricultural residues (mostly pruning rests) is the principal key category for the sector and dominates most of the annual emissions and emissions trends.

In this sense, emissions levels for most of the pollutants show an upwards trend driven by the relative higher activity of open burning of agricultural residues in the last part of the time series. Other pollutants linked to burning of domestic residues (DIOX, PAHs, which has experienced the greatest decrease since last year, HCB or PCBs) show, on the other hand, a clear reduction of emission along the time series due to the limitation of this kind of activities.

6.1. Sector overview

The table below shows the detailed source categories for waste, particularly, NFR categories and pollutants coverage, methodology approach (Method) as well as their selection as key categories (KC).

Table 6.1.1 Coverage of NFR category in 2019

NFR Code	NFR category		Exceptions	Method	кс			
Code		Covered	IE	NA	NE			
5A	Biological treatment of waste - Solid waste disposal on land	NOx, NMVOC, PM, CO	-	Rest of pollutants	NH ₃ , Hg	T2	-	
5B1	Biological treatment of waste - Composting	NH_3	-	Rest of pollutants	NOx, NMVOC, SO ₂ , PM, BC, CO	T2	-	
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities	NOx, NH₃, PM, CO	-	As, Cu, Ni, Se	Rest of pollutants	T1	-	
5C1a	Municipal waste incineration	IE (s	ince 2004	, reported in	1A1a)			
5C1bi	Industrial waste incineration		IE (repo	rted in 1A1a)				
5C1bii	Hazardous waste incineration			NO			_	
5C1biii	Clinical waste incineration	IE (s	ince 2006	, reported in	1A1a)			
5C1biv	Sewage sludge incineration All – NH ₃			T2	✓			
5C1bv	Cremation	remation All – NH ₃ BC			T1	_		
5C1bvi	Other waste incineration (please specify in the IIR)		NO					
5C2	Open burning of waste	All	-	РСВ	NH ₃ , Hg, Ni, DIOX, HCB	T2	✓	
5D1	Domestic wastewater handling	NOx, NMVOC, PM, CO	-	Rest of pollutants	NH ₃ , Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, BC	T2		
5D2	Industrial wastewater handling	NOx, NMVOC, PM, CO	-	Rest of pollutants	NH ₃ , Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, BC	T1	√	
5D3	Other wastewater handling	NH_3	-	Rest of pollutants	NMVOC, PM, BC, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn	T2		
5E	Rest of			T2	✓			

IE: included elsewhere; NA: not applicable; NE: not estimated; NO: not occurring.

6.2. Sector analysis

The following table relates the detailed source categories for waste in the Inventory to the equivalent NFR source categories, including their main features in 2019. These main features do not consider the Canary Islands, as their territory is not under the EMEP grid.

For further information on methodology applied to non-key categories, links to the methodology factsheets published in MITERD-SEI website are included in the following table. For key categories, links to the available methodology factsheets have been included in the corresponding methodology section.

Table 6.2.1 Sector analysis

NFR Code	NFR category	Main features (2019)	Main sources of activity data		
5A	Solid waste disposal on land (Methodology factsheets: Deposit of solid waste in managed landfills Deposit of solid waste in unmanaged landfills)	- 118 landfills with waste disposal covered, 87 of them with biogas capture. - 13.278 kt of waste deposited in landfills.	- SGR (MITERD).		
5B1	Biological treatment of waste-composting (Methodology factsheet: Compost production)	- 120 composting plants covered. - 3,252 kt of waste entering the composting process.	- SGR (MITERD).		
5B2	Biological treatment of waste-anaerobic digestion at biogas facilities (Methodology factsheet: Biological treatment of solid waste (biomethanization))	- 57 biomethanization facilities covered: 4 of them mainly treating sludge, and the rest of facilities treating the organic fraction of MSW.	- IQ. - SGR (MITERD).		
5C1biv	Sewage sludge incineration	- 56 kt of sludge incinerated (9% of the total sludge produced).	- IQ. - National Sludge Registry (SGR (MITERD)).		
5C1bv Cremation (Methodology factsheet: Cremation)		- 172.145 corpses incinerated (41.2% of deaths).	- 1990-2009: European Federation of Funeral Services. - 2010-2014: Estimation based on data provided by the main entrepreneurial association for the period 1990-2009 and data of deaths from INE. - 2015-2019: PANASEF.		
5C2	Open burning of waste	- 11,880 kt of agricultural residues burned.	- Statistical Yearbook 2017 (MAPA). - Nitrogen and Phosphorus Balance in Spanish Agriculture (BNPAE) Yearbook.		
5D1	Domestic wastewater handling (Methodologicy factsheet: Domestic wastewater handling)	- 79.46 kt of biogas produced and recovered in 168 domestic wastewater plants from anaerobic treatment of sludge 9.7% of biogas burned in flares.	- "Uses of biogas produced in urban wastewater treatment plants in Spain" by CEDEX. - Indicators on waste water from the Spanish Statistical Office. - Data from OECC and MITERD.		

NFR Code	NFR category	Main features (2019)	Main sources of activity data
5D2	Industrial wastewater handling (Methodology factsheet: Industrial wastewater handling)	- 7.8 kt of CH ₄ recovered from industrial wastewater treatment plants 42% of CH ₄ burned in flares PM emissions are related to the burning in flares of a part of the biogas produced in wastewater treatment plants, and as the 2019 EMEP/EEA Guidebook does not provide default emission factors, emission factors from US EPA AP-42. 5th Ed. (1998), chapter 2.4., table 2.4-4, have been used, which provides the same emission factor for particle matter emissions. Final Review Report (ES-5D2-2019-0001 (Table 3)).	- Estimation based on data from OECC, MITERD and INE.
5D3	Other wastewater handling: Latrines (Methodology factsheet: Latrines)	- 2.8% of population lacks of an urban wastewater collecting system.	- Indicators on Population connected to waste water collection and treatment systems from Eurostat Population data by INE.
5E	Other waste: Sludge spreading, accidental fires (Methodology factsheets: Sludge spreading Accidental fires)	 - 0.6 kt of sludge dried by spreading (0.1% of total sludge produced in domestic wastewater plants). - Accidental fires: 2,654 detached house fire. 4.286 undetached house fire. 12.701 flat fire. 14.368 industrial fires. 15.109 cars fire. 	 National Sludge Registry (SGRMITERD). CEDEX. Madrid Council Government Area of Security and Community Services. General Directorate of Emergencies. MAPFRE Foundation and Professional Association of Firemen Technicians.

6.2.1. Key categories

According to the information provided in section 1.5 of this IIR and the Annex 1, the identified Key Categories within the Waste sector are summarised in the following table.

Table 6.2.2 Assignation of KC

NFR	NFR Category	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	DIOX	PAHs	НСВ	PCBs
5C	Incineration	L-T	L-T	-	-	L-T	L-T	L-T	L-T	L-T	L	L-T	L-T	L-T	-	-	Т
5D	Wastewater handling	-	-	-	Т	-	-	-	-	-	_	-	-	-	-	_	-
5E	Other waste	_	_	_	_	L	-	_	_	_	_	_	_	L-T	_	_	_

L: level; T: trend

6.2.2. Analysis by pollutant

Featured below are the charts of the time series by pollutants and NFR categories. Each pollutant is represented independently, broken down by main NFR categories within the sector. Additionally, a pie chart showing the weight distribution of the main categories for the year 2019 is included.

Explanation boxes are included below the graphs, providing specific details on the pollutant emissions for the year 2019 as well as main drivers and its trends during the time series.

Emissions from the Canary Islands are not considered, as their territory is not under the EMEP grid.

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

Main Pollutants

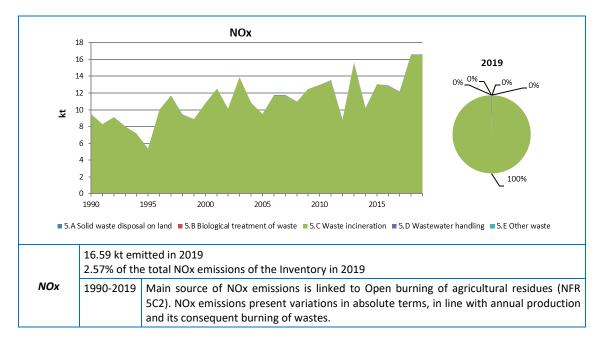


Figure 6.2.1 Evolution of NOx emissions by category and distribution in year 2019

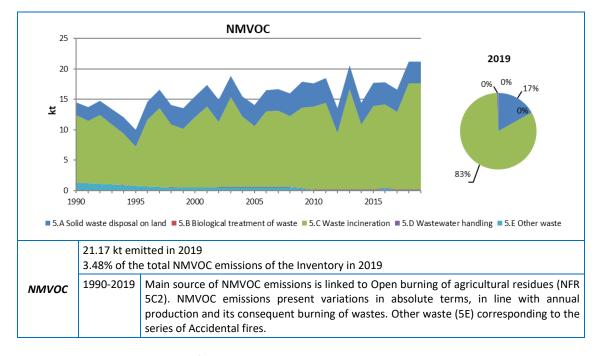


Figure 6.2.2 Evolution of NMVOC emissions by category and distribution in year 2019

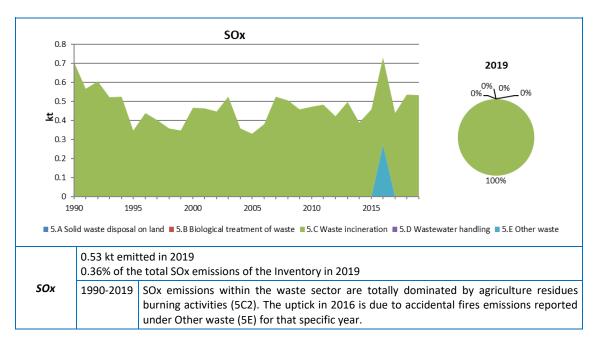


Figure 6.2.3 Evolution of SOx emissions by category and distribution in year 2019

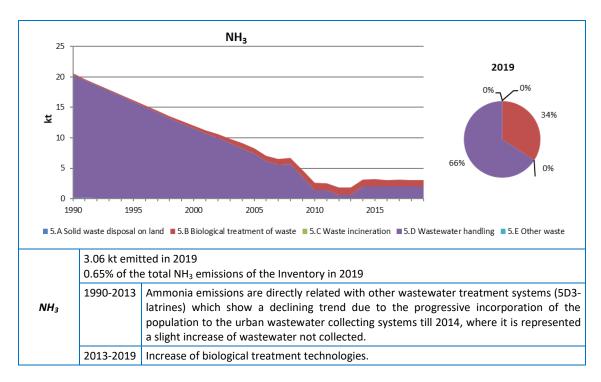


Figure 6.2.4 Evolution of NH₃ emissions by category and distribution in year 2019

Particulate Matter

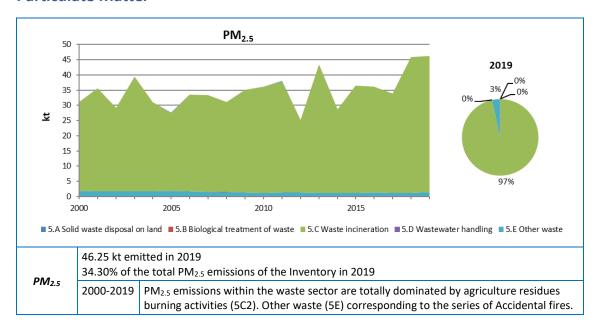


Figure 6.2.5 Evolution of PM_{2.5} emissions by category and distribution in year 2019

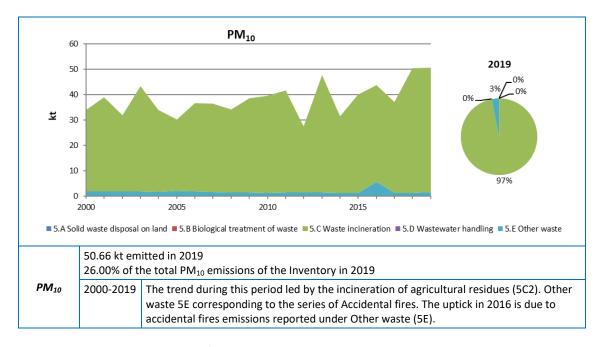


Figure 6.2.6 Evolution of PM₁₀ emissions by category and distribution in year 2019

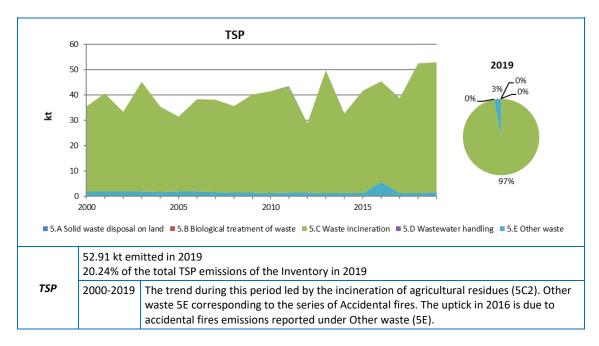


Figure 6.2.7 Evolution of TSP emissions by category and distribution in year 2019

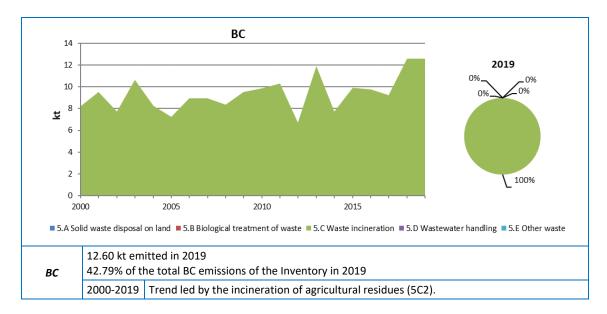


Figure 6.2.8 Evolution of BC emissions by category and distribution in year 2019

CO and Priority Heavy Metals

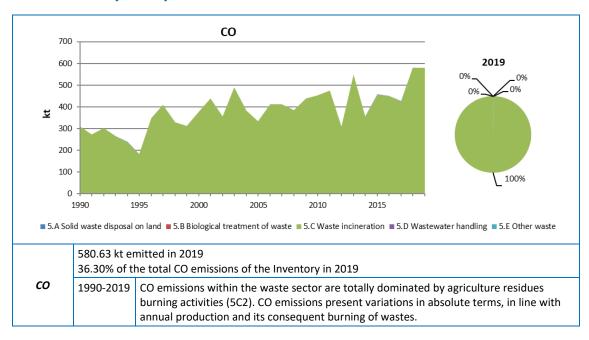


Figure 6.2.9 Evolution of CO emissions by category and distribution in year 2019

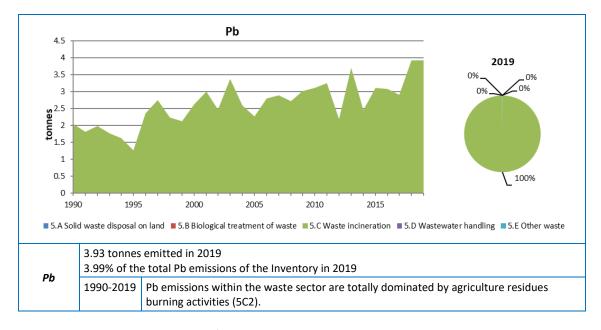


Figure 6.2.10 Evolution of PB emissions by category and distribution in year 2019

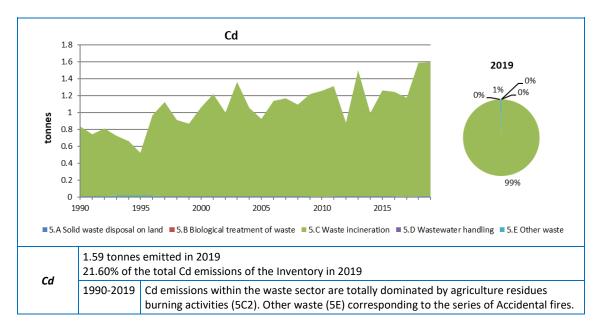


Figure 6.2.11 Evolution of CD emissions by category and distribution in year 2019

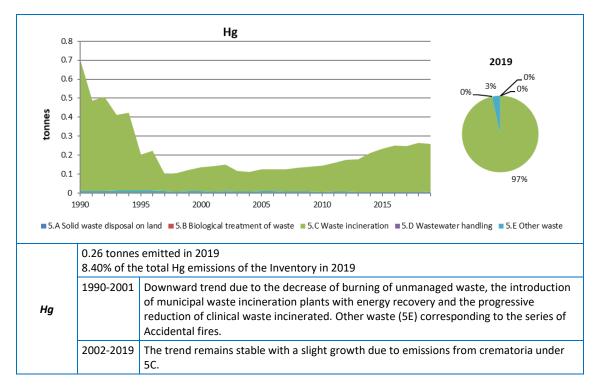


Figure 6.2.12 Evolution of HG emissions by category and distribution in year 2019

POPs

Emissions of POPs are mainly generated in categories 5C (Incineration) and 5E (Other waste). Therefore, a unique figure with the pollutants is shown.

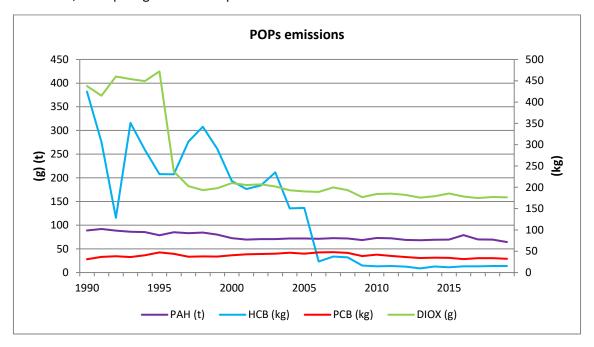


Figure 6.2.13 Evolution of POPs emissions in 5C and 5E

	0.59 tonnes emitted in 2019 0.93% of the total PAHs emissions of the Inventory in 2019							
PAHs	1990-2019	PAHs emissions within the waste sector are totally dominated by agriculture residues burning activities (5C2). In 2016 there is an uptick due to accidental fires emissions reported under Other waste (5E).						

	0.04 kg emi 0.27% of the	tted in 2019 e total HCB emissions of the Inventory in 2019
НСВ	1990-2005	During this period, the progressive reduction of the clinical waste incinerated combined with the introduction of municipal waste incineration plants with energy recovery explain the decreasing trend.
	2006-2019	Activity sustained by the incineration of sludge and cremations.

	0.08 kg emitted in 2019 0.30% of the total PCBs emissions of the Inventory in 2019						
PCBs	1990-2019	Stable trend partly explained by the introduction of municipal waste incineration plants with energy recovery and the progressive reduction of clinical waste incinerated.					

		32.43 g I-TEQ emitted in 2019 18.83% of the total DIOX emissions of the Inventory in 2019						
E	DIOX	1990-2005	DIOX emissions are linked to Waste incineration (5C) and Other waste (5E). The former has a downward trend partly due to the introduction of municipal waste incineration plants with energy recovery and a progressive reduction of the clinical waste incinerated. Whereas the latter remains stable along the timeline.					
		2006-2019	Steady trend with slight fluctuations connected with the amount of sludge incinerated.					

6.2.3. Condensable component of PM₁₀ and PM_{2.5}

As detailed in Annex V, indication of whether the emission estimates and emission factors for PM_{10} and $PM_{2.5}$ in the waste sector include or exclude the condensable component can be found in the table below:

Table 6.2.3 Information on condensable component of PM

NFR	Source/sector name	PM emissions: the condensable component is		EF reference and comments
		included	excluded	
5A	Biological treatment of waste – Solid waste disposal on land		nation in the A GB 2019.	EMEP/EEA GB 2019.
5B1	Biological treatment of waste – Composting	I	NE	
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities		nation in the A GB 2019.	No information in the EMEP/EEA GB 2019.
5C1a	Municipal waste incineration		IE	Included in 1A1a.
5C1bi	Industrial waste incineration		IE	Included in 1A1a.
5C1bii	Hazardous waste incineration	1	NO	
5C1biii	Clinical waste incineration		IE	Included in 1A1a.
5C1biv	Sewage sludge incineration		Х	US EPA AP-42 Section 2.4 Chapter 2.2.
5C1bv	Cremation		nation in the A GB 2019.	EMEP/EEA GB 2019.
5C1bvi	Other waste incineration	NO		
5C2	Open burning of waste	No information in the EMEP/EEA GB 2019.		EMEP/EEA GB 2019.
5D1	Domestic wastewater handling	No information in the EMEP/EEA GB 2019.		EMEP/EEA GB 2019.
5D2	Industrial wastewater handling	No information in the EMEP/EEA GB 2019.		EMEP/EEA GB 2019.
5D3	Industrial wastewater handling	NE		
5E	Other waste	No information in the EMEP/EEA GB 2019.		EMEP/EEA GB 2019.

6.3. Major changes

The main change performed in the waste sector was the recalculation of activity data for category 5C2 (open burning of waste: burning of agricultural waste) 1990-2019.

Following several recommendations of the review team:

http://ec.europa.eu/environment/air/reduction/implementation.htm

 PM emissions are related to the burning in flares of a part of the biogas produced in wastewater treatment plants, and as the 2019 EMEP/EEA Guidebook does not provide default emission factors, emission factors from US EPA AP-42. 5th Ed. (1998), chapter 2.4., table 2.4-4, have been used, which provides the same emission factor for particle matter emissions. Final Review Report (ES-5B2-2019-0001 (Table 3)).

Further details of recalculations can be found in section 6.5 (Recalculations).

6.4. Key categories analysis

Within this sector, the following categories have been identified as key (table 6.2.2 for reference):

- A. Incineration 5C
- B. Wastewater handling 5D
- C. Other waste 5E

Activity data sources, methodologies and a general assessment for each category are provided.

Information on which NFR categories of Waste sector include the condensable component of PM_{10} and $PM_{2.5}$ can be found in Annex 5.

A. Incineration (5C)

This source category includes emissions estimates for the following activities:

- Municipal waste incineration (5C1a) without energy recovery¹.
- Clinical waste incineration (5C1biii).
- Sewage sludge incineration (5C1biv).
- Cremation (5C1bv).
- Burning of unmanaged waste and agricultural waste within the activity open burning of waste (5C2).

Emissions from industrial and hazardous waste incineration do not account for this category, since they have always taken place with energy recovery. Therefore, their corresponding emissions are allocated under the energy category 1A1a.

Category 5C is considered as a key category for its contribution to the level and the trend of emissions of the following pollutants: NOx, NMVOC, PM_{2.5}, PM₁₀, TSP, BC, CO, Cd, Hg, DIOX, and, in addition, it also contributes to the level of emissions of Pb and to the trend of PCBs.

A.1. Activity variables

Table 6.4.1 Summary of activity variables, data and information sources for category 5C

Activities included	Activity data	Source of information
Municipal waste incineration (5C1a)	- Amount and composition of waste incinerated Energy produced Emissions and abatement techniques implemented Other parameters concerning the incineration process (LHV, incineration units, stacks, etc.).	- 1990-2003: publication "Medio Ambiente en España" (Environment in Spain) and IQ 2004-2019: since 2004 no incineration of MSW takes place without energy recovery, so no activity variable is reported under 5C1a. Emissions from energy recovery are reported within the Energy category (1A1a).
Clinical waste incineration (5C1biii)	- Number of hospital beds Clinical waste generation parameter per bed and day.	- 1990-1994: INE. "Statistics Yearbook of Spain" (INE). - 1995-1998: statistic interpolation. - "Study on generation and management of clinical wastes in Spain, 1995" (Institute for the Sustainability of Resources MITERD). - 1999-2005: statistics from the Health Information Institute - 2006-2019: no incineration without energy recovery takes place. Emissions are reported under Energy category (1A1a).

-

¹ According to the information available, all incineration facilities have undertaken incineration with energy recovery since 2004.

Activities included	Activity data	Source of information
Sewage sludge incineration (5C1biv)	- Amount and percentage of sludge incinerated Volume of water treated at industrial wastewater handling plants in refinery and paper pulp manufacturing plants.	AREA SOURCES: - 1989: publication "Medio Ambiente en España, 1991" (The Environment in Spain, 1991) MOPT 1993: "Study on treatment and final disposal of urban waste water sewage sludge" (MOPTMA) 1990-1992 and 1994-1996: estimated by interpolation 1997-2015: National Sewage Register (SGR, MITERD) LARGE POINT SOURCES (LPS): - 1990-1993: Refinery plants: statistical extrapolation based on the volume of water treated at industrial wastewater treatment plants 1994-2013: Refinery plants: IQ 1997-2019: Paper pulp manufacturing plants: IQ.
Cremation (5C1bv)	- Number of corpses incinerated in crematoriums per year Number of deaths per year.	- 1990-2009: data provided by the main entrepreneurial association 2010-2019: estimation based on the death statistics available from the INE and a cremation percentage provided by "The National Funeral Services Association" (PANASEF).
Open burning of waste: burning of unmanaged waste (5C2)	- Rate of burned unmanaged waste.	- 1990-2000: SGR (MITERD).
Open burning of waste: burning of agricultural waste (5C2)	 Crop surface and crop yield. Burnt fraction by crop. Annual N-amount of burnt crop residue. Nitrogen fraction by crop. Dry matter fraction. 	 - 1990-2019: Statistical Yearbook (MAPA). - 1990-2019: Nitrogen and Phosphorous Balance in Spanish Agriculture Book (BNyPAE). - 1990-2019: Nitrogen fraction by crop (several authors); Ref. Man. & Good Pract. Guide IPCC; Martínez, X.; Roselló, J. and Domínguez, A. (2006); Harvest index. (2006); Krider J.N. et al.; Villalobos, F.J. et al. (2002); Wheeler, R.M. (2003); Energy Andalucia Agency (1999); Senovilla, L. and Antolín, G. (2005); La Cal, J.A. (2007). - 1990-2019: "Dry matter fraction". Francesc Giró, Compostarc, 2007.

A.2. Methodology

Table 6.4.2 Summary of methodologies applied in category 5C

Pollutants	Tier	Methodology applied	Observations		
Municipal waste incineration (5C1a)					
(Methodology factsh	(Methodology factsheet: Municipal waste incineration)				
LARGE POINT SOURCES (LPS): NOx, NMVOC, SOx, PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, DIOX, PAHs, HCB, PCB	Т1/Т2	IQ from incineration plants treated as a point source of pollution. EMEP/EEA Guidebook (2019). Chapter 5C1a.	EE: - Measured emissions, emissions estimates and abatement techniques applied provided by incineration plants. EF: - Emission factors by tonne of waste Table 3-2, Abatement techniques applied (table 3-3): 1990-1996 for these years it was assumed only "Particle Abatement" as control techniques Table 3-1: 1996-2019 for this period, it is considered as a minimum the control techniques of "Particle Abatement".		
AREA SOURCES: NOx, NMVOC, SOx, PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, DIOX, PAHs, HCB, PCB Clinical waste incine	T1	EMEP/EEA Guidebook (2019) Chapter 5C1a.	EF - Emission factors by tonne of waste Table 3-2, Abatement techniques applied (table 3-3): 1990-1995 for these years it was assumed only "Particle Abatement" as control techniques Table 3-1: 1996-2003 for this period it is considered as a minimum the control techniques of "Particle Abatement + acid gas abatement".		
(Methodology factsh	eet: Clir	nical waste incineration)			
NOx, NMVOC, SOx, TSP, CO, Cd, Hg, As, Cr, Cu, Ni, DIOX, PAHs, HCB, PCB	T2	EMEP/EEA Guidebook (2019) Chapter 5C1biii.	EF - Emission factors by tonne of waste Table 3-2, Abatement techniques applied (table 3-3).		
Sewage sludge incin	eration	(5C1biv)			
NOx, NMVOC, SOx, PM _{2.5} , PM ₁₀ , TSP., BC, CO, Pb, Cd, Hg, As, Cr, Cu, Zn, Ni, Se, DIOX, PAHs, HCB, PCB	Т2	EMEP/EEA Guidebook (2019) Chapter 5C1bi, 5C1bii, 5C1biv.	EF: - Emission factors by tonne of waste Table 3-2 Abatement efficiencies Table 3-4 (lower value).		
Cremation (5C1bv)					
(Methodology factsheet: Cremation)					
NOx, NMVOC, SOx, PM _{2.5} , PM ₁₀ , TSP, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, DIOX, PAHs, HCB, PCB	T1	EMEP/EEA Guidebook (2019) Chapter 5C1bv.	EF - Emission factors by cremation Table 3-1.		

Pollutants	Tier	Methodology applied	Observations
Open burning of wa	ste: buri	ning of agricultural waste ((5C2)
(Methodology factsh	ieet: <mark>Op</mark>	en burning of waste: burnir	ng of agricultural waste)
NOx, NMVOC, SOx,	T2	EMEP/EEA Guidebook	EF
PM _{2.5} , PM ₁₀ , TSP,		(2019) Chapter 5C2.	- Emission factors by tonne of waste (except PAH (by dry
BC, CO, Pb, Cd, As,			matter)).
Cr, Cu, Se, Zn,			- Table 3-2 (except Cr (Table 3-1 (T1))).
PAHs			

A.3. Assessment

As shown in the figure below, the trend of 5C is significantly led by Open burning of waste category (5C2). The irregular behaviour of the activity data is due to variations in the production of crops that generate waste that is eliminated through open burning.

Considering 5C activity data in detail, only Cremation (5C1bv) shows an upward trend. Activity data in the other categories decrease or even disappear due to the reallocation within the Energy sector.

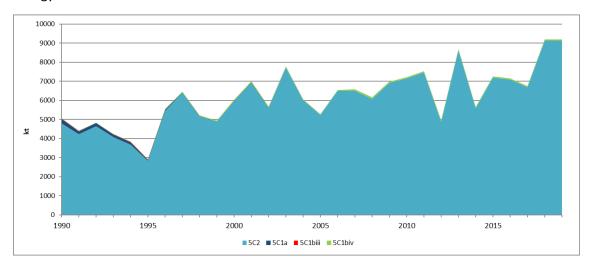


Figure 6.4.1 Evolution of activity variables in category waste incineration (5C), without cremations (5C1bv)

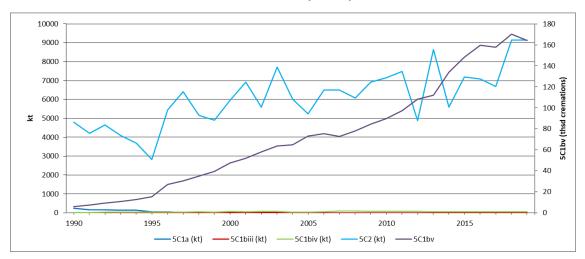


Figure 6.4.2 Evolution of activity variables in category waste incineration (5C)

B. Wastewater handling (5D)

This category includes emissions from both domestic (5D1) and industrial wastewater handling (5D2).

Emissions from combustion in wastewater treatment plants with energy recovery are reported under the Energy sector (1A1a), whereas flaring of biogas is considered within NFR category 5D in this chapter.

Emissions reported under this category 5D are mainly due to the combustion of biogas. Considering wastewater treatment activities themselves, category 5D only accounts for two of the pollutants covered in this report: NMVOC and NH₃.

Category 5D is considered as key category in 2019 for its contribution to the trend of emissions of NH_3 .

B.1. Activity variables

Table 6.4.3 Summary of activity variables, data and information sources for category 5D

Activities included	Activity data	Source of information
Domestic wastewater handling (5D1)	 Amount of biogas produced in sludge anaerobic digesters from wastewater treatment plants. Share of biogas/CH₄ burned into different devices (flares, engines or boilers). 	- "Uses of biogas produced in urban wastewater treatment plants in Spain". CEDEX. - INE statistics on wastewater treated. - Spanish Climate Change Office data (OECC)
Industrial wastewater handling (5D2)	 Volume of wastewater treated in refinery and paper pulp manufacturing plants. Share of biogas/CH₄ burned into different devices (flares, engines or boilers). Industrial production, wastewater discharge rate, volume of discharge, organic load of water discharged. Industrial production index. 	- 1990-2019: IQ from refinery and paper pulp manufacturing plants Final project: "Comparative analysis of biogas energy utilization technologies in wastewater treatment plants", 2016, OECC "Studies on regulation of wastewater discharges". MITERD IPCC 2006 GL. Table 6.9, Ch. 6, Vol. 5.
Latrines (5D3)	- Percentage of urban wastewater not collected Population data.	- EUROSTAT. - INE.

B.2. Methodology

Table 6.4.4 Summary of methodologies applied in category 5D

Pollutants	Tier	Methodology applied	Observations
Domestic wastewater handling (5D1) Industrial wastewater handling (5D2)			
(Methodology factsheets: Domestic wastewater handling, Industrial wastewater handling)			

Pollutants	Tier	Methodology applied	Observations
NOx, CO, PM	T1	US EPA AP-42. 5th Edition (1998), Chapter 2.4. Table 2.4-4.	The factors for these pollutants, broken down by type of combustion facility, are expressed in the original source quoted in: kg pollutant/millions of m³ of standard dry methane burnt. To express the factor in g pollutant/methane burnt, the m³ S (standard cubic metre) conversion factors were applied to m³ N (normal cubic meter) of (273.15+15)/(273.15) and the density under normal circumstances of methane (715 g /m³ N) to convert volume into mass.
			Final Review Report (ES-5D1-2019-0001/ES-5D2-2019-0001 (Table 3)): http://ec.europa.eu/environment/air/reduction/impleme <a href="http://ec.europa.eu/en/en/en/en/en/en/en/en/en/en/en/en/en/</td></tr><tr><td></td><td></td><td></td><td>PM emissions are related to the burning in flares of a part of the biogas produced in wastewater treatment plants, and as the 2019 EMEP/EEA Guidebook does not provide default emission factors, emission factors from US EPA AP-42. 5th Ed. (1998), chapter 2.4, table 2.4-4, have been used, which provides the same emission factor for particle matter emissions.</td></tr><tr><td>NMVOC</td><td>T1</td><td>EMEP/EEA Guidebook
(2019). Chapter 5D.</td><td>EF - Emission factors by m<sup>3</sup> wastewater handled Table 3-1.</td></tr><tr><td>Latrines (5D3)</td><td>eet: Lat</td><td>rines)</td><td></td></tr><tr><td>(Methodology factsh</td><td>T2</td><td>EMEP/EEA Guidebook
(2019). Chapter 5D.</td><td>EF - Emission factors by person/year Table 3-2. Final Review Report (ES-5D3-2019-0001 (Table 3)): http://ec.europa.eu/environment/air/reduction/implementation.htm</td></tr><tr><td></td><td></td><td></td><td>- Domestic wastewater handling by latrines systems in
Spain is a minority management system in Spain. The
inventory team considers it more transparent to allocate
these emissions within 5D3 sub-activity-" other="" waste<br="">water handling", in order to facilitate its monitoring and control and avoid confusing implied emission factors.

B.3. Assessment

NMVOC emissions from wastewater treatment plants show an upward trend as a consequence of the increase in the amount of m³ of wastewater treated in Spain along the time series. Significant rise in 2004 is linked to the deadline in the application of Council Directive 91/271/EEC, concerning mandatory urban wastewater treatments in European member states (see figure below).

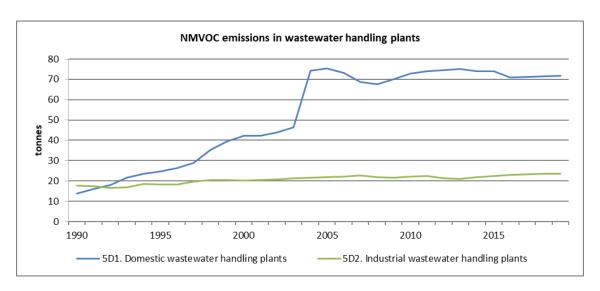


Figure 6.4.3 Evolution of NMVOC emissions in category 5D

Regarding NH₃ emissions from latrines (see figure below), the trend shows a downward evolution according to the development of the urban wastewater handling. Latrines have become a minor activity in Spain, as long as new wastewater treatment plants have been implemented in the country along the Inventory period. These estimates account for 63.7% of ammonia emissions in the waste sector in 2019.

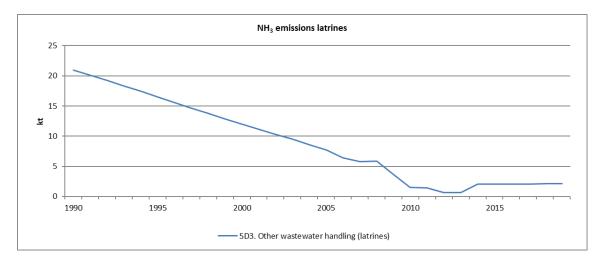


Figure 6.4.4 Evolution of NH₃ emissions in 5D3

Concerning, biogas flaring in wastewater treatment plants, the figure below shows a clear decrease of the activity data in recent years. Flaring is decreasing in favour of combustion of biogas in energy recovery devices. In 1990, 25% of biogas was burned in flares whereas in 2019, the share dropped to 12%.

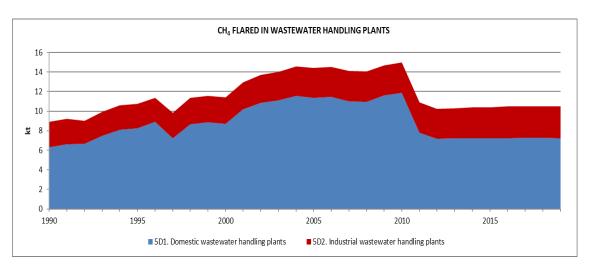


Figure 6.4.5 Evolution of activity variables in category 5D

C. Other waste (5E)

Category 5E is considered as key category in 2019 for its contribution to the level of emissions of $PM_{2.5}$ and the level and the trend of emissions of DIOX.

This category includes emissions from the following activities:

- Sludge spreading
- Accidental car fire
- Accidental detached house
- Accidental undetached house
- Accidental flat fire
- Accidental industrial fire

C.1. Activity variables

Table 6.4.5 Summary of activity variables, data and information sources for category 5E

Activities included	Activity data	Source of information
Sludge spreading	- Total amount of sludge generated in EDARs.	 National Sludge Registry SGR, MITERD. Estimation of the production and treatment of sewage sludge from wastewater treatment plants, prepared by the Centre for Studies and Experimentation of Public Works (CEDEX).
Accidental fires - Accidental car fire Accidental detached house Accidental undetached house Accidental flat fire Accidental industrial fire.	- Number of fires of the different categories.	 Government Area of Security and Community Services. General Directorate of Emergencies. City of Madrid. MAPFRE foundation and Professional Association of Bombers Technicians.

C.2. Methodology

Table 6.4.6 Summary of methodologies applied in category 5E

Pollutants	Tier	Methodology applied	Observations		
Sludge spreading (5E	Sludge spreading (5E)				
(Methodology factsh	eet: <u>Slu</u>	dge spreading)			
NH ₃	Т2	EMEP/EEA Guidebook (2019) Chapter 5E.	EF - Emission factors by g/kg NH_3 in the sludge Table 3-1.		
NMVOC	T2	EMEP/EEA Guidebook (2019) Chapter 5E.	EF - NMVOC. Report on Complementary Information in the Frame of the Assistance Provided for CORINAIR 90 Inventory. Pg. 14.		
Accidental fires (Car, detached and undetached houses, industrial, flats) (5E) (Methodology factsheets: Accidental fires)					
PM, Pb, Cd, Hg, As, T2 EMEP/EEA Guidebook EF					

Pollutants	Tier	Methodology applied	Observations
Cr, Cu, DIOX		(2019). Chapter 5E.	- Emission factors by kg/fire; g/fire and mg/fire. - Table 3-2; 3-3; 3-4; 3-5; 3-6.

C.3. Assessment

Considering 5E activity data in detail, Sludge spreading shows a downward trend until 2010 because this activity is a minor treatment in Spain nowadays.

On the contrary, Accidental fires show an irregular behaviour, especially Industrial fire with an important decrease since 1996. Car fires present an increase between 2000 and 2004.

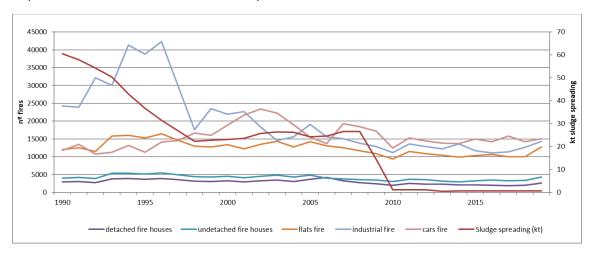


Figure 6.4.6 Evolution of activity variables in category 5E

Regarding the emissions of pollutants under 5E, PAHs emissions in 2016 are linked to the accidental tire fire and therefore can be considered as a singularity in the time series emissions.

On the other hand, DIOX emissions show a downward trend, except for 2019 which emissions increases, as displayed in the figure below. DIOX emissions are mainly related to the accidental fires, and more specifically to the accidental industrial fires.

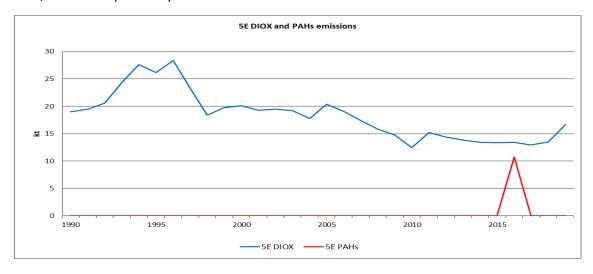


Figure 6.4.7 Evolution of DIOX and PAHs

The following figure shows the trend for Particulate Matter emissions. The uptick in 2016 is due to the accidental tire fire in Seseña.

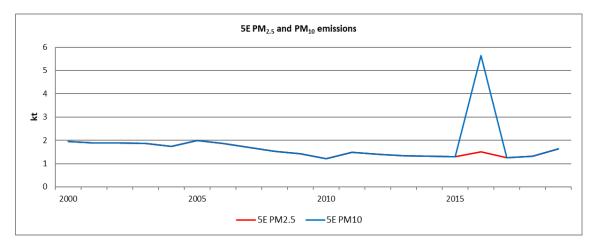


Figure 6.4.8 Evolution of PM emissions in 5E

6.5. Recalculations

The following table shows a brief view of the recalculations in the waste sector:

Table 6.5.1 Recalculation by pollutants – Waste

Recalculation				
5A- Biological treatment of waste - Solid waste disposal on land				
The amount of waste disposed corresponding to the reported year 2018 has been updated, being then replicated for 2019, in line with the information provided by the focal point.				
of waste				
The amount of waste treated corresponding to the year 2018 has been updated, being replicated for 2019, in line with the information provided by the focal point.				
Incorporation of activity data corresponding to two new facilities, for the years 2009 to 2018, and update of the 2018 data with those received in 2019 by the data provider.				
ncineration				
Recalculation of the activity data for period 2013-2018 due to an update of the information provided by the focal point (Registro Nacional de Lodos (RNL)).				
The activity data corresponding to the years 2017 and 2018 have been updated with the information provided by the focal point PANASEF. Besides, for the year 2016 there has been a recalculation produced by the correction of the total number of cremations.				
5C2-Open burning of waste				
Recalculation of PAH emission due to changes of EF values (EMEP 2019 v.nov2020). Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) and change due to correction of an error in EF units (from dry matter units to waste units).				

Pollutants affected	Recalculation
PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, As, Cr, Cu, Se, Zn, PAHs, DIOX	Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.
5D-Wastewater handlin	g
Domestic wastewater handling NOx, NMVOC, PM _{2.5} ,	Data of equivalent population treated and non-treated has been updated due to new information available and provided by the focal point. This update has caused the recalculation of the emission of methane in the wastewater treatment and other contaminants emissions of the ulterior biogas burn.
PM ₁₀ , TSP, CO	Recalculation due to the assumption of untreated wastewater be either treated in septic tanks or infiltrated directly in the soil.
Latrines NH ₃	The activity data corresponding to the period 2014-2018 has been updated due to new information of the Urban wastewater collecting system in EUROSTAT.
5E-Other waste	
Sludge spreading NH ₃ , NMVOC	Recalculation of the activity data for period 2013-2018 due to an update of the information provided by the focal point (Registro Nacional de Lodos (RNL)).
Accidental fires (Car, detached and undetached houses, industrial, flats)	Recalculation due to the correction of the amount of cars fires in Spain corresponding to the period 2009-2018.
PM _{2.5} , PM ₁₀ , TSP, DIOX	

Next figures show the evolution as a result of the recalculations implemented in the current Inventory edition explained before. The line chart shows emissions (kt) in absolute terms, while the bar chart displays the relative difference between emission values before and after recalculations.

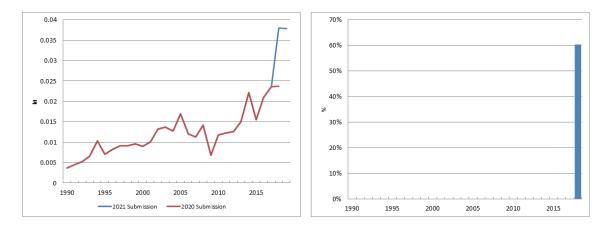


Figure 6.5.1 Evolution of the difference in 5A NOx emissions

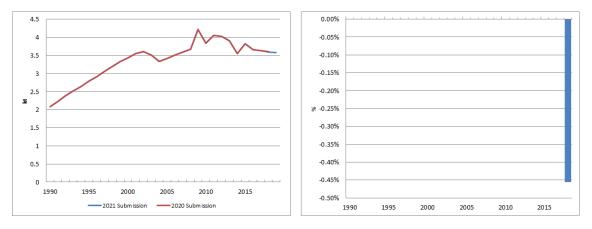


Figure 6.5.2 Evolution of the difference in 5A NMVOC emissions

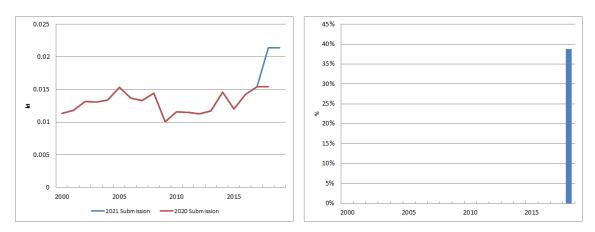


Figure 6.5.3 Evolution of the difference in 5A TSP emissions

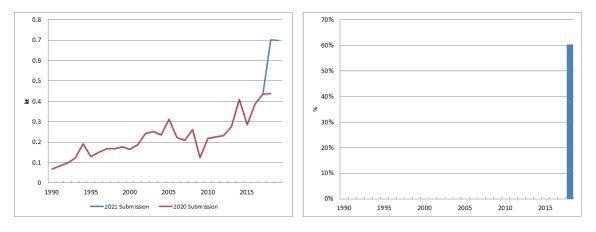


Figure 6.5.4 Evolution of the difference in 5A CO emissions

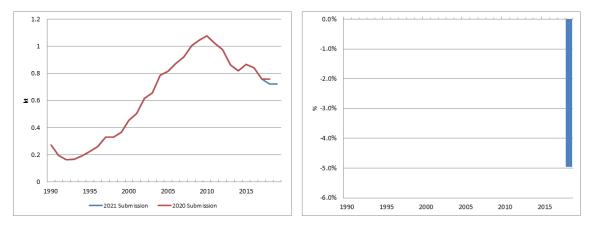


Figure 6.5.5 Evolution of the difference in 5B1 NH₃ emissions

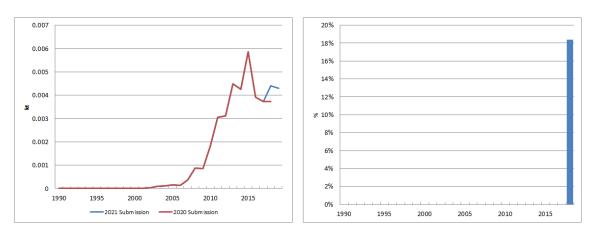


Figure 6.5.6 Evolution of the difference in 5B2 NOx emissions

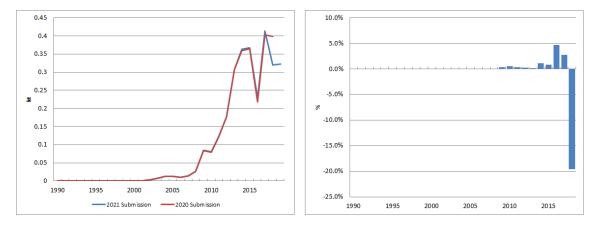


Figure 6.5.7 Evolution of the difference in 5B2 NH₃ emissions

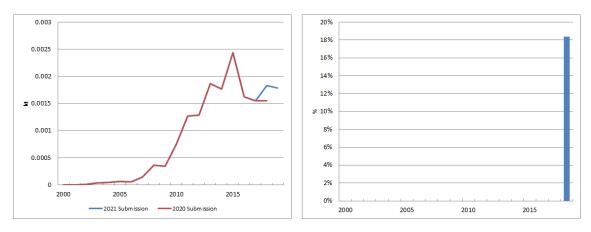


Figure 6.5.8 Evolution of the difference in 5B2 TSP emissions

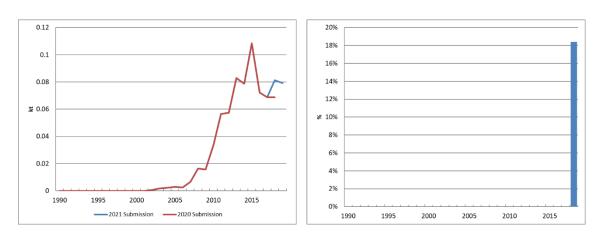


Figure 6.5.9 Evolution of the difference in 5B2 CO emissions

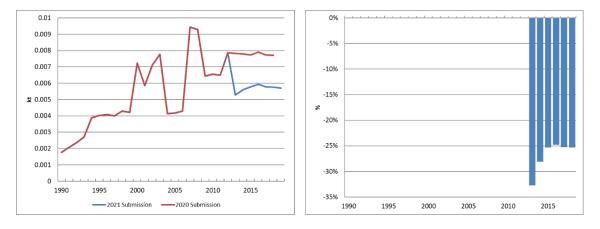


Figure 6.5.10 Evolution of the difference in 5C1biv NOx emissions



Figure 6.5.11 Evolution of the difference in 5C1biv NMVOC emissions

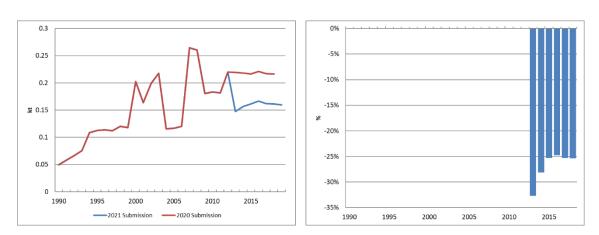


Figure 6.5.12 Evolution of the difference in 5C1biv SOx emissions

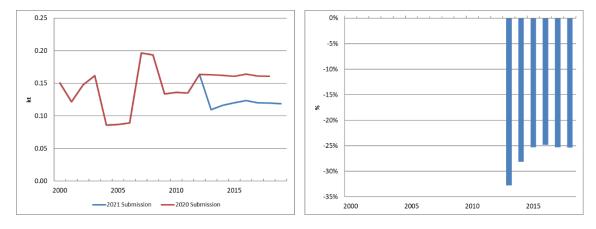


Figure 6.5.13 Evolution of the difference in 5C1biv TSP emissions

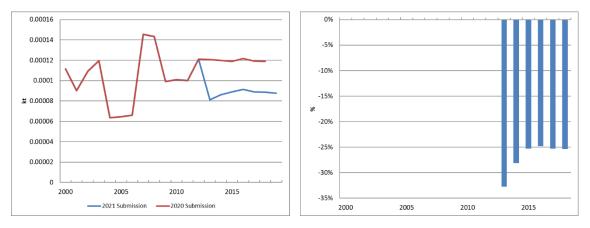


Figure 6.5.14 Evolution of the difference in 5C1biv BC emissions

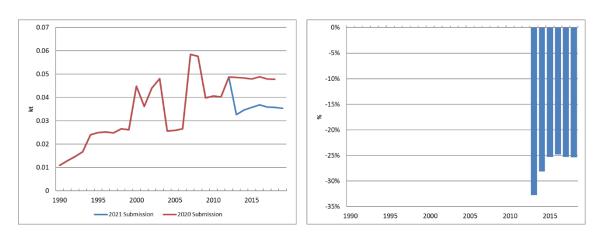


Figure 6.5.15 Evolution of the difference in 5C1biv CO emissions



Figure 6.5.16 Evolution of the difference in 5C1biv PCB emissions

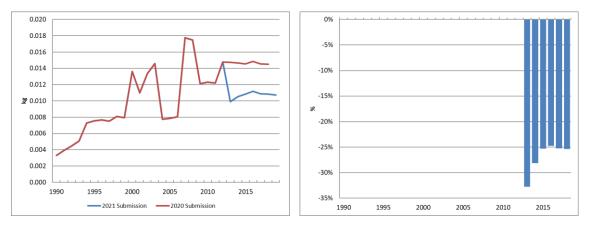


Figure 6.5.17 Evolution of the difference in 5C1biv HCB emissions

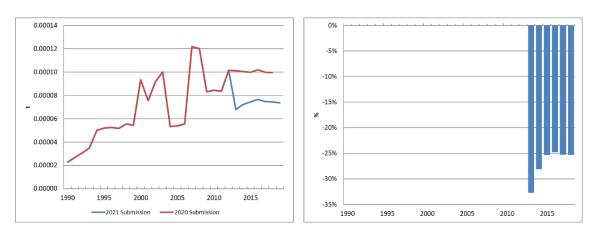


Figure 6.5.18 Evolution of the difference in 5C1biv PAH emissions

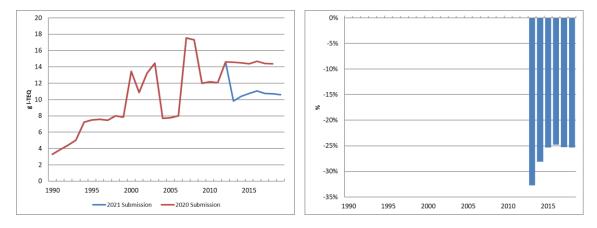


Figure 6.5.19 Evolution of the difference in 5C1biv DIOX emissions

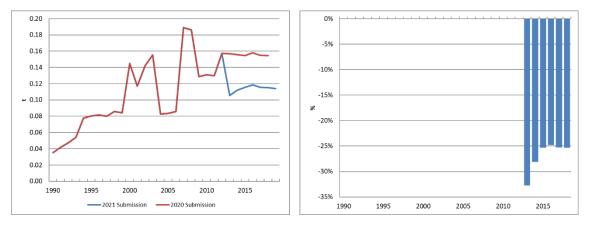


Figure 6.5.20 Evolution of the difference in 5C1biv Pb emissions

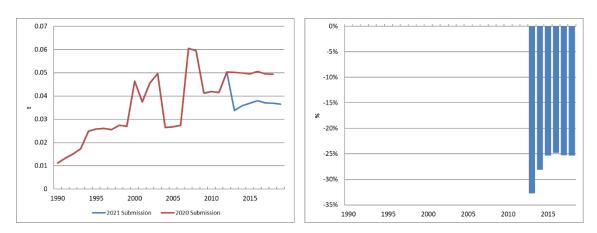


Figure 6.5.21 Evolution of the difference in 5C1biv Cd emissions

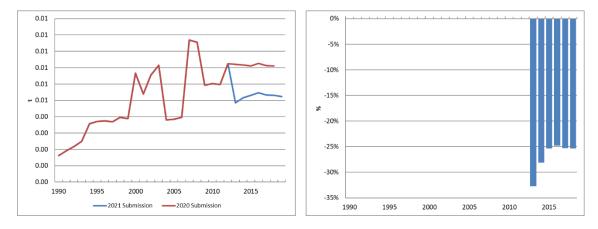


Figure 6.5.22 Evolution of the difference in 5C1biv Hg emissions

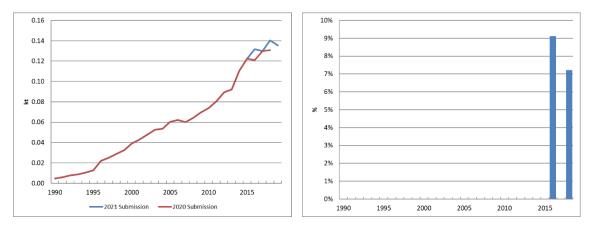


Figure 6.5.23 Evolution of the difference in 5C1bv NOx emissions

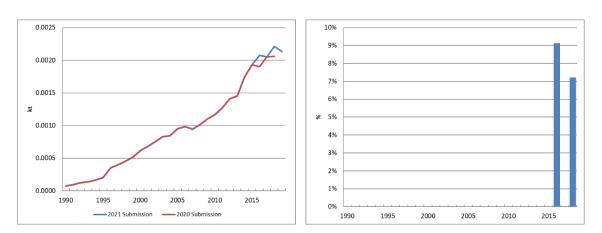


Figure 6.5.24 Evolution of the difference in 5C1bv NMVOC emissions

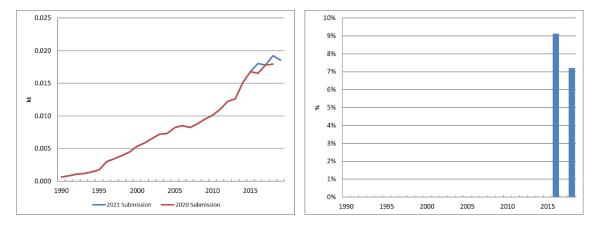


Figure 6.5.25 Evolution of the difference in 5C1bv SOx emissions

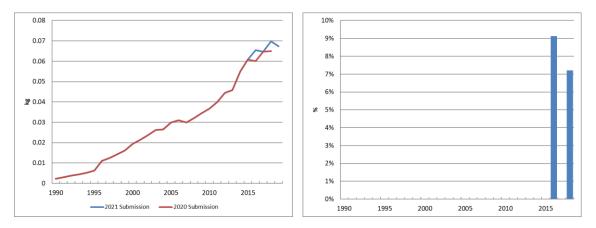


Figure 6.5.26 Evolution of the difference in 5C1bv PCB emissions



Figure 6.5.27 Evolution of the difference in 5C1bv HCB emissions

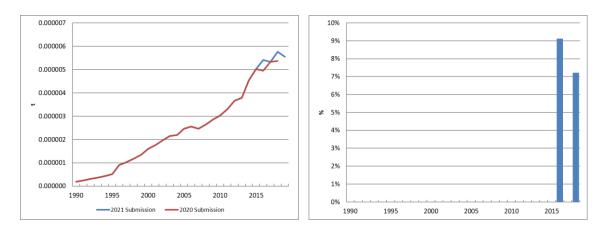


Figure 6.5.28 Evolution of the difference in 5C1bv PAH emissions

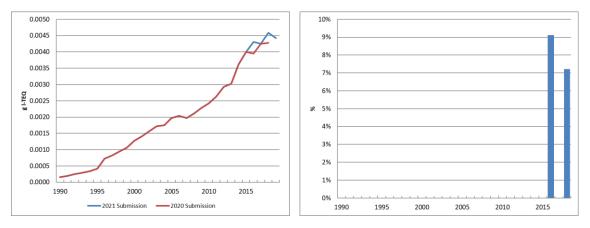


Figure 6.5.29 Evolution of the difference in 5C1bv DIOX emissions

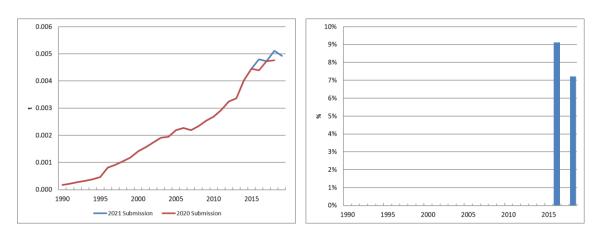


Figure 6.5.30 Evolution of the difference in 5C1bv Pb emissions

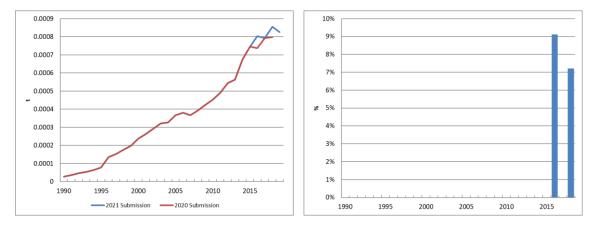


Figure 6.5.31 Evolution of the difference in 5C1bv Cd emissions

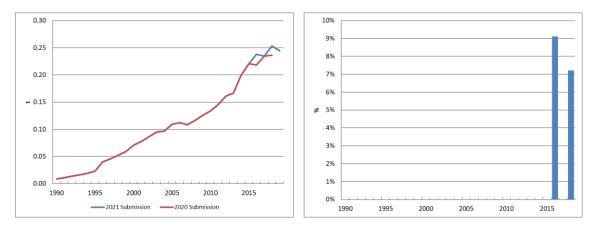


Figure 6.5.32 Evolution of the difference in 5C1bv Hg emissions

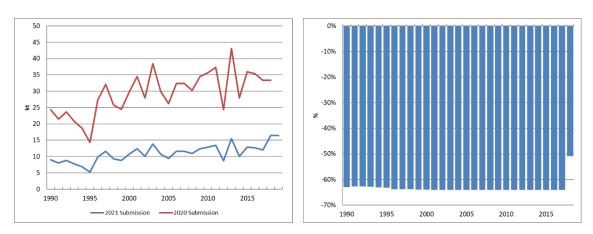


Figure 6.5.33 Evolution of the difference in 5C2 NOx emissions

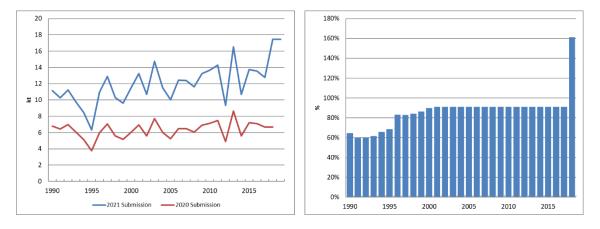


Figure 6.5.34 Evolution of the difference in 5C2 NMVOC emissions

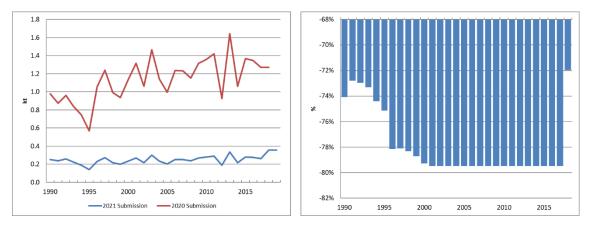


Figure 6.5.35 Evolution of the difference in 5C2 SOx emissions

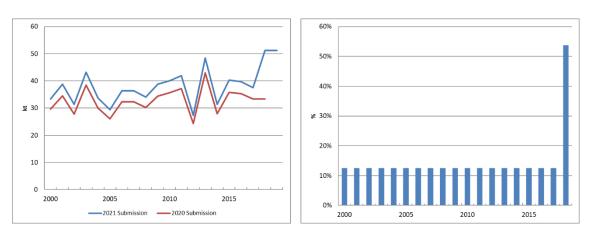


Figure 6.5.36 Evolution of the difference in 5C2 TSP emissions

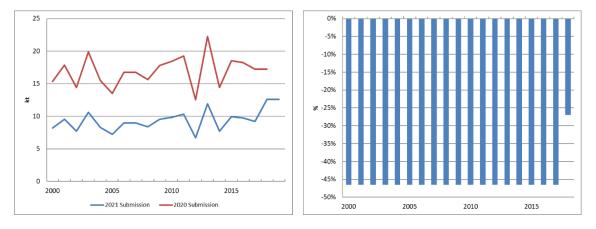


Figure 6.5.37 Evolution of the difference in 5C2 BC emissions

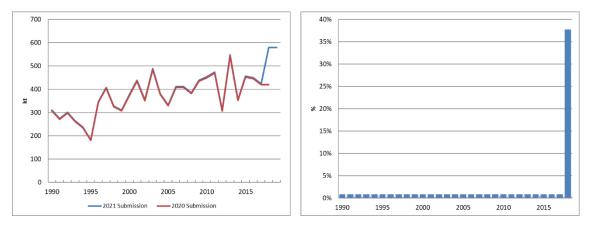


Figure 6.5.38 Evolution of the difference in 5C2 CO emissions

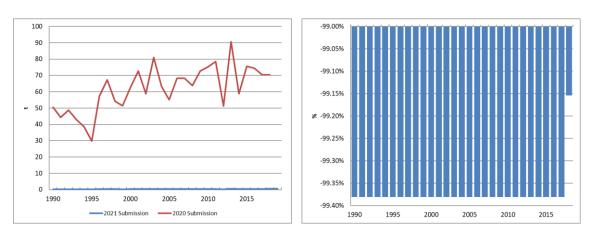


Figure 6.5.39 Evolution of the difference in 5C2 PAH emissions

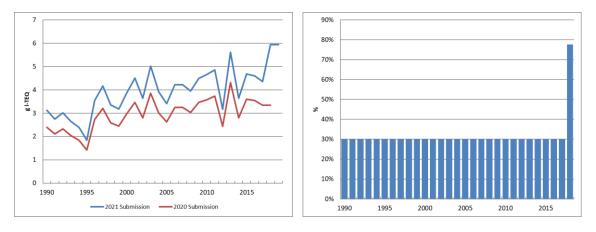


Figure 6.5.40 Evolution of the difference in 5C2 DIOX emissions

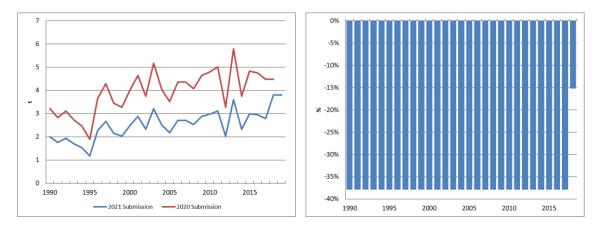


Figure 6.5.41 Evolution of the difference in 5C2 Pb emissions

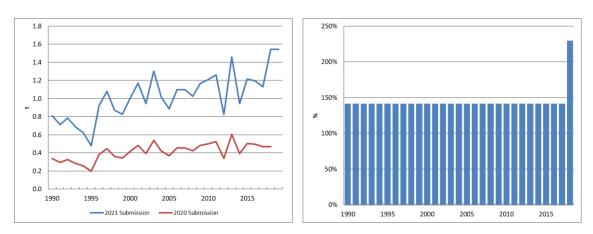


Figure 6.5.42 Evolution of the difference in 5C2 Cd emissions

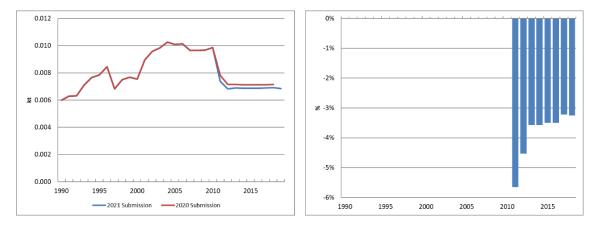


Figure 6.5.43 Evolution of the difference in 5D1 NOx emissions

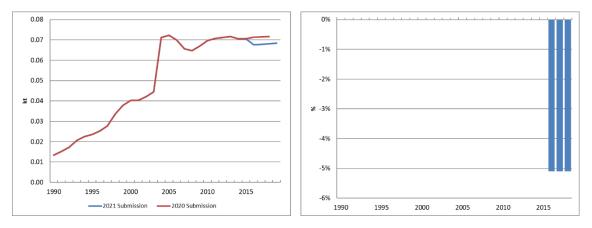


Figure 6.5.44 Evolution of the difference in 5D1 NMVOC emissions

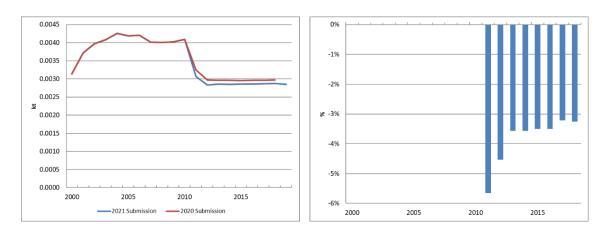


Figure 6.5.45 Evolution of the difference in 5D1 TSP emissions

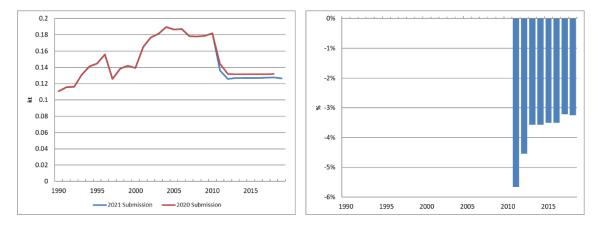


Figure 6.5.46 Evolution of the difference in 5D1 CO emissions

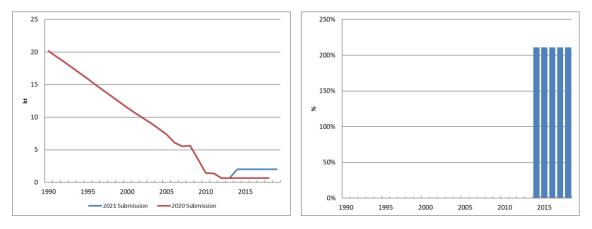


Figure 6.5.47 Evolution of the difference in 5D3 NH₃ emissions

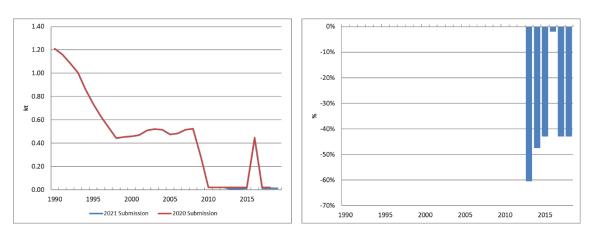


Figure 6.5.48 Evolution of the difference in 5E NMVOC emissions

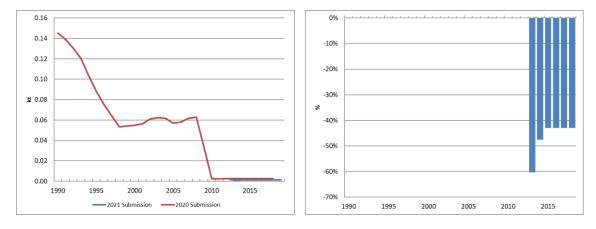


Figure 6.5.49 Evolution of the difference in 5E NH₃ emissions

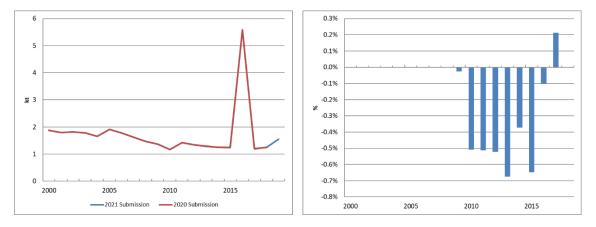
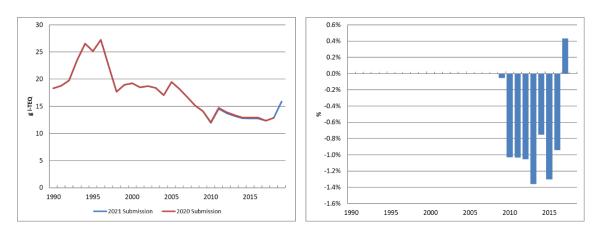
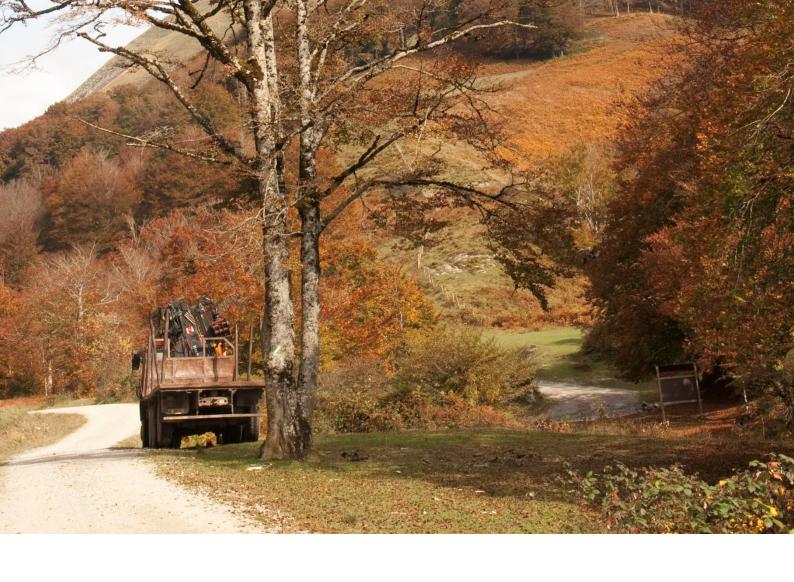


Figure 6.5.50 Evolution of the difference in 5E TSP emissions




Figure 6.5.51 Evolution of the difference in 5E DIOX emissions

6.6. Sector improvements

The collaboration with the focal point (Sub-directorate General of Waste at the Ministry for the Ecological Transition) regarding the National Sludge Registry and (General Direction of Water) regarding the National Census for Sewage Disposal will continue.

On the other hand, is planned to continue with the work initiated on the following subjects:

Inclusion of the incineration of animal carcasses.

7. NATURAL EMISSIONS (NFR 11)

CONTENTS

7.	NATURAL EMISSIONS (NFR 11)	385
7.1.	Sector overview	385
7.2.	Sector analysis	385
7.2	2.1. Key categories	385
7.2	2.2. Analysis by pollutant	386
7.3.	Major changes	389
7.4.	Activity analysis	389
7.4	4.1. Forest Fires (11B)	389

FIGURES

Figure 7.2.1	Evolution of main pollutants emissions	387
Figure 7.2.2	Evolution of CO emissions	388
Figure 7.2.3	Evolution of PMs emissions	
Figure 7.4.1	Evolution of surface area affected by anthropic causes	392
TABLES		
Table 7.1.1	Coverage of NFR category for reported year 2019	385
Table 7.2.1	Sector analysis	385
Table 7.4.1	Contents of category 11B Forest fires	390
Table 7.4.2	Biomass components, distribution and fraction burnt	390
Table 7.4.3	Parameters of the emissions model for forest fires	391
Table 7.4.4	Fuel biomass consumption values for fires (tonnes dry matter ha ⁻¹)	391
Table 7.4.5	Sources of reference for the emission factors, type of activity variable and units	
Table 7.4.6	Activity variable: Surface area affected (amounts in ha) and burnt biomass (amounts)	
	tonnes)	392

7. NATURAL EMISSIONS (NFR 11)

Chapter updated in March, 2021.

Natural emissions are reported on a *pro memoria* basis in the EMEP template for emission data and are not included in the national totals emissions. Information is provided in the Inventory Report for reference.

7.1. Sector overview

Main issues regarding gas emissions reported for this sector are shown in the following table, in particular, NFR categories and pollutants coverage, methodology approach (Method) and selection as key categories (KC).

Table 7.1.1 Coverage of NFR category for reported year 2019

		Pollutants					
NFR Code	NFR category	Couranad	Exceptions			Method	кс
Couc		Covered	IE	NA	NE		
11A	Volcanoes	-	-	All	-	-	-
11B	Forest fires	NOx, SOx, NH ₃ , NMVOC, CO, PM _{2.5} , PM ₁₀ , TSP and BC	-	PCBs	Rest of pollutants	T2	-
11C	Other natural emissions	-	_	All	_	-	-

IE: included elsewhere; NA: not applicable; and NE: not estimated.

BaP: benzo[a]pyrene; BbF: benzo[b]fluoranthene; BkF: benzo[k]fluoranthene; and IcP: indeno[1,2,3-cd]pyrene.

7.2. Sector analysis

Main features of the Natural Sector in Spain in 2019 are listed in the following table for reference (please note that the following main features include the Canary Islands).

Table 7.2.1 Sector analysis

NFR Code	NFR category	Main features (2019)	Main sources of activity data
11A	Volcanoes	_	_
11B	Forest fires	12,182 average number of forest fires 99,082.83 average area (hectares) of forest affected ¹	MITERD
11C	Other natural emissions	_	_

7.2.1. Key categories

This sector has not been included in the key categories analysis because is reported on a *pro memoria* basis.

¹ Source: Information for the period 2009-2018 included in the publication "Los Incendios Forestales en España. 1 enero - 31 diciembre 2019. Avance Informativo" ("Forest fires in Spain: 1st January - 31th December 2019. Preliminary report").

7.2.2. Analysis by pollutant

Charts of the time series by pollutants and NFR categories are shown next. Each pollutant is represented independently.

Explanation boxes are included beside the graphs, providing specific details on the pollutant emissions in year 2019 and main drivers and trends during the time series. Emissions from the Canary Islands are not considered, as their territory is not under the EMEP grid.

Detailed emission data of the Spanish Inventory are available from the MITERD-SEI website WebTable.

Main Pollutants

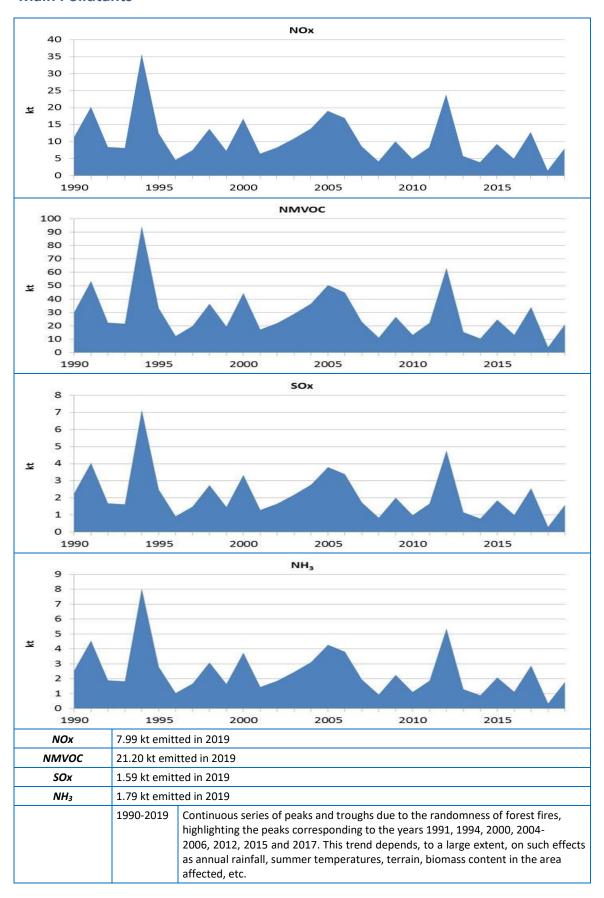


Figure 7.2.1 Evolution of main pollutants emissions

CO and Priority Heavy Metals

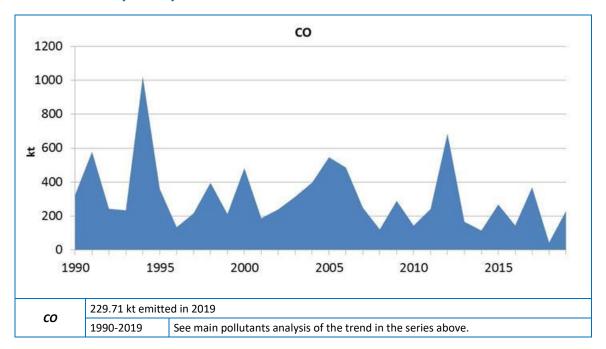
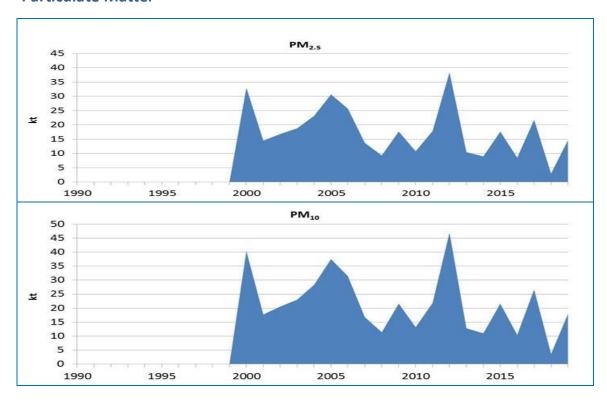



Figure 7.2.2 Evolution of CO emissions

Particulate Matter

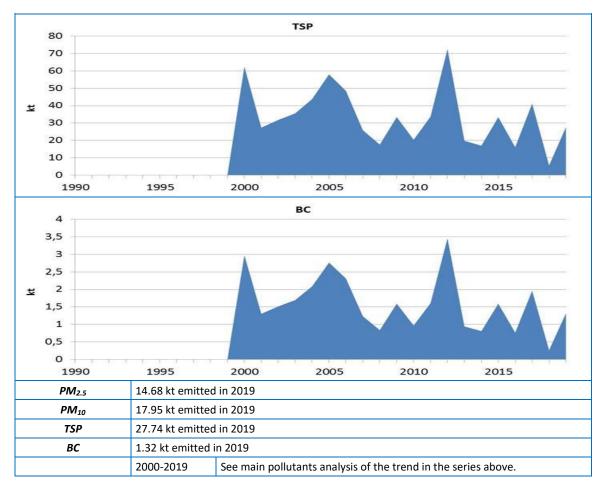


Figure 7.2.3 Evolution of PMs emissions

7.3. Major changes

Major changes have been implemented in this sector in the current edition of the Inventory. Tier 2 technology-specific approach for to calculate emissions for this category has been implanted. New Tier 2 emission factors for source category 11B forest fires (temperate forest (table 3.5 EMEP 2019 GB), Mediterranean forest (table 3.6), shrubland (table 3.7) and grass/steppe (table 3.8)) have been used.

7.4. Activity analysis

7.4.1. Forest Fires (11B)

This category considers the immediate emissions caused by forest fires. It does not include delayed emissions attributable in origin to the fires, such as those caused by the biodegradation of unburnt biomass biologically affected by the fires (fire waste).

The estimation is only done for tree-covered areas affected by spontaneous fires, considering those areas covered by tree species producing commercial timber, firewood, resin, cork, forest fruits or providing important protective, environmental and social functions.

Forest fires are associated with emissions of NOx, NMVOC, SOx, NH₃, CO, PM_{2.5}, PM₁₀, TSP, and BC. This section examines the emissions from burning biomass in forest fires.

Activity variables

The following table shows the activity variables considered within this category and their corresponding sources of information.

Table 7.4.1 Contents of category 11B Forest fires

Activities included	Activity data	Source of information
Forest fires	 Surface area affected (hectare). Biomass factor per hectare for broad-leaved or coniferous species (cubic metre per hectare). Carbon density (grams per cubic centimetre) for broad-leaved or coniferous species. Ratios between the components of the total biomass in the species affected. Annual amount of burnt shrubland and grass-steppe biomass 	 Directorate-General of Biodiversity, Forests and Desertification. Methodology and factors extracted from Rodríguez Murillo (1994). IPCC 2006 Guidebook (Table 2.4 – Chapter 2.4 – Vol 4)

Since 2019 official data on surface area affected by forest fires are not yet available, the activity data for that year has been calculated as an average of the last decade available data (2009-2018²).

Methodology

The methodology employed to estimate the emissions of NOx, NMVOC, SOx, NH₃, CO, PM_{2.5}, PM₁₀, TSP and BC from the burning of biomass in forest land caused by forest fires by anthropic causes is based by obtaining:

- the surface area affected by anthropic causes;
- the prior biomass existing in the tree-covered areas affected by forests fires;
- the burnt biomass in shrublands and grass/steppe and other temperate forest.

Calculation of the prior biomass existing in the tree-covered areas affected by forest fires

In tree-covered areas it is possible to distinguish the following biomass components liable to be affected by fire, its distribution and ratios of fraction burnt:

Table 7.4.2 Biomass components, distribution and fraction burnt

Components	Total biomass (T) T = M + B + U + PL	
	Above-ground biomass: - Merchantable fraction (M) - Rest of the above-ground biomass (B)	
	Underground biomass (U)	
Residual biomass in the soil (PL)		
Distribution ³	T = 2.7 M	
	U = 0.25 (M + B)	
	PL = 0.1 (M + B + U)	

² 2016, 2017 and 2018 official data are provisional.

³ Equations used in the scenarios mentioned in the article by Rodríguez Murillo (1994).

Fraction burnt	20% of the carbon forming part of the above-ground biomass ⁴
	60% of the carbon forming part of the biomass in soil litter ⁵

The parameters applied in the calculation methodology are listed in the following table:

Table 7.4.3 Parameters of the emissions model for forest fires

Parameters	Species			
Parameters	Coniferous	Broad-leaved		
Volumes of biomass by surface area	43 m³/ha	73 m³/ha		
Density of dry wood	0.504 g/cm³	0.703 g/cm ³		
Density of C in dry wood	0.227 g/cm ³	0.316 g/cm ³		

Source: Rodríguez Murillo (1994).

Calculation of the burnt biomass in shrublands and grass/steppe.

For shrublands and grass/steppe, the amount of biomass burnt is estimated by multiplying the area burnt by default values for the amount of fuel actually burnt provided by the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (the product $M_B \times C_f$, Table 2.4, Chapter 2, Volume 4). Those default values are listed in the following table:

Table 7.4.4 Fuel biomass consumption values for fires (tonnes dry matter ha⁻¹)

Vegetation type	Subcategory	Value
Shrublands	Shrubland (general)	26.7
All savanna grasslands (mid/late dry season burns)		10.0
All "other" temperate forests		50.4

Emission factors

New Tier 2 emission factors for source category 11.B forest fires (temperate forest (table 3-5 EMEP 2019 GB), Mediterranean forest (table 3-6), shrubland (table 3-7) and grass/steppe (table 3-8)) have been used.

The emission factors for the NOx, NMVOC, SOx, NH₃, CO, PM_{2.5}, PM₁₀, TSP and BC are calculated with values extracted of the source of reference indicated in the last column of the following table. In this table, type of activity variable and its units are displayed.

Table 7.4.5 Sources of reference for the emission factors, type of activity variable and units

Pollutants	Type of VA Units	Tier	Source of reference
NOx			
NMVOC			EFs in tables 3-5, 3-6, 3-7 and 3-8 of
SOx	kg/ha area burned	T2	chapter 11.B of the EMEP/EEA emission
NH₃			inventory guidebook 2019.
со			

⁴ In line with Seiler and Crutzen (1980).

⁵ Inventory working group assumption.

Pollutants	Type of VA Units	Tier	Source of reference
PM _{2.5}			
PM ₁₀	g/kg wood burned	T2	EFs in tables 3-5, 3-6, 3-7 and 3-8 of chapter 11.B of the EMEP/EEA emission inventory guidebook 2019.
TSP			
ВС			, 0

Evolution assessment

Table 7.4.6 Activity variable: Surface area affected (amounts in ha) and burnt biomass (amount in tonnes)

		1990	2005	2010	2015	2018	2019
Surface area affected (ha)	Coniferous species	49,712	44,519	6,228	19,038	1,124	17,330
	Broad-leaved species	20,721	23,016	3,944	13,732	5,026	10,133
	Shrublands	24,769	13,070	5,302	11,985	2,914	9,649
	Grass/steppe	105,650	105,949	39,097	64,840	9,096	53,237
	Total	200,852	186,554	54,571	109,595	18,160	90,349
Surface area affected by anthropic causes (ha)	Coniferous species	25,344	38,405	5,456	13,822	816	12,581
	Broad-leaved species	10,564	19,855	3,455	9,969	3,649	7,356
	Shrublands	11,187	11,008	4,924	9,898	2,407	7,969
	Grass/steppe	47,716	87,486	37,293	54,348	7,624	44,623
	Total	94,811	156,754	51,128	88,037	14,496	72,529
Burnt biomass by anthropic causes (tonnes)	Coniferous species	279,584	423,670	60,191	152,474	9,006	138,791
	Broad-leaved species	275,413	517,642	90,082	259,897	95,133	191,787
	Shrublands	111,866	110,081	49,236	98,980	24,069	79,690
	Grass/steppe	1,274,018	2,335,872	995,711	1,451,093	203,555	1,191,435
	Total	1,940,881	3,387,265	1,195,220	1,962,444	331,763	1,601,703

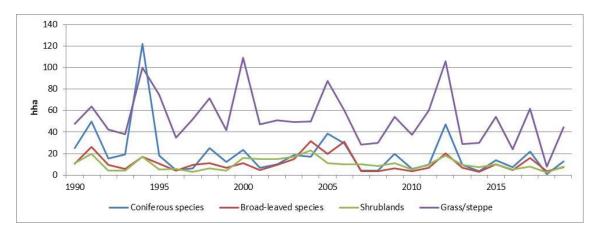
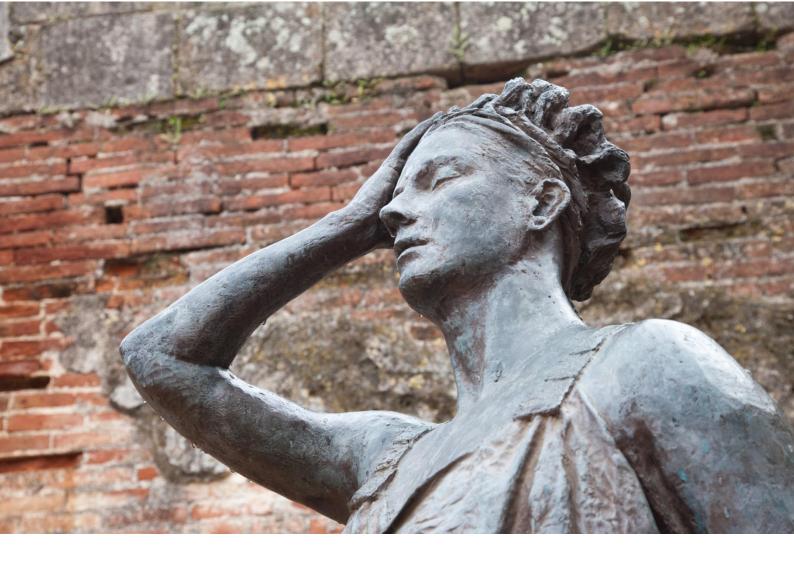



Figure 7.4.1 Evolution of surface area affected by anthropic causes

Within the 1990-2019 period, in Spain there were significant forest fires in years 1991, 1994, 2000, 2005, 2012 and 2017 as shown in the figure above.

8. RECALCULATIONS AND PLANNED IMPROVEMENTS

CONTENTS

8.	RECALCULATIONS AND PLANNED IMPROVEMENTS	397
8.1.	Overview	397
8.2.	Analysis by pollutant	402
8.2.1	. NOx	402
8.2.2	. NMVOC	403
8.2.3	. SOx	404
8.2.4	. NH₃	405
8.2.5	. PM _{2.5}	406
8.2.6	. PM ₁₀	407
8.2.7	. TSP	408
8.2.8	. BC	409
8.2.9	. CO	410
8.2.1	0. Pb	411
8.2.1	1. Cd	412
8.2.1	2. Hg	413
8.2.1	3. As	414
8.2.1	4. Cr	415
8.2.1	5. Cu	416
8.2.1	6. Ni	417
8.2.1	7. Se	418
8.2.1	8. Zn	419
8.2.1	9. DIOX	420
8.2.2	0. PAH	421
8.2.2	1. HCB	422
8.2.2	2. PCB	423
8.3.	Summary of categories/pollutants recalculated in the reported period 1990-2018	424
8.4.	Planned improvements	427
8.4.1	. General/Cross-cutting	427
8.4.2	. Energy (NFR 1A, 1B)	427
8.4.3	. Industrial processes and other product use (NFR 2)	429
8.4.4	. Agriculture (NFR 3)	429
8.4.5	. Waste (NFR 5)	429

TABLES

Table 8.1.2 Relative impact of recalculations in the National Totals of Emissions	7
(reported period 1990-2018)	8
(reported period 1990-2018)	
(reported period 1990-2018)	8
Table 8.1.5 CL by category and pollutant for the top 12 most contributing categories to the overall recalculation (reported period 1990-2018)	
recalculation (reported period 1990-2018)	9
Table 8.2.1 Summary of recalculations for NOx	
Table 8.2.2 Summary of recalculations for NMVOC403	0
,	2
Table 8.2.3 Summary of recalculations for SOx404	3
	4
Table 8.2.4 Summary of recalculations for NH_3	5
Table 8.2.5 Summary of recalculations for PM _{2.5}	6
Table 8.2.6 Summary of recalculations for PM ₁₀	7
Table 8.2.7 Summary of recalculations for TSP	8
Table 8.2.8 Summary of recalculations for BC	9
Table 8.2.9 Summary of recalculations for CO	0
Table 8.2.10 Summary of recalculations for Pb	1
Table 8.2.11 Summary of recalculations for Cd	2
Table 8.2.12 Summary of recalculations for Hg413	3
Table 8.2.13 Summary of recalculations for As	4
Table 8.2.14 Summary of recalculations for Cr415	5
Table 8.2.15 Summary of recalculations for Cu	6
Table 8.2.16 Summary of recalculations for Ni	
Table 8.2.17 Summary of recalculations for Se	8
Table 8.2.18 Summary of recalculations for Zn419	
Table 8.2.19 Summary of recalculations for DIOX	
Table 8.2.20 Summary of recalculations for PAH42	1
Table 8.2.21 Summary of recalculations for HCB	
Table 8.2.22 Summary of recalculations for PCB	
Table 8.3.1 Summary of categories and pollutants with revised estimates in the reported period 1990-	
2018	4

8. RECALCULATIONS AND PLANNED IMPROVEMENTS

Chapter updated in March, 2021.

This chapter summarises the impact on the emissions totals of the recalculations performed in this Inventory edition, using a by-pollutant analysis. Furthermore, the largest changes (in absolute value) for each pollutant are highlighted including the main reasons for the changes observed. Sector-specific recalculations are described within each of the relevant chapters. These chapters should be referred to for details of recalculations and method changes.

8.1. Overview

Throughout the Spanish Inventory, emission estimates are updated annually across the fulltime series in response to new research and revisions to data sources, as well as error corrections and methodology changes or as a result of the implementation of reviews' recommendations. Main features regarding revised estimates are presented below:

In this edition of the Inventory, 74 categories¹ (75% of the total accounting for the National Total) have been recalculated along with the reported period 1990-2018. Among them, for three categories recalculations consisted of new estimations for one or several pollutants² for which no estimations had been provided in the last edition. Furthermore, for category 2C2 emissions estimates of CO have been replaced by a notation key. Regarding category 2C2, CO emissions have been replaced by NA notation key as these emissions does not occur. For details on completeness and use of notation keys, please refer to section 1.8. Of the total categories and pollutants with emissions estimates, the 28% has not been revised.

Table 8.1.1 Summary of categories/pollutants estimated for first time in this Inventory edition

NFR Pollutant	NFR Pollutant						
1A1c	НСВ						
1A3dii	Individual PAH: B(a)P and B(k)F						
1A4ciii	Individual PAH: B(a)P and B(k)F						

As a summary, the relative impact of recalculations in the National Totals of Emissions for pivot years is shown in the following tables.

397

Only categories and pollutants with more than a ±0.00001% variation have been accounted for as a real recalculation. Minor variations could be found under this threshold due to rounding effects in the calculation process or minor error corrections performed.

New estimations have been performed in this inventory edition for individual PAH following the recommendation ES-0A-2019-0001 made by the TERT in the 2019 NECD.

Table 8.1.2 Relative impact of recalculations in the National Totals of Emissions

ear NOx NMVOC SOx NH₃ PM_{2.5} PM₁₀ TSP BC CO

Year	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PM ₁₀	TSP	ВС	со
1990	1.1%	0.8%	0.0%	0.7%	-	-	-	-	1.8%
1995	0.6%	0.1%	0.0%	1.4%	-	-	-	-	2.5%
2000	1.1%	1.5%	0.1%	1.4%	0.7%	4.5%	3.3%	13.8%	4.3%
2005	0.9%	2.0%	0.1%	1.4%	0.6%	4.9%	3.5%	11.4%	7.1%
2010	2.2%	2.0%	0.6%	1.1%	0.8%	5.8%	4.1%	18.0%	7.5%
2011	2.0%	2.0%	0.4%	1.2%	0.3%	6.2%	4.5%	19.0%	8.1%
2012	1.1%	2.6%	0.3%	1.1%	0.3%	7.5%	5.6%	15.3%	9.2%
2013	2.8%	2.2%	0.7%	0.3%	0.1%	6.7%	4.9%	23.0%	9.1%
2014	2.2%	2.7%	0.4%	1.0%	0.6%	7.7%	5.7%	18.6%	10.8%
2015	2.5%	2.4%	0.5%	1.1%	0.4%	7.0%	5.0%	22.5%	9.4%
2016	2.5%	3.3%	0.5%	0.7%	0.7%	7.1%	5.3%	22.7%	9.8%
2017	2.2%	3.3%	0.5%	0.7%	1.1%	7.5%	5.4%	22.2%	10.4%
2018	1.2%	2.2%	0.3%	1.0%	8.6%	0.3%	0.8%	12.5%	0.5%
1990-2018	1.3%	1.3%	0.1%	1.1%	0.8%	5.4%	3.8%	16.6%	4.6%

Year	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	PAHs	НСВ	PCBs
1990	0.0%	5.7%	1.0%	46.4%	9.7%	0.1%	3.6%	7.3%	21.6%	0.3%	36.2%	0.0%	0.4%
1995	0.2%	6.6%	0.6%	29.7%	9.3%	0.3%	3.6%	3.7%	22.4%	0.1%	27.4%	0.0%	0.7%
2000	0.3%	11.5%	0.9%	60.9%	9.4%	0.4%	5.3%	7.6%	21.8%	0.6%	46.4%	0.0%	1.3%
2005	1.4%	17.1%	1.1%	57.5%	10.9%	0.3%	8.9%	7.0%	20.7%	0.6%	43.4%	0.0%	0.3%
2010	1.6%	42.2%	2.1%	137.3%	15.7%	0.9%	11.5%	13.3%	27.7%	0.8%	50.9%	0.4%	0.3%
2011	2.1%	38.9%	2.3%	127.7%	15.8%	1.1%	13.5%	13.5%	27.9%	0.8%	52.3%	0.4%	0.9%
2012	3.0%	41.5%	2.0%	82.8%	15.3%	0.8%	15.5%	9.1%	29.7%	0.8%	43.1%	0.5%	0.6%
2013	1.8%	48.3%	2.2%	173.8%	18.5%	1.5%	24.7%	15.9%	29.6%	4.2%	57.5%	0.6%	0.5%
2014	2.4%	44.1%	2.1%	111.2%	16.1%	1.0%	22.7%	10.7%	30.8%	4.1%	46.6%	0.3%	0.3%
2015	2.0%	44.4%	2.1%	136.5%	14.3%	1.1%	18.8%	12.6%	28.5%	3.6%	52.5%	0.3%	1.0%
2016	2.0%	46.7%	2.4%	149.2%	15.1%	1.0%	21.6%	12.4%	28.8%	4.1%	49.1%	0.2%	0.4%
2017	2.7%	45.1%	2.7%	128.0%	15.5%	0.9%	20.4%	11.2%	28.7%	4.4%	50.8%	0.2%	2.5%
2018	3.5%	53.5%	3.3%	188.1%	15.6%	1.5%	21.3%	16.4%	45.9%	4.1%	51.0%	1.6%	0.9%
1990-2018	0.3%	14.7%	1.2%	75.7%	11.6%	0.5%	7.1%	9.1%	24.6%	0.3%	45.1%	0.0%	0.7%

Regarding major changes performed, when aggregated variations per category for the reported period 1990-2018 are listed and rated from the highest to the lowest absolute value, 12 categories account for the 95% of the accumulated contribution as a percentage of the recalculation over the total variation observed in absolute value (henceforth, contribution level or CL). As shown in the following table, recalculations in categories 2C2, 5C2 and 1A4bi are dominant in this Inventory Edition.

Table 8.1.3 Main categories whose aggregated contribution level (CL) add up the 95% of the total (reported period 1990-2018)

NFR	DESCRIPTION	Edition 2021	Edition 2020	Difference	Absolute value of the difference	CL	Aggregated CL
2C2	Ferroalloys production	120.01	2,969.80	-2,849.79	2,849.79	27.61%	27.6%
5C2	Open burning of waste	18,224.09	20,915.47	-2,691.38	2,691.38	26.08%	53.7%
1A4bi	Residential: Stationary	22,695.93	21,378.93	1,317.01	1,317.01	12.76%	66.5%
3Dc	Farm-level agricultural operations including storage, handling and	1,055.56	1,650.91	-595.35	595.35	5.77%	72.2%

NFR	DESCRIPTION	Edition 2021	Edition 2020	Difference	Absolute value of the difference	CL	Aggregated CL
	transport of agricultural products						
2C1	Iron and steel production	7,733.38	8,299.98	-566.60	566.60	5.49%	77.7%
2D3d	Coating applications	3,789.55	4,213.78	-424.23	424.23	4.11%	81.8%
1A4ai	Commercial/institutional: Stationary	1,367.37	1,000.90	366.47	366.47	3.55%	85.4%
3Da3	Urine and dung deposited by grazing animals	1,294.29	990.61	303.68	303.68	2.94%	88.3%
1A4ciii	Agriculture/Forestry/Fishin g: National fishing	1,315.98	1,580.63	-264.65	264.65	2.56%	90.9%
3Da2a	Animal manure applied to soils	6,003.54	5,745.54	258.00	258.00	2.50%	93.4%
1A2f	Stationary combustion in manufacturing industries and construction: Nonmetallic minerals	7,381.71	7,233.75	147.96	147.96	1.43%	94.8%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	2,534.07	2,672.62	-138.55	138.55	1.34%	96.2%

Reasons for recalculations of these categories are shown in the following table.

Table 8.1.4 Explanations of recalculations for the most contributing categories to the total recalculation (reported period 1990-2018)

NFR	DESCRIPTION	Edition 2021
2C2	Ferroalloys production	Deletion of CO emissions according to a methodological update to EEA/EMEP 2019 Guidebook where no information for CO emission factor is provided
5C2	Open burning of waste	Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) and change due to correction of an error in EF units (from dry matter units to waste units). Recalculation of PAH emission due to changes of EF values (EMEP 2019 v.nov2020). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.
1A4bi	Residential: Stationary	Updated EF to EMEP/EEA GB 2019. Relocation of district heating emissions. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with two year lag compared with inventory report. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook and has replicated them into 2019. Furthermore, the list of crops that produce particulate matter emissions has been updated.

NFR	DESCRIPTION	Edition 2021
2C1	Iron and steel production	Updated methodology to EMEP/EEA GB 2019, following the recommendation from NECD review (2019).
2D3d	Coating applications	The source of information for the activity variable, has updated the procedure for calculating the amount of paint consumed in the construction and industrial sectors with retroactive effect.
1A4ai	Commercial/institutional: Stationary	Updated EF to EMEP/EEA GB 2019. Relocation of district heating emissions. Correction on emissions estimates in a single LPS. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.
3Da3	Urine and dung deposited by grazing animals	Recalculation due to completion of new zootechnical document implementation for goats with changes in grazing distribution and N-excretion. In addition, this edition has done a recalculation due to changes in NH ₃ -EFs from EMEP/EEA Guidebook (2019) for grazing animals emission. Correction of different errors in population data also affect the calculation of this category.
1A4ciii	Agriculture/Forestry/Fishing: National fishing	Method improvement to T2 estimates (EMEP/EEA GB 2019) as application of recommendation ES-1A4ciii-2020-0002 (NECD Review 2020). Activity data updated
3Da2a	Animal manure applied to soils	Recalculation due to completion of new zootechnical document implementation for goats, nitrogen balance (BNPAE) alterations and correction of different errors in population data. Recalculation due to correction of nitrogen applied to soils for the calculation of NOx emissions (change resulting from the 2020 NECD review).
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	Fuel balance recalculation for consistency with energy statistics, together with the reallocation of emissions from category 1A2gviii as a consequence of the correction of a mistake
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	Fuel balance recalculation for consistency with energy statistics, together with the reallocation of emissions from category 1A2gviii as a consequence of the correction of a mistake

In terms of impact on each pollutant, category 5C2 registers the biggest values of CL in more cases, followed by 1A4bi; to highligth as well category 1A4ai, besides with the 95% of Ni recalculation. On the contrary, other categories has impact only in one pollutant, but they are the main contribution on its recalculation: category 2C2 with 75% of CO recalculation, and category 2D3d with 66% of SO_x recalculation.

Table 8.1.5 CL by category and pollutant for the top 12 most contributing categories to the overall recalculation (reported period 1990-2018)

NFR	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	PAHs	нсв	PCBs
1A2f	2%	0%	45%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%
1A2gviii	1%	0%	45%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	1%	0%	0%	0%	0%	2%	0%
1A4ai	0%	0%	0%	0%	0%	0%	0%	10%	0%	10%	2%	11%	1%	29%	5%	95%	1%	2%	1%	0%	0%	27%
1A4bi	0%	2%	0%	1%	20%	4%	4%	1%	4%	48%	63%	76%	1%	66%	19%	2%	7%	60%	5%	1%	3%	0%
1A4ciii	21%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	13%	0%	0%	0%	0%	0%	0%	0%
2C1	0%	0%	0%	0%	1%	0%	0%	0%	14%	9%	0%	0%	0%	1%	1%	0%	0%	2%	1%	0%	0%	6%
2C2	0%	0%	0%	0%	0%	0%	0%	0%	75%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2D3d	0%	66%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3Da2a	27%	3%	0%	11%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3Da3	2%	0%	0%	65%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3Dc	0%	0%	0%	0%	14%	76%	71%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
5C2	45%	25%	9%	0%	60%	19%	22%	88%	7%	28%	32%	0%	98%	1%	38%	0%	86%	33%	31%	99%	0%	0%

ES - IIR - 2021

In the next section, an analysis by pollutant is performed. Information is structured in a table containing values of recalculation for the reported year 2018 and the reported period 1990-2018. Furthermore, the top four most recalculated categories are presented, including an explanation for each revised estimate as well as the value and its contribution level. For each pollutant, figures showing the evolution of the differences between editions are included, being the average percentage of recalculation in the period 1990-2018 represented with an orange dotted line.

8.2. Analysis by pollutant

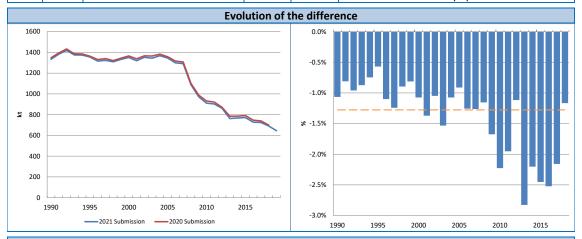

8.2.1. NOx

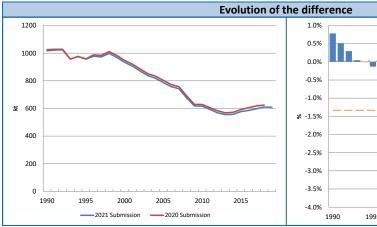
Table 8.2.1 Summary of recalculations for NOx

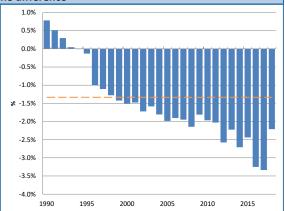
TOTAL NUMBER OF REVISED CATEGORIES								
39 out of 60 estimated (65%) for reported year 2018								
IMPACT OF REVISED ESTIMATES								
Deposited years 2010								

IMPACT OF REVISED ESTIMATES								
Reported year 2018 Reported period 1990-2018 (average)								
-8.1 kt (-1.2%)	-14.9 kt/year (-1.3%)							

		TOP MOST RECALCULAT	ED CATE	ORIES FO	OR REPORTED YEAR 2018				
Order	NFR	Catagory nama	Diffe	rence	Evalenation				
Order	NFR Category name		kt	CL	Explanation				
1	5C2	Open burning of waste	-17.0	41%	Change in EF table used (from Table 3.3				
					(orchard crops) to Table 3.2 (forest residue as				
					woody crops). Correction in EF units (from dry				
					matter units to waste units). Cultivated areas				
					data and crop yields for BNPAE calculates are				
					provided by MAPA's Statistics Yearbook with				
					two year lag. Inventory replicates x-2 year				
					values into x-1 year (see 8.2.2. NMVOC).				
2	3Da2a	Animal manure applied to soils	13.1	31%	Correction of nitrogen applied to soils for the				
					calculation (from the 2020 NECD review).				
					Completion of new zootechnical document				
					implementation for goats, nitrogen balance				
					(BNPAE) alterations, and errors in population.				
3	1A4ciii	Agriculture/Forestry/Fishing:	-6.3	15%	Method improvement to T2 estimates				
		National fishing			(EMEP/EEA GB 2019) as application of				
					recommendation ES-1A4ciii-2020-0002				
					(NECD Review 2020). Activity data updated.				
4	3Da3	Urine and dung deposited by	1.1	3%	Completion of new zootechnical document				
		grazing animals			implementation for goats with changes in				
					grazing distribution and N-excretion.				
					Correction of errors in population data.				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018											
Order	Order NFR	Catagory name	Diffe	rence	Explanation							
Order	INFIN	Category name	kt/year	CL	Explanation							
1	5C2	Open burning of waste	-18.7	45%	See 1 in table above.							
2	3Da2a	Animal manure applied to soils	11.1	27%	See 2 in table above.							
3	1A4ciii	Agriculture/Forestry/Fishing:	-8.7	21%	See 3 in table above.							
		National fishing										
4	3Da3	Urine and dung deposited by	0.9 2%		See 4 in table above.							
		grazing animals										


8.2.2. NMVOC


Table 8.2.2 Summary of recalculations for NMVOC

TOTAL NUMBER OF REVISED CATEGORIES 50 out of 70 estimated (71%) for reported year 2018

IMPACT OF REVISED ESTIMATES					
Reported year 2018 Reported period 1990-2018 (average)					
-13.8 kt (-2.2%)	-10.8 kt/year (-1.3%)				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NED	Cotorows mana	Diffe	rence	Fundametica			
Order	NFR	Category name	kt	CL	Explanation			
2	2D3d	Coating applications Open burning of waste	-18.6	48%	ASEFAPI, the source of information for the activity variable, has updated the procedure for calculating the amount of paint consumed in the construction and industrial sectors. As reported by this association, this new procedure is more accurate with AD than the methodology used in the past.			
2	5C2	Open burning of waste	10.8	28%	Change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops). Correction in EF units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. Inventory replicates x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.			
3	2D3g	Chemical products	-3.5	9%	Error detected in last year's data upload.			
4	1A4bi	Residential: Stationary	-2.4	6%	Relocation of district heating emissions. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018						
Order	NFR	Catagory name	Difference		Explanation		
Order	Order NFR Category name	kt/year	CL	Explanation			
1	2D3d	Coating applications	-14.6	66%	See 1 in table above.		
2	5C2	Open burning of waste	5.5	25%	See 2 in table above.		
3	3Da2a	Animal manure applied to soils	-0.6	3%	Recalculation due to completion of new zootechnical document implementation for goats, nitrogen balance (BNPAE) alterations and correction of different errors in population.		
4	1A4bi	Residential: Stationary	-0.5	2%	See 4 in table above.		

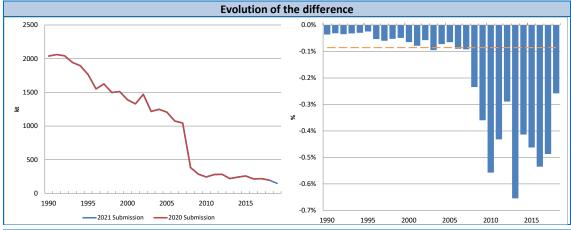

8.2.3. SOx

Table 8.2.3 Summary of recalculations for SOx

TOTAL NUMBER OF REVISED CATEGORIES 30 out of 43 estimated (70%) for reported year 2018

IMPACT OF REVISED ESTIMATES					
Reported year 2018 Reported period 1990-2018 (average)					
-0.25kt (-0.3%)	-0.9 kt/vear (-0.1%)				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018						
Order	der NFR Category name Difference		Explanation				
Oruei	IVIIX	Category Hame	kt	CL	Explanation		
1	1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	4.3	45%	Fuel balance recalculation for consistency with energy statistics, together with reallocation of emissions from category 1A2gviii as a consequence of the correction of a mistake.		
2	1A2gv iii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	-3.7	39%	Fuel balance recalculation for consistency with energy statistics, together with the reallocation of emissions from category 1A2gviii to category 1A2f as a consequence of the correction of a mistake.		
3	5C2	Open burning of waste	-0.9	10%	Change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops). Correction in EF units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. Inventory replicates x-2 year values into x-1 year (see 8.2.2. NMVOC).		
4	1A3dii	National navigation (shipping)	-0.2	2%	Activity data updated for years 2017 and 2018.		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018					
Order	NFR	Catagory name	Difference		Explanation	
Order	INFIX	Category name	kt/year	CL	Explanation	
1	1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	4.3	45%	See 1 in table above.	
2	1A2gv iii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	-4.2	45%	See 2 in table above	
3	5C2	Open burning of waste	-0.9	9%	See 3 in table above.	
4	1A3bi	Road transport: Passenger cars	0.0	0%	Sulphur content of fuels updated in the period 2011-2018 according to the values of the fuel quality Directive 98/70/EC.	

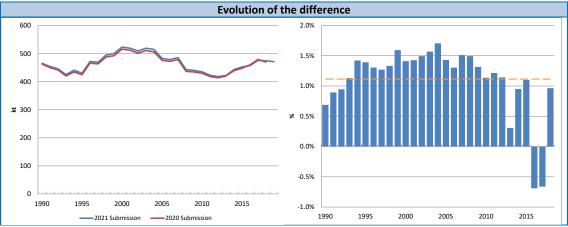

8.2.4. NH₃

Table 8.2.4 Summary of recalculations for NH₃

TOTAL NUMBER OF REVISED CATEGORIES 32 out of 49 estimated (65%) for reported year 2018

IMPACT OF REVISED ESTIMATES				
Reported year 2018 Reported period 1990-2018 (average)				
4.5 kt (1.0%)	5.1 kt/year (1.1%)			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NFR	Catagony nama	Diffe	rence	Funlanation			
Order	INFR	Category name	kt	CL	Explanation			
1	3Da3	Urine and dung deposited by grazing animals	11.0	53%	Completion of new zootechnical document implementation for goats with changes in grazing distribution and N-excretion. Recalculation due to changes in NH ₃ -EFs from EMEP/EEA Guidebook (2019) for grazing animals. Correction errors in population data.			
2	3B4d	Manure management - Goats	-3.4	16%	Recalculation due to completion of new zootechnical document implementation for goats with changes in grazing distribution, manure management system and N-excretion (mass balance alterations and NH ₃ .			
3	3Da2a	Animal manure applied to soils	-2.1	10%	Completion of new zootechnical document implementation for goats, nitrogen balance (BNPAE) alterations and correction of different errors in population data.			
4	3Da2b	Sewage sludge applied to soils	-2.0	9%	Sewage sludge amount applied to soils are provided by source ("National Sewage Register" (MITERD)) with several years lag. 2012 "National Sewage Register" data were replicated due to lack of consolidated information from that year on. This edition has updated the values of 2013, 2014 and 2015 according values published, and 2015 value has replicated them into 2016, 2017, 2018 and 2019.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018						
Order	Order NFR Category name		Difference		Explanation		
Order	INFIN	Category name	kt/year CL	Explanation			
1	3Da3	Urine and dung deposited by grazing animals	9.5	65%	See 1 in table above.		
2	3B4d	Manure management - Goats	-2.2	15%	See 2 in table above.		
3	3Da2a	Animal manure applied to soils	-1.6	11%	See 3 in table above.		
4	3Da2b	Sewage sludge applied to soils	-0.4	3%	See 4 in table above.		

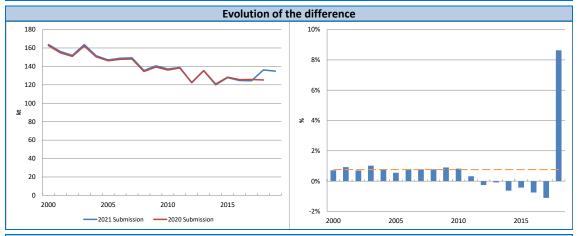

8.2.5. PM_{2.5}

Table 8.2.5 Summary of recalculations for PM_{2.5}

TOTAL NUMBER OF REVISED CATEGORIES 43 out of 72 estimated (60%) for reported year 2018

IMPACT OF REVISED ESTIMATES			
Reported year 2018 Reported period 1990-2018 (average)			
10.8 kt (+8.6%)	0.7 kt/year (0.8%)		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NFR	Category name	Difference		Explanation			
Order	INFIX	Category name	kt	CL	Explanation			
1	5C2	Open burning of waste	13.8	76%	Change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as			
					woody crops). Cultivated areas data and crop			
					yields for BNPAE calculates are provided by			
					MAPA's Statistics Yearbook with two year lag.			
					Inventory replicates x-2 year (see 8.2.7 TSP).			
2	1A4bi	Residential: Stationary	-2.9	16%	New estimations of pellets and recalculations			
					in district heating estimations.			
3	3Dc	Farm-level agricultural	-0.6	3%	Data of areas of agricultural soils are provided			
		operations including storage,			by MAPA's Statistics Yearbook to BNPAE			
		handling and transport of			technical team with 2 year lag compared with			
		agricultural products			inventory report. Inventory replicates the x-2			
					year values published in x-1 year; this edition			
					updates 2018 and replicates them into 2019.			
					And the list of crops that produce particulate			
					matter emissions has been updated.			
4	3F	Field burning of agricultural	0.3	2%	Data of areas of agricultural soils are provided			
		residues			by MAPA`s Statistics Yearbook to BNPAE			
					technical team with 2 year lag compared with			
					inventory report. Inventory replicates the x-2			
					year values published in x-1 year; this edition			
					updates 2018 and replicates them into 2019.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018						
Ouden	NED	6-1	Difference		Funlanation		
Order	NFR	Category name	kt/year	CL	Explanation		
1	5C2	Open burning of waste	1.6	60%	See 1 above.		
2	1A4bi	Residential: Stationary	-0.5	20%	See 2 above.		
3	3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	-0.4	14%	See 3 above.		
4	1A4ciii	Agriculture/Forestry/Fishing: National fishing	0.0	1%	Change from Tier 1 to Tier 2 methodology. Activity data updated.		

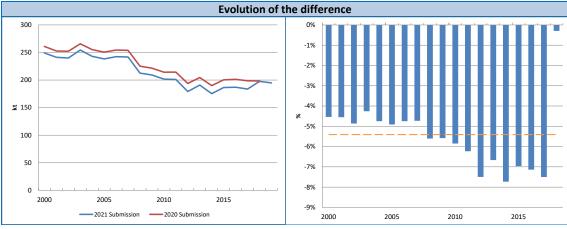

8.2.6. PM₁₀

Table 8.2.6 Summary of recalculations for PM₁₀

TOTAL NUMBER OF REVISED CATEGORIES 43 out of 72 estimated (60%) for reported year 2018

IMPACT OF REVISED ESTIMATES			
Reported year 2018 Reported period 1990-2018 (average)			
-0.6 kt (-0.3%)	-8.0 kt/year (-5.4%)		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018								
Order	NFR	Catagory nama	Diffe	rence	Evalenation				
Order	INFR	Category name	kt	CL	Explanation				
1	5C2	Open burning of waste	16.3	44%	Change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. Inventory replicates x-2 year values into x-1 year (see 8.2.7. TSP).				
2	3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	-15.5	42%	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with two year lag compared with inventory report. Inventory replicates the x-2 year values published into x-1 year; this edition has updated 2018 and has replicated them into 2019. Furthermore, the list of crops that produce particulate matter emissions has been updated.				
3	1A4bi	Residential: Stationary	-3.0	8%	New estimations of pellets emissions and recalculations in district heating estimation.				
4	2A5a	Quarrying and mining of minerals other than coal	1.1	3%	Update of Activity Data for 2018.				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Ouden	NED	Category name	Difference		Evalenation			
Order	NFR		kt/year	CL	Explanation			
1	3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	-10.1	76%	See 1 in table above.			
2	5C2	Open burning of waste	2.5	19%	See 2 in table above.			
3	1A4bi	Residential: Stationary	-0.6	4%	See 3 in table above.			
4	2A5a	Quarrying and mining of minerals other than coal	0.0	0%	See 4 in table above.			

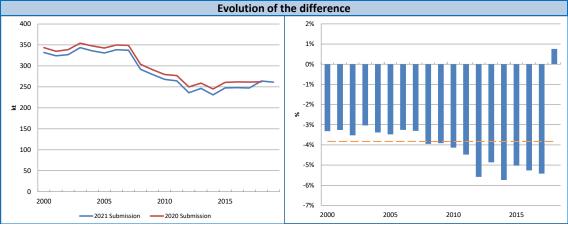

8.2.7. TSP

Table 8.2.7 Summary of recalculations for TSP

TOTAL NUMBER OF REVISED CATEGORIES 44 out of 73 estimated (60%) for reported year 2018

IMPACT OF REVISED ESTIMATES				
Reported year 2018	Reported period 1990-2018 (average)			
2.0 kt (+0.8%)	-7.5 kt/year (-3.8%)			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018								
Order	NFR	Catagoni nomo	Diffe	rence	Explanation				
Order	INFR	Category name	kt	CL	Explanation				
1	5C2	Open burning of waste	17.9	49%	Change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.				
2	3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	-15.5	42%	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with two year lag compared with inventory report. Inventory replicates the x-2 year values published into x-1 year; this edition has updated 2018 and has replicated them into 2019.				
3	1A4bi	Residential: Stationary	-3.1	9%	New estimations of pellets emissions and recalculations in district heating estimation.				
4	2A5a	Quarrying and mining of minerals other than coal	2.3	6%	Update of Activity Data for 2018.				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Order	NFR	Catagory name	Difference		Explanation			
Order	INFR	Category name	kt/year	CL	Explanation			
1	3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	-10.1	71%	See2 in table above.			
2	5C2	Open burning of waste	3.2	22%	See 1 in table above.			
3	1A4bi	Residential: Stationary	-0.6	4%	See 3 in table above.			
4	2B10a	Chemical industry: Other	-0.1	1%	AD updated by data provider.			
		(please specify in the IIR)			EF updated due to a mistake detected.			

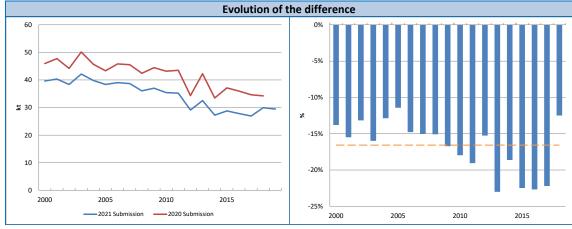

8.2.8. BC

Table 8.2.8 Summary of recalculations for BC

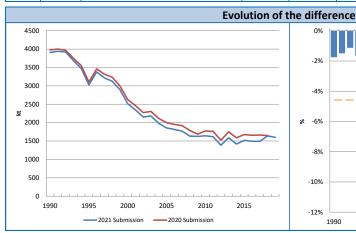
TOTAL NUMBER OF REVISED CATEGORIES 34 out of 48 estimated (71%) for reported year 2018

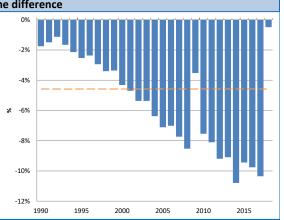
IMPACT OF REVISED ESTIMATES			
Reported year 2018 Reported period 1990-2018 (average)			
-4.3 kt (-12.5%)	-4.5 kt/year (-16.6%)		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018								
Order	NFR	Cotogowy nome	Difference		Funlanation				
Order	INFR	Category name	kt	CL	Explanation				
1	5C2	Open burning of waste	-4.6	79%	Change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. Inventory replicates x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.				
2	1A4ai	Commercial/institutional: Stationary	0.7	12%	EF update to EMEP/EEA GB (2019). Relocation of district heating emissions. Correction on emissions estimates in a single LPS. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.				
3	1A4bi	Residential: Stationary	-0.4	7%	EF update to EMEP/EEA GB (2019). New estimations of pellets emissions. Recalculations in district heating estimations.				
4	3F	Field burning of agricultural residues	0.0	0%	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with 2 year lag compared with inventory report. Inventory replicates the x-2 year values published in x-1 year; this edition updates 2018 and replicates them into 2019.				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Order	NFR	R Category name	Difference		Explanation			
Order	INFIX		kt/year	CL	Explanation			
1	5C2	Open burning of waste	-5,0	88%	See 1 in table above			
2	1A4ai	Commercial/institutional:	0,6	10%	See 2 in table above.			
		Stationary						
3	1A4bi	Residential: Stationary	-0,1	1%	See 3 in table above.			
4	1A4ciii	Agriculture/Forestry/Fishing:	0,0	0%	Change from Tier 1 to Tier 2 methodology.			
		National fishing			Activity data updated.			

8.2.9. CO


Table 8.2.9 Summary of recalculations for CO


TOTAL NUMBER OF REVISED CATEGORIES

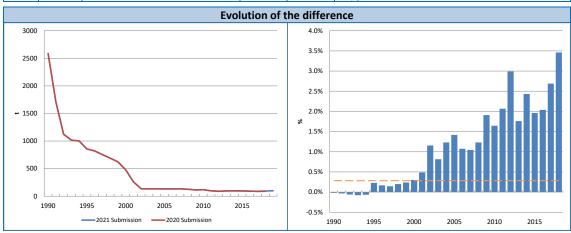
34 out of 45 estimated (76%) for reported year 2018

IMPACT OF REVISED ESTIMATES			
Reported year 2018 Reported period 1990-2018 (average)			
-8.1 kt (-0.5%)	-113.0 kt/year (-4.6%)		

		TOP MOST RECALCULAT	ED CATE	ORIES FO	R REPORTED YEAR 2018
Order	NFR	Cotogomymomo	Difference		Funlanation
Order	INFR	Category name	kt	CL	Explanation
1	5C2	Open burning of waste	158.9	46%	Recalculation due to change in EF table used
					(from Table 3.3 (orchard crops) to Table 3.2
					(forest residue as woody crops) and change
					due to correction of an error in EF units (from
					dry matter units to waste units).
					Cultivated areas data and crop yields for
					BNPAE calculates are provided by MAPA's
					Statistics Yearbook with two year lag. In these
					cases, the Inventory replicates the x-2 year
					values published in the Yearbook, into x-1
					year, the last year inventoried. This edition has
					updated the values of 2018 according the
	262	- 1	427.0	270/	yearbook, and has replicated them into 2019.
2	2C2	Ferroalloys production	-127.8	37%	Deletion of CO emissions according to a
					methodological update to EEA/EMEP 2019
					Guidebook where no information for CO
3	1 A 4 h :	Docidontial Ctations	26.2	00/	emission factor is provided.
3	1A4bi	Residential: Stationary	-26.3	8%	New estimations of pellets emissions.
4	2C1	Iron and stool production	20.5	60/	Recalculations in district heating estimations. Relocation of CO from blast furnaces to
4	2C1	Iron and steel production	-20.5	6%	
					category 1A2a, as well as update of the CO EF
					for basic oxygen furnaces, according to
					EMEP/EEA 2019 Guidebook.

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Order	ler NFR Category name Difference		Flanatian					
Order	INFI	Category name	kt/year	CL	Explanation			
1	2C2	Ferroalloys production	-98.3	75%	See 2 in table above.			
2	2C1	Iron and steel production	-17.8	14%	See 4 in table above.			
3	5C2	Open burning of waste	8.6	7%	See 1 in table above.			
4	1A4bi	Residential: Stationary	-5.0	4%	See 3 in table above.			

8.2.10. Pb


Table 8.2.10 Summary of recalculations for Pb

TOTAL NUMBER OF REVISED CATEGORIES

28 out of 39 estimated (72%) for reported year 2018

IMPACT OF REVISED ESTIMATES					
Reported year 2018 Reported period 1990-2018 (average)					
3.1 t (+3.5%)	1.3 t/year (+0.3%)				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NFR	Catagory name	Difference		Evalenation			
Order	INFR	Category name	kt	CL	Explanation			
1	1A4bi	Residential: Stationary	2.9	53%	Updated EF to EMEP/EEA GB 2019.			
2	1A4ai	Commercial/institutional: Stationary	1.0	20%	Updated EF to EMEP/EEA GB 2019.			
3	5C2	Open burning of waste	-0.7	13%	Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) and change due to correction of an error in EF units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.			
4	2C1	Iron and steel production	-0.4	7%	Update of Activity Data for EAF (electric arc furnaces). Update of EF in blast furnaces and basic oxygen furnaces.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Ouden	order NFR Category name	6-1	Difference		Franks atten			
Order		kt/year	CL	Explanation				
1	1A4bi	Residential: Stationary	2.5	48%	See 1 in table above.			
2	5C2	Open burning of waste	-1.5	28%	See 3 in table above.			
3	1A4ai	Commercial/institutional: Stationary	0.5	10%	See 2 in table above.			
4	2C1	Iron and steel production	-0.5	9%	See 4 in table above.			

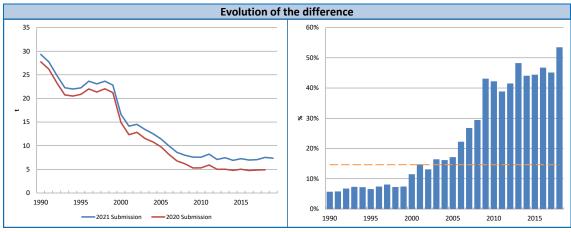

8.2.11. Cd

Table 8.2.11 Summary of recalculations for Cd

TOTAL NUMBER OF REVISED CATEGORIES
30 out of 41 estimated (73%) for reported year 2018

IMPACT OF REVISED ESTIMATES					
Reported year 2018 Reported period 1990-2018 (average)					
2.6 t (+53.5%)	1.9 t/year (+14.5%)				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018								
Order	NFR	Catagory name	Difference		Explanation				
Order	INFR	Category name	kt	CL	Explanation				
1	1A4bi	Residential: Stationary	1.4	51%	Updated EF to EMEP/EEA GB 2019.				
2	5C2	Open burning of waste	1.1	40%	Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) and change due to correction of an error in EF units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.				
3	1A4ai	Commercial/institutional: Stationary	0.1	3%	Updated EF to EMEP/EEA GB 2019.				
4	3F	Field burning of agricultural residues	0.0	2%	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with 2 year lag compared with inventory report. Inventory replicates the x-2 year values published in x-1 year; this edition updates 2018 and replicates them into 2019.				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018								
Ordor	rder NFR Category name	C-1	Difference		Funlametian				
Order		kt/year	CL	Explanation					
1	1A4bi	Residential: Stationary	1.2	63%	See 1 in table above				
2	5C2	Open burning of waste	0.6	32%	See 2 in table above.				
3	1A4ai	Commercial/institutional:	0.0	2%	See 3 in table above				
		Stationary							
4	1A1c	Manufacture of solid fuels and	0.0	2%	Updated EF to EMEP/EEA GB 2019 in other				
		other energy industries			energy industries (non-specific combustion).				

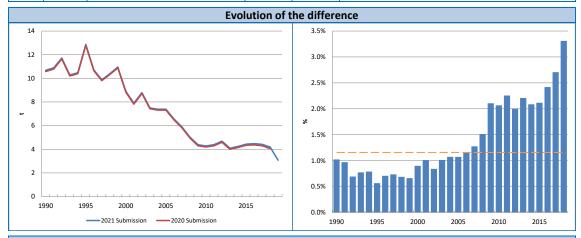

8.2.12. Hg

Table 8.2.12 Summary of recalculations for Hg

TOTAL NUMBER OF REVISED CATEGORIES 25 out of 34 estimated (74%) for reported year 2018

IMPACT OF REVISED ESTIMATES					
Reported year 2018 Reported period 1990-2018 (average)					
0.1 t (+3.3%)	0.1 t/year (+1.2%)				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NED	0-1	Difference		Franks atten			
Order	NFR	Category name	kt	CL	Explanation			
1	1A4bi	Residential: Stationary	0.1	40%	Updated EF to EMEP/EEA GB 2019.			
2	1A4ai	Commercial/institutional:	0.1	30%	Updated EF to EMEP/EEA GB 2019.			
		Stationary						
3	2C1	Iron and steel production	0.0	11%	Update of EF in blast furnaces and basic			
					oxygen furnaces.			
					Update of Activity Data for EAF (electric arc			
					furnaces).			
4	5C1bv	Cremation	0.0	10%	Update of Activity Data for years 2016 and			
					2018.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018								
Order	NFR	Category name	Difference		Funlametian				
Order			kt/year	CL	Explanation				
1	1A4bi	Residential: Stationary	0.1	76%	See 1 in table above.				
2	1A4ai	Commercial/institutional: Stationary	0.0	11%	See 2 in table above.				
3	1A1c	Manufacture of solid fuels and other energy industries	0.0	6%	Updated EF to EMEP/EEA GB 2019 in other energy industries (non-specific combustion).				
4	1A4ci	Agriculture/Forestry/Fishing: Stationary	0.0	3%	Updated EF to EMEP/EEA GB 2019.				

8.2.13. As

Table 8.2.13 Summary of recalculations for As

TOTAL NUMBER OF REVISED CATEGORIES 27 out of 37 estimated (73%) for reported year 2018

IMPACT OF REVISED ESTIMATES					
Reported year 2018 Reported period 1990-2018 (average)					
9.2 t (+188.1%)	6.0 t/year (+75.7%)				

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NFR	Category name	Difference		Explanation			
Order	INFIX	Category Harrie	kt	CL	Explanation			
1	5C2	Open burning of waste	9.1	98%	Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) and change due to correction of an error in EF units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.			
2	1A4ai	Commercial/institutional: Stationary	0.1	1%	Updated EF to EMEP/EEA GB 2019.			
3	1A3dii	National navigation (shipping)	-0.1	1%	Updated EF to EMEP/EEA GB 2019.			
4	1A4bi	Residential: Stationary	0.0	0%	Updated EF to EMEP/EEA GB 2019.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018						
Order	NFR	Cotocomi nomo	Diffe	rence	Funlametica		
Order	NFK	Category name	kt/year	CL	Explanation		
1	5C2	Open burning of waste	5.9	98%	See 1 in table above.		
2	1A4ai	Commercial/institutional: Stationary	0.1	1%	See 2 in table above.		
3	1A4bi	Residential: Stationary	0.0	1%	See 4 in table above.		
4	1A3dii	National navigation (shipping)	0.0	1%	See 3 in table above.		

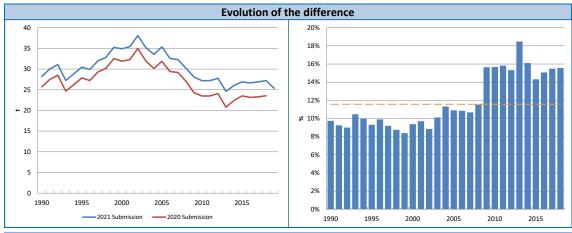

8.2.14. Cr

Table 8.2.14 Summary of recalculations for Cr

TOTAL NUMBER OF REVISED CATEGORIES 30 out of 39 estimated (77%) for reported year 2018

IMPACT OF REVISED ESTIMATES				
Reported year 2018 Reported period 1990-2018 (average)				
3.7 t (+15.6%)	3.2 t/year (11.6%)			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NFR	Catagoni nomo	Difference		Funlanation			
Order	INFK	Category name	kt	CL	Explanation			
1	1A4bi	Residential: Stationary	2.4	67%	Updated EF to EMEP/EEA GB 2019.			
2	1A4ai	Commercial/institutional:	1.0	28%	Updated EF to EMEP/EEA GB 2019.			
		Stationary						
3	1A4ci	Agriculture/Forestry/Fishing:	0.1	2%	Updated EF to EMEP/EEA GB 2019.			
		Stationary						
4	1A1c	Manufacture of solid fuels and	0.1	2%	Updated EF to EMEP/EEA GB 2019 in other			
		other energy industries			energy industries (non-specific combustion).			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Order	NFR	Catagory name	Difference		Fundametica			
Order	INFIX	Category name	kt/year	CL	Explanation			
1	1A4bi	Residential: Stationary	2.1	66%	See 1 in table above.			
2	1A4ai	Commercial/institutional:	0.9	29%	See 2 in table above.			
		Stationary						
3	1A1c	Manufacture of solid fuels and	0.1	2%	See 3 in table above.			
		other energy industries						
4	1A4ci	Agriculture/Forestry/Fishing:	0.0	1%	See 4 in table above.			
		Stationary						

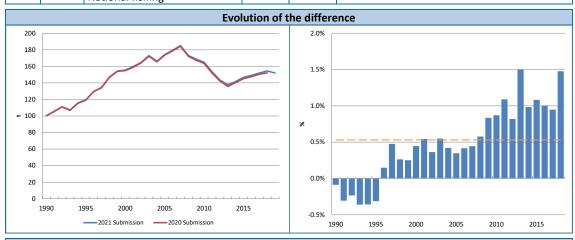

8.2.15. Cu

Table 8.2.15 Summary of recalculations for Cu

TOTAL NUMBER OF REVISED CATEGORIES 30 out of 39 estimated (77%) for reported year 2018

IMPACT OF REVISED ESTIMATES				
Reported year 2018 Reported period 1990-2018 (average)				
2.2 t (+1.5%)	0.8 t/year (+0.5%)			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018						
Order	NFR	NFR Category name		rence	Explanation		
Order	INFIX	Category Harrie	kt	CL	Explanation		
1	5C2	Open burning of waste	2.0	52%	Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) and change due to correction of an error in EF units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.		
2	1A4bi	Residential: Stationary	0.6	17%	Updated EF to EMEP/EEA GB 2019.		
3	1A3dii	National navigation (shipping)	-0.5	14%	Updated EF to EMEP/EEA GB 2019.		
4	1A4ciii	Agriculture/Forestry/Fishing: National fishing	-0.2	6%	Updated EF to EMEP/EEA GB 2019.		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Oudou	NFR	Category name	Difference		Foodonation			
Order	INFK		kt/year	CL	Explanation			
1	5C2	Open burning of waste	1.1	38%	See 1 in table above.			
2	1A3dii	National navigation (shipping)	-0.7	22%	See 3 in table above.			
3	1A4bi	Residential: Stationary	0.6	19%	See 2 in table above.			
4	1A4ciii	Agriculture/Forestry/Fishing:	-0.4	13%	See 4 in table above.			
		National fishing						

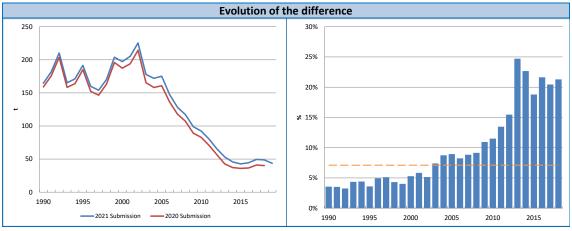

8.2.16. Ni

Table 8.2.16 Summary of recalculations for Ni

TOTAL NUMBER OF REVISED CATEGORIES 29 out of 37 estimated (78%) for reported year 2018

IMPACT OF REVISED ESTIMATES				
Reported year 2018 Reported period 1990-2018 (average)				
8.5 t (+21.3%)	9.0 t/year (+7.1%)			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018						
Order	NFR	Catagory name	Difference		Flanatian		
Order	INFIX	Category name	kt	CL	Explanation		
1	1A4ai	Commercial/institutional: Stationary	8.6	94%	Updated EF to EMEP/EEA GB 2019.		
2	1A4bi	Residential: Stationary	0.2	2%	Updated EF to EMEP/EEA GB 2019.		
3	1A3dii	National navigation (shipping)	-0.2	2%	Activity data updated for years 2017 and 2018. Provincial distribution corrected for 2010 and updated for 2018.		
4	2C1	Iron and steel production	-0.1	1%	Update of EF in blast furnaces and basic oxygen furnaces. Update of Activity Data for EAF (electric arc furnaces).		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Order	NFR	0-1	Difference		Franks and a			
Order	INFR	Category name	kt/year	CL	Explanation			
1	1A4ai	Commercial/institutional:	8.7	95%	See 1 in table above.			
		Stationary						
2	1A4bi	Residential: Stationary	0.2	2%	See 2 in table above.			
3	1A4ci	Agriculture/Forestry/Fishing:	0.1	1%	Updated EF to EMEP/EEA GB 2019.			
		Stationary						
4	1A2f	Stationary combustion in	0.1	1%	Updated EF to EMEP/EEA GB 2019.			
		manufacturing industries and						
		construction: Non-metallic						
		minerals						

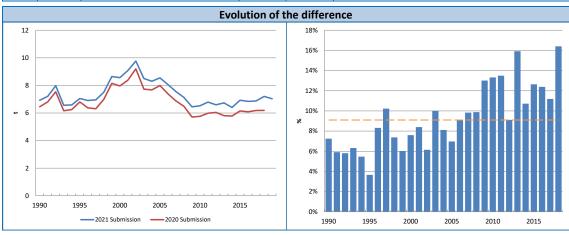

8.2.17. Se

Table 8.2.17 Summary of recalculations for Se

TOTAL NUMBER OF REVISED CATEGORIES 29 out of 35 estimated (83%) for reported year 2018

IMPACT OF REVISED ESTIMATES			
Reported year 2018 Reported period 1990-2018 (average)			
1.0 t (+16.4%)	0.6 t/year (+9.1%)		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NFR	Category name	Difference		Explanation			
Oruei	INFIX	Category Harrie	kt	CL	Explanation			
1	5C2	Open burning of waste	1.0	88%	Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) and change due to correction of an error in EF units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.			
2	1A3dii	National navigation (shipping)	-0.1	5%	Updated EF to EMEP/EEA GB 2019.			
3	1A4bi	Residential: Stationary	0.1	5%	Updated EF to EMEP/EEA GB 2019.			
4	1A4ai	Commercial/institutional: Stationary	0.0	2%	Updated EF to EMEP/EEA GB 2019.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Order	NFR	Category name	Difference		Funlanation			
Order	INFK		kt/year	CL	Explanation			
1	5C2	Open burning of waste	0.6	86%	See 1 in table above.			
2	1A4bi	Residential: Stationary	0.1	7%	See 3 in table above.			
3	1A3dii	National navigation (shipping)	0.0	4%	See 2 in table above.			
4	1A4ai	Commercial/institutional:	0.0	1%	See 4 in table above.			
		Stationary						

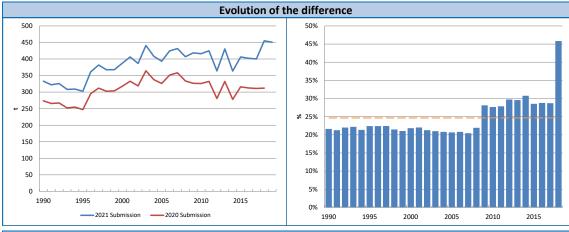

8.2.18. Zn

Table 8.2.18 Summary of recalculations for Zn

TOTAL NUMBER OF REVISED CATEGORIES 30 out of 40 estimated (75%) for reported year 2018

IMPACT OF REVISED ESTIMATES				
Reported year 2018 Reported period 1990-2018 (average)				
143.0 t (+45.9%)	76.0 t/year (+24.6%)			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NFR	Catagoriu nomo	Diffe	rence	Explanation			
Order	INFR	Category name	kt	CL	Explanation			
1	5C2	Open burning of waste	81.2	56%	Recalculation due to change in EF table used (from Table 3.3 (orchard crops) to Table 3.2 (forest residue as woody crops) and change due to correction of an error in EF units (from dry matter units to waste units). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.			
2	1A4bi	Residential: Stationary	54.2	38%	Updated EF to EMEP/EEA GB 2019.			
3	1A4ai	Commercial/institutional: Stationary	3.2	2%	Updated EF to EMEP/EEA GB 2019.			
4	1A4ci	Agriculture/Forestry/Fishing: Stationary	2.6	2%	Updated EF to EMEP/EEA GB 2019.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Order	N.J. MED Cotton		Difference		Funlanation			
Order	er NFR Category name	kt/year	CL	Explanation				
1	1A4bi	Residential: Stationary	47.0	60%	See 2 in table above.			
2	5C2	Open burning of waste	25.7	33%	See 1 in table above.			
3	1A4ci	Agriculture/Forestry/Fishing: Stationary	1.5	2%	See 4 in table above.			
4	1A1c	Manufacture of solid fuels and other energy industries	1.4	2%	Updated EF to EMEP/EEA GB 2019 in other energy industries (non-specific combustion).			

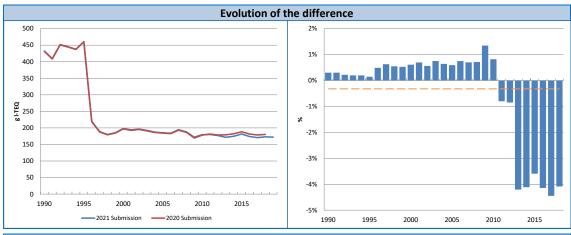

8.2.19. DIOX

Table 8.2.19 Summary of recalculations for DIOX

TOTAL NUMBER OF REVISED CATEGORIES 26 out of 34 estimated (76%) for reported year 2018

IMPACT OF REVISED ESTIMATES				
Reported year 2018 Reported period 1990-2018 (average)				
-7.4 g I-TEQ (-4.1%)	-8.0 g I-TEQ/year (-0.3%)			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018						
Order	NFR	Catagory name	Diffe	rence	Explanation		
Order	INFR	Category name	kt	CL	Explanation		
1	5C1biv	Sewage sludge incineration	-3.6	27%	Updated for period 2013-2018 due to new		
					information available in the Registro Nacional		
					de Lodos (RNL).		
2	2C3	Aluminium production	-3.5	26%	Update of Activity Data for Secondary		
					Aluminium production from 2010 onwards.		
3	5C2	Open burning of waste	2.6	20%	Recalculation due to correction of an error in		
					EF units (from dry matter units to waste units).		
					Cultivated areas data and crop yields for		
					BNPAE calculates are provided by MAPA's		
					Statistics Yearbook with two year lag. In these		
					cases, the Inventory replicates the x-2 year		
					values published in the Yearbook, into x-1		
					year, the last year inventoried. This edition has		
					updated the values of 2018 according the		
					yearbook, and has replicated them into 2019.		
4	1A4bi	Residential: Stationary	-2.4	18%	Updated EF to EMEP/EEA GB 2019.		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018							
Order	er NFR Category name		Diffe	rence	Francis and the second			
Order	INFR	Category name	kt/year	CL	Explanation			
1	5C2	Open burning of waste	0.9	31%	See 3 in table above.			
2	2C3	Aluminium production	-0.9	30%	See 2 in table above.			
3	5C1biv	Sewage sludge incineration	-0.8	26%	See 1 in table above.			
4	1A4bi	Residential: Stationary	-0.1	5%	See 4 in table above.			

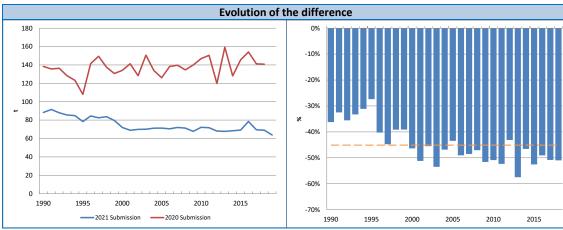

8.2.20. PAH

Table 8.2.20 Summary of recalculations for PAH

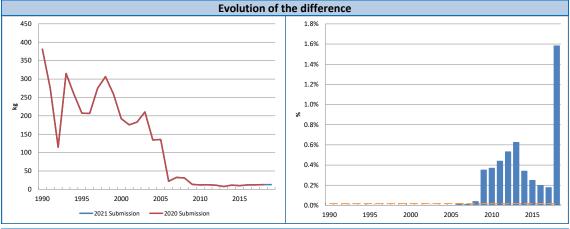
TOTAL NUMBER OF REVISED CATEGORIES 30 out of 38 estimated (79%) for reported year 2018

IMPACT OF REVISED ESTIMATES			
Reported year 2018 Reported period 1990-2018 (average)			
-71.8 t (-51.0%)	-61.9 t/year (-45.1%)		

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	NFR	Catagony nama	Difference		Evalenation			
Order	INFR	Category name	kt	CL	Explanation			
1	5C2	Open burning of waste	-69.7	97%	Recalculation of PAH emission due to changes of EF values (EMEP 2019 v.nov2020). Cultivated areas data and crop yields for BNPAE calculates are provided by MAPA's Statistics Yearbook with two year lag. In these cases, the Inventory replicates the x-2 year values published in the Yearbook, into x-1 year, the last year inventoried. This edition has updated the values of 2018 according the yearbook, and has replicated them into 2019.			
2	1A4bi	Residential: Stationary	-2.2	3%	Relocation of district heating emissions. Relocation by source of LPG consumption from 1A4bi to 1A4ai/1A4ci.			
3	2C1	Iron and steel production	-0.1	0%	Update of Activity Data for EAF (electric arc furnaces).			
4	3F	Field burning of agricultural residues	0.1	0%	Data of areas of agricultural soils are provided by MAPA's Statistics Yearbook to BNPAE technical team with 2 year lag compared with inventory report. Inventory replicates the x-2 year values into x-1 year (as said above in 5C2) Recalculation of PAH emissions by pollutants due to EFs update from EMEP/EEA Guidebook (2019), following TERT's recommendation.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018						
Order	der NFR Category name	Catagory nama	Difference		Explanation		
Order		kt/year	CL	Explanation			
1	5C2	Open burning of waste	-61.5	99%	See 1 in table above.		
2	1A4bi	Residential: Stationary	-0.4	1%	See 2 in table above.		
3	1A4ciii	Agriculture/Forestry/Fishing: National fishing	0.0	0%	Updated EF to EMEP/EEA GB 2019 and activity data updated in 2018.		
4	1A3dii	National navigation (shipping)	0.0	0%	Updated EF to EMEP/EEA GB 2019. Activity data updated in 2017, 2018. Provincial distrib. corrected for 2010 and updated for 2018.		

8.2.21. HCB


Table 8.2.21 Summary of recalculations for HCB

TOTAL NUMBER OF REVISED CATEGORIES

17 out of 20 estimated (85%) for reported year 2018

IMPACT OF REVISED ESTIMATES				
Reported year 2018 Reported period 1990-2018 (average)				
0.2 kg (+1.6%)	0.0 kg/year (+0.0%)			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018							
Order	Difference		rence	Explanation				
Order	NFR	Category name	kt	CL	Explanation			
1	3Df	Use of pesticides	0.2	83%	Recalculation due to correction of small error			
					in VA data for the year 2018.			
2	1A1c	Manufacture of solid fuels and	0.0	6%	Updated EF to EMEP/EEA GB 2019 in other			
		other energy industries			energy industries (non-specific combustion).			
3	1A4ci	Agriculture/Forestry/Fishing:	0.0	2%	Updated EF to EMEP/EEA GB 2019.			
		Stationary						
4	1A1a	Public electricity and heat	0.0	2%	Activity data extended nationwide on district			
		production			heating plants for period 1990-2018.			

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018														
Order	NFR	Cotocomi nomo	Diffe	rence	Funlanation										
Order	INFK	Category name	kt/year	CL	Explanation										
1	1A1c	Manufacture of solid fuels and	0.0	49%	See 2 in table above.										
		other energy industries													
2	3Df	Use of pesticides	0.0	23%	See 1 in table above.										
3	1A4ci	Agriculture/Forestry/Fishing:	0.0	15%	See 3 in table above.										
		Stationary													
4	5C1biv	Sewage sludge incineration	0.0	3%	Updated for period 2013-2018 due to new										
					information available in the Registro Nacional										
				de Lodos (RNL).											

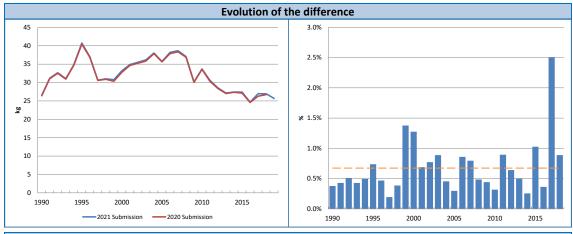

8.2.22. PCB

Table 8.2.22 Summary of recalculations for PCB

TOTAL NUMBER OF REVISED CATEGORIES 14 out of 21 estimated (67%) for reported year 2018

IMPACT OF REVISED ESTIMATES											
Reported year 2018	Reported period 1990-2018 (average)										
0.2 kg (+0.9%)	0.2 kg/year (+0.7%)										

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED YEAR 2018													
Order	NFR	Catagory name	Diffe	rence	Explanation									
Order	INFIX	Category name	kt	CL	Explanation									
1	1A4ai	Commercial/institutional: Stationary	0.9	55%	Updated EF to EMEP/EEA GB 2019.									
2	2C1	Iron and steel production	-0.7	42%	Update of Activity Data for EAF (electric arc furnaces).									
3	1A4ci	Agriculture/Forestry/Fishing: Stationary	0.0	2%	Updated EF to EMEP/EEA GB 2019.									
4	5C1bv	Cremation	0.0	0%	Update of Activity Data for years 2016 and 2018.									

	TOP MOST RECALCULATED CATEGORIES FOR REPORTED PERIOD 1990-2018														
Order	NFR	Cotogowy no mo	Diffe	rence	Funlanation										
Order	INFK	Category name	kt/year	CL	Explanation										
1	1A4ci	Agriculture/Forestry/Fishing:	0.2	66%	See 3 in table above.										
		Stationary													
2	1A4ai	Commercial/institutional:	0.1	27%	See 1 in table above.										
		Stationary													
3	2C1	Iron and steel production	0.0	6%	See 2 in table above.										
4	5C1biv	Sewage sludge incineration	0.0	0%	Updated for period 2013-2018 due to new										
					information available in the Registro Nacional										
				de Lodos (RNL).											

8.3. Summary of categories/pollutants recalculated in the reported period 1990-2018

A summary of the categories and pollutants that have been recalculated in the reported period 1990-2018 are presented below. R stands for "Recalculated", N means "New estimation" and D is for "Deletion". In order to reduce the length of this document, only categories with revised estimates are presented below.

TABLE 8.3.1 SUMMARY OF CATEGORIES AND POLLUTANTS WITH REVISED ESTIMATES IN THE REPORTED PERIOD 1990-2018

NFR Code	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	B(a)P	B(b)F	B(k)F	IP	Total 1-4 PAH	нсв	PCBs
1A1a	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1A1c	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	Ν	R
1A2a	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-
1A2b	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-
1A2c	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-
1A2d	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1A2e	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1A2f	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1A2gvii	R	R	R	R	R	R	R	R	R	-	R	-	-	R	R	R	R	R	-	R	R	R	R	R	-	-
1A2gviii	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1A3ai(i)	R	R	R	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	R	R	R	R	R	-	-
1A3aii(i)	R	R	R	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	R	R	R	R	R	-	-
1A3bi	R	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	-
1A3bii	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	-
1A3biii	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	-
1A3biv	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	-
1A3bv	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3bvi	-	-	-	-	R	R	R	R	-	R	R	-	R	R	R	R	R	R	-	R	R	R	-	R	-	-
1A3bvii	-	-	-	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1A3c	-	-	-	R	-	-	-	-	-	-	R	-	-	-	-	-	R	-	-	-	-	-	-	-	-	-
1A3dii	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	N	R	N	R	R	R	R
1A3ei	R	R	R	-	R	R	R	R	R	R	R	R	R	R	R	R	R	-	R	R	R	R	R	R	R	R

NFR Code	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	B(a)P	B(b)F	B(k)F	IP	Total 1-4 PAH	нсв	PCBs
1A4ai	R	R	R	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1A4bi	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1A4ci	R	R	R	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1A4cii	R	R	R	R	R	R	R	R	R	-	R	-	-	R	R	R	R	R	-	R	R	R	R	R	-	-
1A4ciii	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	N	R	N	R	R	R	R
1A5b	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
1B1b	-	-	-	-	-	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1B2ai	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1B2b	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1B2c	-	R	-	-	-	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A2	-	-	-	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A3	-	R	-	R	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A5a	-	-	-	-	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2A5c	-	-	-	-	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2B10a	-	R	-	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2B2	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2C1	R	R	R	-	R	R	R	R	R	R	R	R	R	R	R	R	-	R	R	-	-	-	-	R	-	R
2C2	-	-	-	-	-	-	-	-	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2C3	-	-	-	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	R	-	-	-	-	-	-	-
2C6	-	-	-	-	-	-	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3a	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3b	-	R	-	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3d	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3g	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2D3i	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	R	R	R	R	R	-	-
2H2	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21	-	-	-	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B1b	R	R	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B3	R	R	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4d	R	R	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

NFR Code	NOx	NMVOC	SOx	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	B(a)P	B(b)F	B(k)F	IP	Total 1-4 PAH	нсв	PCBs
3B4e	R	R	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4f	R	R	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3B4gi	R	R	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da1	R	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da2a	R	R	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da2b	R	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da2c	R	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Da3	R	R	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Dc	-	-	-	-	R	R	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3De		R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3Df	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	R	-
3F	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	-	-
5A	R	R	-	-	R	R	R	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5B1	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5B2	R	-	-	R	R	R	R	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5C1biv	R	R	R	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
5C1bv	R	R	R	-	R	R	R	-	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
5C2	R	R	R	-	R	R	R	R	R	R	R	-	R	R	R	-	R	R	R	R	R	R	-	R	-	-
5D1	R	R	-	-	R	R	R	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5D3	-	-	-	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5E	-	R	-	R	R	R	R	-	-	-	-	-	-	-	-	-	-	-	R	-	-	-	-	-	-	-

8.4. Planned improvements

8.4.1. General/Cross-cutting

The following actions can be highlighted for the entire Inventory as planned improvements:

- Complete the implementation of the EMEP/EEA GB 2019.
- Harmonization of the Inventory with other registers (EU ETS, E-PRTR, etc.)
- Continuing with the development of the external audit initiated in October 2017. See chapter 1, section 1.6.8 for details of the scheduled QA activities.
- To continue with the development of the Inventory Quality Management Tool described in chapter 1, section 1.6. New modules and functionalities are expected to be included in future editions.

8.4.2. Energy (NFR 1A, 1B)

The review of the methodology for the production for the fuel balance (fossil and biogenic fuels) will continue, in collaboration with the relevant departments of the Secretary of State for Energy at MITERD. This includes collaboration with several institutions: IDAE and MITERD. The collaboration with the IDAE-MITERD continues in the sense of providing specific information for the balance.

Minor improvements are progressively addressed in order to achieve full implementation of EMEP/EEA GB 2019.

1A1a Public electricity and heat production

Individual questionnaires sent to conventional thermal power plants and incineration plants are being modified in order to adapt them to new information needs.

NH₃ data (measured or estimated) provided by large power plants are being collected and will be reviewed.

1A1c Manufacture of solid fuels and other energy industries

It will be carried out the segregation of RMS (Regulating and Metering Stations) belonging to the natural gas pipeline distribution network (low pressure pipelines), out from the Inventory fuel balance.

The process of collaboration with the General Subdirectorate of Energy Planning and Monitoring of MITERD will continue, in order to improve the information provided by this source and its correct adaptation to the Inventory.

1A2 Manufacturing industries and construction (combustion)

Review and standardise the emission factors.

1A2f Stationary combustion in manufacturing industries and construction: Non-metallic minerals

Study the impact of replacing emission factors for some pollutants such as PM_{10} , NH_3 and PAHs provided by the EMEP/EEA Guidebook (2019) with the country-specific factors provided by OFICEMEN.

1A3a Air traffic at airports

Continue alignment with the methodology established by EUROCONTROL, applying all the new adjustments and improvements proposed.

1A3b Road transport

The update to EMEP/EEA Guidebook 2019 methodology in road transport is still on address and it is foreseen to be finally implemented in 2022 Inventory Edition. The work, that has been carried out for two years, aims an integral change for the whole methodology, and to achieve this ambitious objective, efforts are focused along different lines of action. On the one hand, a new dataset for the national fleet will be used, which is more suitable for current EMEP/EEA classification of vehicles. Besides, updated information about mean kilometres distribution by type of vehicle will be incorporated to the estimations. On the other hand, a full review of the previous methodology will be carried out in order to completely align emission estimations with EMEP/EEA 2019. Finally, the implementation of an emission calculation tool, following the EMEP/EEA Guidebook (2019) is also being addressed.

1A3c Railways

Continue with the collaboration with the focal point on railways, National Network of Spanish Railways (RENFE), with the aim of improving background information on fuel consumption broken down by type of machinery.

1A4bi Residential: Stationary

Following the recommendation made in the Spanish Stage 3 Review Report (2014)³, planned improvements for this sector are focused on making separate estimates for Household and gardening mobile machinery subcategory (1A4bii) currently included in the stationary subcategory (1A4bi).

1A4c Combustion in machinery used in agriculture, forestry and fishing activities

Work continues on an alternative methodology for estimating fuel consumption in mobile agricultural and forestry machinery (integrating information about energy requirement standards and other relevant parameters for the emissions estimation algorithms).

Regarding Stationary combustion, investigation is still underway on how to gather new information about the penetration of new technologies in thermal facilities in this sector.

Final Review Report available in:
http://www.ceip.at/ms/ceip_home1/ceip_home/review_results/stage3 country reports/

1A5b Other unspecified mobile sources: Military transport

Collaboration with the General Directorate of Infrastructures of MDE will continue with the aim of improving the information provided by this source, in order to distinguish and allocate emissions resulting from multilateral operations pursuant to the Charter of the United Nations.

8.4.3. Industrial processes and other product use (NFR 2)

The main improvements planned for this sector are:

2A5a Quarrying and mining

Assess the implementation of Tier 2 methodology from EMEP/EEA GB 2019 in category 2A5a.

2A5b Construction and demolition

Updating category 2A5b to EMEP/EEA 2019.

2C1 Iron and steel production

Research a country specific emission factor to calculate PCB emissions in electric arc furnaces within category 2C1.

2D Solvent use

Review and enhance some methodologies into 2D category with NECD Capacity building Proyect's counseling which the Inventory of Spain is taking part.

8.4.4. Agriculture (NFR 3)

Areas of improvement intended to be accomplished, include:

Incorporate to inventory the information supplied by new documents of the collection "Bases para el balance alimentario de nitrógeno y fósforo" as their review is being completed.

Incorporate to inventory the information supplied by technical documents about country specific MMS is being finished.

Continuation with the elaboration of methodological factsheets.

Tier 2 implementation for 3F category.

8.4.5. Waste (NFR 5)

The collaboration with the focal point (Sub-directorate General of Waste at the MITERD) regarding the National Sludge Registry and (General Direction of Water) regarding the National Census for Sewage Disposal will continue.

On the other hand, it is planned to continue with the work initiated on the inclusion of the incineration of animal carcasses.

9. PROJECTIONS

CONTENTS

9.		PROJECTIONS	435
	9.1.	Introduction	435
	9.2.	Institutional arrangements	436
	9.2.1.	Legal framework	436
	9.2.2	Cross-cutting issues	436
	9.3.	General description of methodologies and models for estimating projected emissions	436
	9.3.1	Step 0: setting the general framework for modelling	437
	9.3.2	Step 1: modelling sectors, policies and measures	437
	9.3.3	Step 2: estimation of emissions	439
	9.3.4	Step 3: assessment of objectives, policies and measures	439
	9.4.	Policies and measures	439
	9.5.	Projections results	441
	9.5.1	Projections by pollutant	443
	9.6.	Projections editions comparison	
	9.7.	Sensitivity analysis	457

FIGURES

Figure 9.5.1	Emission projections evolution for WeM scenario 2019-2040 (2019=100%)	. 441
Figure 9.5.2	Emission projections evolution for WeM scenario 2019-2040 (2019=100%)	. 442
Figure 9.5.3	NOx emission and projections by sector (WaM by sector and WeM)	. 443
Figure 9.5.4	Expected compliance for NOx projections	. 445
Figure 9.5.5	SOx emission and projections by sector (WaM by sector and WeM), and detail for years	
	2015-2040	. 446
Figure 9.5.6	Expected compliance for SOx projections	. 448
Figure 9.5.7	NMVOC emission and projections by sector (WaM by sector and WeM)	. 448
Figure 9.5.8	Expected compliance for NMVOC projections	. 450
Figure 9.5.9	NH ₃ emission and projections by sector (WaM by sector and WeM)	. 451
Figure 9.5.10	Expected compliance for NH ₃ projections	. 453
Figure 9.5.11	PM _{2.5} emission and projections by sector (WaM by sector and WeM)	. 454
Figure 9.5.12	Expected compliance for PM _{2.5} projections	
Figure 9.6.1	Projected emission data (Ed. 2021 vs. Ed. 2019)	. 456
TABLES		
Table 9.4.1	Policies and measures (PAMs) considered in the projected scenarios	. 440
Table 9.5.1	NOx projected emissions as reported according to Annex IV tabular format	. 444
Table 9.5.2	SOx projected emissions as reported according to Annex IV tabular format	. 447
Table 9.5.3	NMVOC projected emissions as reported according to Annex IV tabular format	. 449
Table 9.5.4	NH ₃ projected emissions as reported according to Annex IV tabular format	. 452
Table 9.5.5	PM _{2.5} projected emissions as reported according to Annex IV tabular format	. 455

9. PROJECTIONS

Chapter updated in March, 2021.

Report of national emission projections is due by 15th March 2021.

This chapter is coherent with data contained in the official report format. It constitutes a summarized translation of the National Emission Projections Report 2021 edition (in Spanish) to be also uploaded to the Spanish Emissions Inventories and Projections System website. For more detailed information or verification of data, please refer always to the original source, available at: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/Proyecciones.aspx.

9.1. Introduction

Air Pollutant Emissions Projections in Spain are estimated by the Spanish Emissions Inventories and Projections System. Projections are calculated jointly and coherently for the main air pollutants (NOx, NMVOC, SOx, NH₃, and PM_{2.5}) and greenhouse gases (CO₂, CH₄, N₂O, HFCs, PFCs, SF₆ and CO₂-eq).

The projections are calculated at national level (whole national territory, including the Canary Islands). However, for coherence with the National Air Pollutant Inventories under Directive (EU) 2016/2284 and under CLRTAP¹, projected emissions from the Canary Islands are not included in the official reporting tables or its associated Report, nor in this Chapter.

This edition of the Projections (2021) is built upon inventory data from 1990 to 2019 (that is, using the latest reported Inventory, year 2021).

These Air Pollutant Emissions Projections respond to the obligations set by Directive (EU) 2016/2284 on the reduction of national emissions of certain atmospheric pollutants, and the reporting obligations within the 1999 Gothenburg Protocol to Abate Acidification, Eutrophication and Ground-level Ozone to the LRTAP Convention.

These emission projections are coherent with the Spanish National Air Pollution Control Programme (NAPCP) required by Directive (EU) 2016/2284, with the Spanish National Integrated Energy and Climate Plan (NIECP) required by Regulation (EU) 2018/1999 on the Governance of the Energy Union and Climate Action, and with the Spanish Decarbonization Long Term Strategy (LTS). More information about the general methods (models), data sources and assumptions used for estimating projected emissions and activity data can be found at:

https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/primerpncca_2019_tcm30-502010.pdf

https://www.miteco.gob.es/es/prensa/pniec.aspx

https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-gobierno-aprueba-la-estrategia-dedescarbonizaci%C3%B3n-a-largo-plazo-que-marca-la-senda-para-alcanzar-la-neutralidad-clim%C3%A1tica-a-2050/tcm:30-516141

¹ The Spanish National Emission Inventory under Directive (EU) 2016/2284 and under CLRTAP cover the whole national mainland territory in the Iberian Peninsula, the archipelago of Balearic Islands and the cities of Ceuta and Melilla. The Canary Islands are neither covered under Directive (EU) 2016/2284, according to its Article 2.2, nor by CLRTAP grid (http://www.ceip.at/ms/ceip_home1/ceip_home/new_emep-grid/).

9.2. Institutional arrangements

9.2.1. Legal framework

The National System for the elaboration of Emissions Inventories and Projections is set and ruled by the following legal framework:

- Law 34/2007, of November 15, on air quality and protection of the atmosphere foresees in its article 27.4 the Spanish Emissions Inventory System (SEI).
- Royal Decree 818/2018 on measures for the reduction of national emissions of certain atmospheric pollutants sets in article 10 the rules of functioning of the Spanish Atmospheric Emissions and Projections Inventory System.
- Royal Decree 500/2020, which develops the basic organic structure of the Ministry for the Ecological Transition and Demographic Challenge, designates, in its article 7.1.f), the General Directorate for Environmental Quality and Assessment as competent authority of the Spanish Emissions and Projections Inventory System.

Within the General Directorate for Environmental Quality and Assessment of the Ministry for Ecological Transition and Demographic Challenge, the Emissions Inventory Unit manages the functioning of the SEI. Additionally, the General Directorate for Environmental Quality and Assessment as National Authority of the SEI awarded in 2017 the society TRAGSATEC a contract for the technical assistance in the management, maintenance and updating of the SEI.

9.2.2. Cross-cutting issues

Air Pollutant Emissions Projections have been based on the reference scenario used in the elaboration of the aforementioned Spanish National Integrated Energy and Climate Plan (NIECP) and the National Air Pollution Control Programme (NAPCP), in order to maintain coherence with other international reporting obligations.

In this framework, relevant and concerned departments within the national administration were involved in a deep, intense and coordinated collaborative process. Experts from all concerned sectors, internal and external, were consulted to build the projected scenarios and define policy options. The TIMES-Sinergia programme was used for simulating the wohe of the energy related scenarios, including fuel consumed by industry and transport.

The 2021 edition of the National Emission Projections for Air Pollutants were formally approved by the Government Delegate Commission for Economic Affairs in its meeting of 26th February 2021, in compliance with article 10.6 of Royal Decree 818/2018.

9.3. General description of methodologies and models for estimating projected emissions

Air Pollutant Emissions Projections have been elaborated in a four step process:

- Step 0: setting the general framework for modelling.
- Step 1: modelling sectors, policies and measures.
- Step 2: estimation of emissions.

Step 3: assessment of objectives, policies and measures.

Steps 1 to 3 were iteratively run all along the preparation of the NIECP and the NAPCP.

9.3.1. Step 0: setting the general framework for modelling

In order to design future scenarios, in a first step, general macroeconomic assumptions such as GDP, GDP *per capita*, population projections, number of households, elasticity or relationship of energy service demands with main macroeconomic variables have been taken, according to data used to prepare the Spanish NIECP. Additionally, other relevant variables for projections modelling have been established such as carbon prices under the European Emission Trading System pursuant to Directive 2003/87/EC, as well as the price of the main energy commodities (coal, gas and oil import prices). These are those recommended by the European Commission for the development of the National Energy and Climate Plans (NECPs).

9.3.2. Step 1: modelling sectors, policies and measures

Once the general macroeconomic framework has been set up, activity data for all activity sectors (energy, industry, agriculture, transport, waste and use of products) are modelled for a time horizon until 2040. This has been initially done for a business as usual scenario (with existing measures, WeM). At a later stage, policies and measures have been iteratively included in the with additional measures (WaM) scenario.

Energy, Industry and Transport Sectors

The modelling of the energy system, together with the main industry sectors related to energy consumption and all the transport, has been carried out with the TIMES-Sinergia model. Additionally, higher order models (ROM and REE models) have been used to determine the effects of a high penetration of renewable energies in the electrical system, in order to make the results compatible with an adequate security of supply.

The TIMES tool (The Integrated MARKAL-EFOM System) was developed by the International Energy Agency, within the framework of the ETSAP program (Energy Technology Systems Analysis Program) for the development of energy and environmental analysis. From the General Directorate of Energy Policy and Mines (DGPEM), under the Secretariat of Energy of the Spanish Ministry for the Ecological Transition and Demographic Challenge, the necessary work has been done to use TIMES as a prospective and energy analysis tool in the preparation of the Spanish NIECP. The new adapted model has received the name of TIMES-Sinergia (Sistema Integrado para el Estudio de la Energía).

TIMES is a bottom-up mathematical model combining two complementary approaches, one technical and the other economic. It is based on the linear optimization of the energy system, looking for a solution under the principle of minimum cost. It has a detailed characterization of energy technologies and demands for energy services. For the different scenarios proposed in the model, TIMES covers the demand for energy services through the combination of operational and investment decisions, minimizing the cost of the energy system throughout the analysed horizon.

Agriculture sector

Two fundamental sets of data input have been taken into account in the projections: cattle and consumption of inorganic fertilizers in agricultural soils.

The evolution forecasts of the livestock numbers by animal type (dairy and non-dairy cattle, sheep, pigs -white and Iberian-, poultry, goats and horses) for the projected period have been provided by the Ministry of Agriculture, Fisheries and Food, based on historical data and market forecasts of livestock production.

For each animal type, in addition to the census data, parameters related to enteric fermentation and manure management have been taken into account in a consistent manner with the National Emissions Inventory. These data are based on the zootechnical documents with specific data for Spain for each animal type, and current data and forecasts on manure management systems. Calculations are carried out in a coordinated manner, consistent with the estimation of emissions derived from the application of manure to the field as organic fertilizer (NFR 3Da2a) or those derived from grazing activities (NFR 3Da3).

For the estimation of the projected emissions derived from crop management (NFR 3C and 3D), both the total cultivation areas (including rice) and the total amount and type of inorganic fertilizers applied to the field as fertilizers have been taken into account. Within these practices, the current level of implementation of good practices and their foreseeable future evolution have also been taken into account. The cultivable area used is consistent with the data inventoried in the last edition of the National Emissions Inventory, as well as the data on the use and application of inorganic fertilizers, consistent with the National Balances for Nitrogen and Phosphorus in the Spanish Agriculture (BNPAE).

Waste sector

For the projection of the emissions derived from waste management and treatment, the historically inventoried data has been used as starting data (since 1950 for landfill discharges and since 1990 for the rest of activities). These data are consistent with the national official series (MITERD Circular Economy General Subdirectorate and the National Statistics Office (INE)) and those published in EUROSTAT.

The forecasts of evolution of the total generation of waste (NFR 5A, 5B and 5C), as well as the distribution of management and treatment systems at the national level for the BAU scenario have been provided by the competent unit (MITERD Circular Economy General Subdirectorate). For the scenario with additional measures, complementary policies and measures have been considered.

Regarding emissions from wastewater treatment (NFR 5D), the projection has been linked to the national population forecast considering that the activity has reached maturity in terms of its development (maximum percentages of population and volume of water treated, protein consumption, equilibrium in treatment systems and maximum efficiency in the uptake of biogas generated and its use).

Product Use sector

Besides the manufacturing industry which is projected within the energy system, this sector includes, basically, the activities linked to the use of solvents and lubricants (NFR 2D).

The projection of the variables of activities linked to the use of solvents and lubricants has been linked by elasticity to the GDP and population forecasts, determined in the general macroeconomic context of the National Plan.

9.3.3. Step 2: estimation of emissions

Emissions from the energy sectors, both derived from combustion (NFR 1A, including the whole Transport sector, NFR 1A3) and fugitive emissions (NFR 1B), as well as emissions derived from industrial processes (NFR 2A, 2B and 2C) have been built upon the activity variables projected as a result of the scenarios generated by the TIMES-Sinergia model.

In a complementary manner, emissions from the rest of the non-energy sectors (agriculture, waste and use of products) have been projected, case by case, according to national forecasts of the main activity variables representative of each sector.

From activity variables, emissions for each pollutant have been estimated, applying calculation methodologies consistent with those implemented in the National Emissions Inventory (EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019, and IPCC 2006 Guidelines). The most recent 2021 edition of the National Emissions Inventory, corresponding to the 1990-2019 series, has been used as a reference for the calculation of projected emissions, in terms of characteristics and average parameters, emission trends and emission factors (direct and implicit). The projected time period has been 2020-2040, with five-year milestones.

Estimates of projected emissions have been made jointly and consistently for greenhouse gases (CO_2 , CH_4 , N_2O and fluorinated gases), as well as for air pollutant emissions (NH_3 , NMVOC, $PM_{2.5}$, SOx, NOx).

Quality control (QC) checks for consistency of the projected and inventoried emission data and for completeness are frequently carried out within the emissions projections elaboration process.

9.3.4. Step 3: assessment of objectives, policies and measures

The macroeconomic assumptions and the policies and measures considered in the different projected scenarios have been outlined and defined in a progressive manner according to different approaches and assumptions. The resulting calculations of the emissions, both for greenhouse gases and air pollutants, were evaluated against the objectives set for Spain for the year 2030. In this way, the sectoral forecast models and the calculation system of the projections have been executed in an iterative manner until a set of additional policies and measures has been defined and considered adequate for compliance with the mitigation objectives and feasible for incorporation into the Spain's NAPCP and NIECP.

9.4. Policies and measures

The existing and additional Policies and Measures (PAMs) that have been taken into account in the construction of the projection scenarios are those contemplated in the NIECP and the NAPCP. In total it is a set of 17 packages or groups of measures (each one composed of one or several measures with synergic effects in affected sectors). Below is a summary of the considered measures.

Table 9.4.1 Policies and measures (PAMs) considered in the projected scenarios

	Description	Sector	Scenario	Source
1	Package of measures for electricity mix proposed in the Integrated National Energy and Climate Plan.	1A1a	WeM/ WaM	NECP
2	Package of measures in the industry energy sector (measures on energy efficiency in the manufacturing industry sector (NECP), application of BREF documents (among others: non-ferrous metals industry, paper, steel, aluminum), Industrial Emissions Directive, Medium Combustion Plant (MCP) Directive.	1A2	WeM/ WaM	NECP/ NAPCP
3	EU Emission Trading System (ETS).	Several	WeM	NECP
4	Mitigation measures in the refining sector (energy efficiency, BAT application in BREF documents and reviews of the Integrated Environmental Authorizations accordingly).	1A1b	WeM/ WaM	NECP/ NAPCP
5	Package of measures for the aviation sector proposed by the NECP.	1A3a	WeM/ WaM	NECP
6	Package of measures for the road transport sector proposed by the NECP and application of regulations relating to EURO technologies for vehicles and proposal for a regulation establishing emission standards for new passenger cars and new light commercial vehicles.	1A3b	WeM/ WaM	NECP/ NAPCP
7	Package of measures for the rail transport sector raised by the NECP and application of the Off-road Directive 2004/26.	1A3c	WeM/ WaM	NECP/ NAPCP
8	Package of measures for the domestic navigation sector proposed by the NECP, application of off-road Directive 2004/26 and marine fuel regulations (RD 1027/2006 and Directive 2016/802).	1A3d	WeM/ WaM	NECP/ NAPCP
9	Package of measures related to the residential sector (energy efficiency and energy mix changes foreseen in the NECP, technological improvements, boiler Ecodesign directive and relative regulations, to the ecological design requirements applicable to boilers and local heating devices).	1A4b	WeM/ WaM	NECP/ NAPCP
10	Package of measures related to the commercial and institutional sector (energy efficiency and energy mix changes foreseen in the NECP, technological improvements, relative regulations to the requirements of ecological design applicable to boilers and local heating devices and Medium Combustion Plant (MCP) Directive).	1A4a	WeM/ WaM	NECP/ NAPCP
11	Regulation EU / 517/2014 on fluorinated gases.	2F-2G	WeM	NECP
12	Package of improvements in practices of fertilization of crops and improvements in manure soil application (dairy cattle and swine) - BATs-BREF.	3D	WaM	NECP/ NAPCP
13	Package of improvements in manure management systems (dairy cattle, swine and poultry), application of BATs of BREF documents.	3B	WaM	NECP/ NAPCP
14	Package of measures in the consumption of fuels in off-road machinery (NECP measures, application of off-road Directive 2004/26 and marine fuel regulations (RD 1027/2006 and Directive 2016/802)).	1A4c	WeM/ WaM	NECP/ NAPCP
15	NMVOC reduction measures associated with the use of products (BREF for painting).	2D3d	WaM	NAPCP
16	Package of measures for the waste management sector (compliance with the objectives of Directives 2018/850 and 2018/851 on waste, promotion of separate collection, biomethanization and composting).	5	WeM/ WaM	NECP
17	Reduction of field burning of pruning remains.	5C2	WeM/ WaM	NECP/ NAPCP

NECP: Spanish Integrated National Energy and Climate Plan, whose measures up to 2030 are fully integrated into the Spanish Decarbonization Long Term Strategy.

NAPCP: Spanish National Air Pollution Control Programme

9.5. Projections results

Two scenarios have been considered in the emissions projections, one in which the impact of the existing policies and regulation is foreseen (scenario with existing measures, WeM) and a second scenario including the foreseeable impact on the emissions of the measures and policies adopted in the Integrated National Energy and Climate Plan and in the National Air Pollution Control Program (scenario with additional measures, WaM).

Scenario-with existing measures (WeM)

In this scenario, a similar reduction trend is expected for nitrogen oxides (SOx) and particulate matter ($PM_{2.5}$) (-27% and -23% respectively in 2030 and -31% and -27% in 2040 compared to 2019 levels). While the rest of pollutants (NOx, NMVOC and NH₃) register slighter decreases, all of them are decoupled from the foreseen economy and population growth. The general downward trends of emissions is due to the foreseeable evolution of the national electricity mix (with increasing penetration of renewable energies), the modernization of the road transport fleet with the complete introduction of EURO technologies, and the continuation of the effect of energy efficiency and emissions reduction measures, in practically all economic sectors.

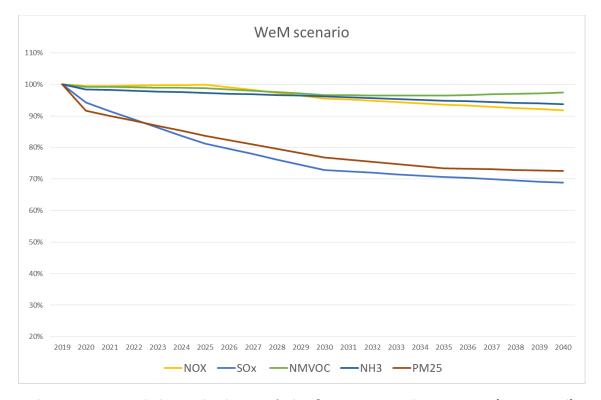


Figure 9.5.1 Emission projections evolution for WeM scenario 2019-2040 (2019=100%)

In this WeM scenario, emissions of sulphur oxides (SOx) would present the highest levels of reduction, due to the double effect of the existing measures to reduce sulphur content of petroleum-derived fuels and the shift in the use of coal for energy purposes towards other non-SOx-emitting fuels. Ammonia emissions (NH₃) show a slightly downward trend linked to the variations expected in livestock and the entry into force of mitigation measures in the agricultural sector.

Scenario-with additional measures (WaM)

The projections of emissions in the WaM scenario contemplated in the framework of the Integrated National Energy and Climate Plan (NIECP) and the National Program for the Control of Atmospheric Pollution (NAPCP) show a steeper downward trend in all of the pollutants due to the effect of the additional policies and measures adopted in the NIECP and the NAPCP.

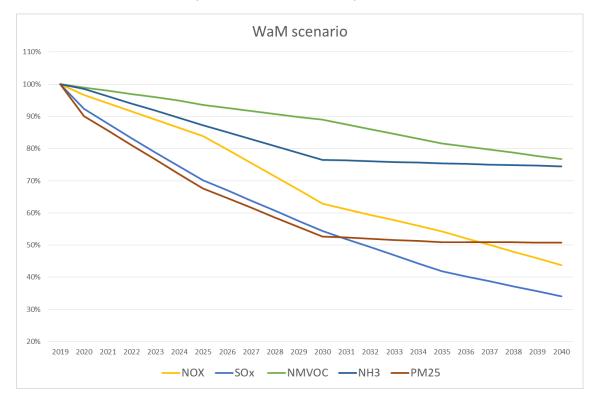


Figure 9.5.2 Emission projections evolution for WeM scenario 2019-2040 (2019=100%)

The emissions of sulphur oxides would be those that would present higher levels of reduction (-46% in 2030 and -66% in 2040 with respect to 2019) due to the combined effect of the end of the use of coal for energy purposes, the additional reduction in the consumption of petroleum-derived liquid fuels, and the measures to reduce the sulphur content in these fuels. The emissions of nitrogen oxides (NOx) would follow a similar decreasing trend during the projected period.

The ammonia emissions (NH₃) in the scenario with additional measures would reach reductions in 2030, due to the application of additional measures to reduce these emissions both in the management of manures and in soil fertility practices foreseen in the National Program for the Control of Atmospheric Pollution. For ammonia emissions, as well as for the fine particulate matter (PM_{2.5}) ones, additional measures woul be necessary after 2030 to continue the reduction trend.

Finally, as in the WeM scenario, the emissions of non-methane volatile organic compounds (NMVOC) would be the ones showing a smaller reduction trend, possibly because these are mainly linked to product consumption patterns (with a foreseeable growing trend) and for which there is little room for additional mitigation policies and measures, without compromising the internal market rules in case of national solvent restrictions in products for domestic use.

9.5.1. Projections by pollutant

In the following sections, data results and summarized analysis of the projections for each pollutant are provided.

9.5.1.1. NOx

In the WeM scenario, projected emissions remain practically steady with a slight downward trend (annual reduction rates of -0.4% from 2020 onwards). However, in the WaM scenario the projection of NOx emissions for time horizons 2030 and 2040 shows descending trends but with slightly different slopes. In the period between 2020 and 2030, the effect of the additional measures proposed in the WaM scenario produces an annual emission reduction rate of -3.5%, while in the period between 2030 and 2040 the reduction in emissions is -3.0% per year, on average. The main decreases in emissions in the WaM scenario occur in the transport sector, followed by industry and electricity generation, as can be seen in the following graph.

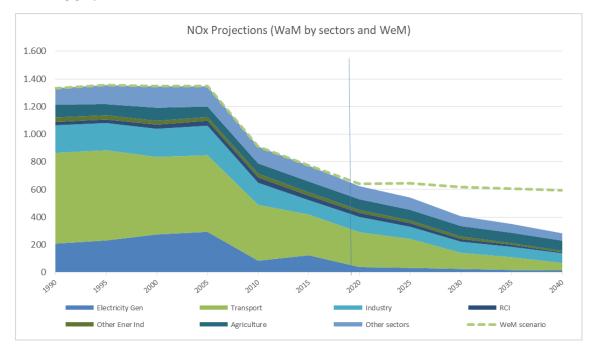


Figure 9.5.3 NOx emission and projections by sector (WaM by sector and WeM)

Policies and measures in the WaM scenario

The main measures that have been taken into account in the projection include:

- i. the renewal of the vehicle fleet and the progressive incorporation of new models with EURO 6 technology, with lower NOx emission ratios (package of measures nº 6 of the list of PAMs, which would contribute with up to a 76% of the total reductions projected for the year 2030 in the WaM scenario);
- ii. the changes in the electric mix by, among other measures, the end of the use of coal and reduction in petroleum products in thermal power plants (package of measures nº 1 with a contribution of 7% to the total reductions of the WaM scenario in 2030); and

iii. the gradual introduction of energy efficiency measures and abatement of NOx emissions in large and medium-sized combustion plants and industrial installations (package of measures 2, with a contribution of 5% to the total reductions of the WaM scenario in 2030).

Table 9.5.1 NOx projected emissions as reported according to Annex IV tabular format

					Projected e	missions (kt)		
					N	Ох		
				WeM scenario)		WaM scenario	
NFR codes	Activity sectors	2019	2020	2030	2040	2020	2030	2040
1A1	Energy industries	55.58	55.50	54.36	46.01	53.86	38.93	22.08
1A2	Manufacturing Industries and Construction	110.81	107.95	86.58	83.08	106.39	76.85	66.12
1A3b	Road Transport	211.22	218.84	242.09	226.85	207.06	82.70	29.11
1A 3bi	R.T., Passenger cars	126.54	133.86	153.25	140.58	124.00	16.09	4.02
1A 3bii	R.T., Light duty vehicles	22.29	22.71	24.83	25.13	21.90	16.65	2.59
1A 3biii	R.T., Heavy duty vehicles	60.45	60.17	61.04	58.37	59.09	47.67	21.28
1A 3biv	R.T., Mopeds & Motorcycles	1.93	2.10	2.97	2.78	2.07	2.28	1.23
1A 3bv	R.T., Gasoline evaporation	NA	NA	NA	NA	NA	NA	NA
1A 3bvi	R.T., Automobile tyre and brake wear	NA	NA	NA	NA	NA	NA	NA
1A 3bvii	R.T., Automobile road abrasion	NA	NA	NA	NA	NA	NA	NA
1A3a,c,d,e	Off-road transport	53.82	46.82	34.27	37.67	45.50	33.57	24.47
1A4	Stationary combustion: Residential, Commercial/Institutional, other	108.60	110.82	98.73	98.57	108.92	81.65	51.23
1A5	Other	2.38	2.42	2.69	2.90	2.42	2.69	2.90
1B	Fugitive emissions	4.98	5.06	5.03	4.85	5.01	4.79	2.98
2A,B,C,H,I,J,K,L	Industrial Processes	3.57	3.67	3.88	4.16	3.67	3.88	4.13
2D, 2G	Solvent and other product use	0.12	0.13	0.15	0.16	0.13	0.15	0.08
3B	Animal husbandry and manure management	5.52	5.47	5.29	5.11	5.47	5.29	5.11
3B 1a	Cattle Dairy	0.79	0.78	0.75	0.70	0.78	0.75	0.70
3B1b	Cattle Non-Dairy	1.36	1.35	1.29	1.23	1.35	1.29	1.23
3B2	Sheep	0.43	0.43	0.37	0.35	0.43	0.37	0.35
3B3	Swine	0.31	0.31	0.32	0.31	0.31	0.32	0.31
3B4a	Buffalo	NO	NO	NO	NO	NO	NO	NO
3B4d	Goats	0.26	0.23	0.24	0.23	0.23	0.24	0.23
3B4e	Horses	0.21	0.22	0.25	0.25	0.22	0.25	0.25
3B4f	Mules and asses	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3B4g	Poultry	2.15	2.14	2.07	2.03	2.14	2.07	2.03
3B4h	Other	NA	NA	NA	NA	NA	NA	NA
3D	Plant production and agricultural soils	71.90	71.44	70.15	69.33	71.40	69.25	68.25
3F,I	Field burning and other agriculture	0.76	0.76	0.76	0.76	0.76	0.76	0.76
5	Waste	16.59	13.21	13.19	13.19	13.21	5.63	5.63
6A	Other	NA	NA	NA	NA	NA	NA	NA
NATIONAL TOTAL	National total (excluding Canary Islands)	645.86	642.09	617.16	592.64	623.78	406.13	282.84

Reduction commitments compliance

Regarding the compliance with the reduction commitments set in the Directive (EU) 2016/2284 on the reduction of national emissions of certain atmospheric pollutants, as shown in the following graph, in the WeM projected scenario the reduction commitments will not be fulfilled in some of the projected time series.

But, according to the scenario with additional measures (WaM), the projected NOx emissions for compliance in Spain would accomplish the required reduction commitments set for both the period 2020-2029 (-41%), and for 2030 onwards (-62% with respect to 2005 emissions). Emissions from activities falling under NFR categories 3B (manure management) and 3D (agricultural soils) are not accounted for the purpose of complying, according to the article 4.3.d) of Directive EU/2284/2016 (The step in the 2020 emissions is due to the non inclusion of 3B and 3D activities).

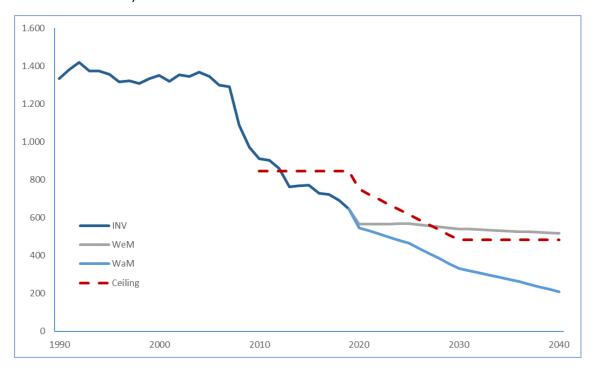


Figure 9.5.4 Expected compliance for NOx projections

9.5.1.2. SOx

The projection of SOx emissions in the WeM scenario is already significantly reduced reaching - 91% in 2030 with respect to 2005 emissions. This is mainly due to the already registered decrease of coal use in the energy sectors (electricity generation, industrial and residential and commercial combustion), that will continue in the coming years.

In the scenario with additional measures (WaM) the foreseeable effect of the mitigation measures contemplated in the National Integrated Energy and Climate Plan goes a little further in the expected reduction, reaching reductions of -93% in 2030 compared to the 2005 level. The higher reductions are registered in the same sectors as in the WeM scenario: electricity generation, industry and other energy industries.

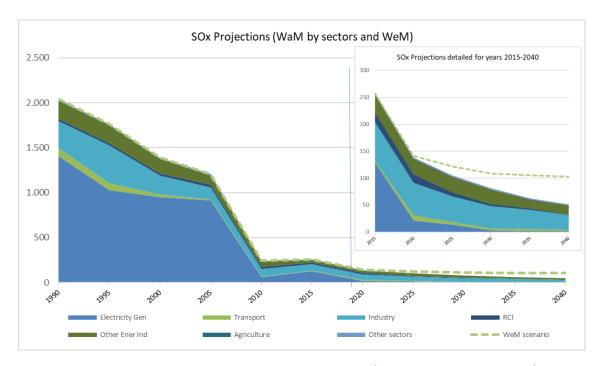


Figure 9.5.5 SOx emission and projections by sector (WaM by sector and WeM), and detail for years 2015-2040

Policies and measures in the WaM scenario

The main measures that have been taken into account in the projection include:

- i. changes in the electric mix due to the foreseeable substitution of coal and petroleum products consumption in thermal power plants (package of measures number 1 of the list of PAMs, which would contribute as a whole in 55% of the total SOx reductions projected for the year 2030 on the WaM stage);
- ii. gradual introduction of measures to reduce SOx emissions in large and medium-sized combustion plants and industrial facilities, as foreseen in Directive 2010/75/EU, on industrial emissions, Directive 2017/1042 on Medium-sized Combustion Facilities and the specific BREF documents (package of measures 2 with a contribution of 30% to the total reductions of the WaM scenario in 2030); and
- iii. improvements in energy efficiency in the commercial and institutional sector and the change in the energy mix associated with this sector with a foreseeable reduction in the consumption of coal and petroleum products (package of measures No. 10 with a contribution of 5% to the total reductions in WaM scenario in 2030).

Table 9.5.2 SOx projected emissions as reported according to Annex IV tabular format

					Projected e	missions (kt)		
					SC	Ох		
			١	NeM scenario	0	١	WaM scenari	0
NFR codes	Activity sectors	2019	2020	2030	2040	2020	2030	2040
1A1	Energy industries	26.98	26.72	21.89	20.30	25.48	6.64	3.65
1A2	Manufacturing Industries and Construction	51.97	49.48	37.66	35.72	48.47	29.33	14.51
1A3b	Road Transport	0.32	0.33	0.33	0.30	0.31	0.18	0.08
1A 3bi	R.T., Passenger cars	0.19	0.20	0.19	0.17	0.19	0.08	0.03
1A3bii	R.T., Light duty vehicles	0.02	0.02	0.02	0.02	0.02	0.01	0.00
1A3biii	R.T., Heavy duty vehicles	0.10	0.10	0.11	0.10	0.10	0.08	0.04
1A3biv	R.T., Mopeds & Motorcycles	0.00	0.01	0.01	0.01	0.01	0.01	0.00
1A3bv	R.T., Gasoline evaporation	NA	NA	NA	NA	NA	NA	NA
1A 3bvi	R.T., Automobile tyre and brake wear	NA	NA	NA	NA	NA	NA	NA
1A3bvii	R.T., Automobile road abrasion	NA	NA	NA	NA	NA	NA	NA
1A3a,c,d,e	Off-road transport	12.28	9.96	4.07	4.50	9.82	3.66	2.71
1A4	Stationary combustion: Residential, Commercial/Institutional, other	19.47	18.11	7.77	4.96	17.88	5.71	2.06
1A5	Other	0.11	0.11	0.12	0.13	0.11	0.12	0.13
1B	Fugitive emissions	23.71	24.07	23.92	23.05	23.83	22.80	14.19
2A,B,C,H,I,J,K,L	Industrial Processes	13.91	11.48	12.40	13.18	11.48	12.40	13.15
2D, 2G	Solvent and other product use	0.01	0.01	0.01	0.02	0.01	0.01	0.01
3B	Animal husbandry and manure management	NA	NA	NA	NA	NA	NA	NA
3B 1a	Cattle Dairy	NA	NA	NA	NA	NA	NA	NA
3B 1b	Cattle Non-Dairy	NA	NA	NA	NA	NA	NA	NA
3B2	Sheep	NA	NA	NA	NA	NA	NA	NA
3B3	Swine	NA	NA	NA	NA	NA	NA	NA
3B4a	Buffalo	NO	NO	NO	NO	NO	NO	NO
3B4d	Goats	NA	NA	NA	NA	NA	NA	NA
3B4e	Horses	NA	NA	NA	NA	NA	NA	NA
3B4f	M ules and asses	NA	NA	NA	NA	NA	NA	NA
3B4g	Poultry	NA	NA	NA	NA	NA	NA	NA
3B4h	Other	NA	NA	NA	NA	NA	NA	NA
3D	Plant production and agricultural soils	NA	NA	NA	NA	NA	NA	NA
3F,I	Field burning and other agriculture	0.17	0.16	0.16	0.16	0.16	0.16	0.16
5	Waste	0.53	0.46	0.46	0.49	0.46	0.30	0.33
6A	Other	NA	NA	NA	NA	NA	NA	NA
NATIONAL TOTAL	National total (excluding Canary Islands)	149.46	140.90	108.80	102.82	138.02	81.32	50.97

Reduction commitments compliance

Regarding the compliance of the ceiling set in the Directive (EU) 2016/2284 on the reduction of national emissions of certain atmospheric pollutants, as shown in the following graph, the projection of the emissions foresees the compliance with the emission limits in the two scenarios, for both time periods (2020-2019: reduction of -67% compared to 2005 emissions, and 2030 and onwards: reduction of -88% compared to the emissions of the year 2005).

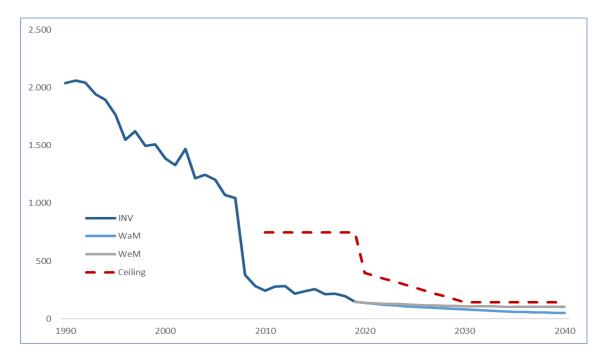


Figure 9.5.6 Expected compliance for SOx projections

9.5.1.3. **NMVOC**

The projection of NMVOC emissions under the WeM scenario is slightly decreasing from 2020 to 2030, showing a slighter upward trend until 2040. However, in the WaM scenario the decreasing trend is clear, mostly led by the use of products sector and the road transport (due to the penetration of alternative energy vehicles in the fleet). The use of biomass in electricity generation in 2030 leads to some increase in NMVOC emission from this sector. The replacement of wood by pellets in the residential sector counterbalences the increase in NMVOC emissions due to the promotion of the use of biomass instead of natural gas. This effect is to be further analysed in the next years.

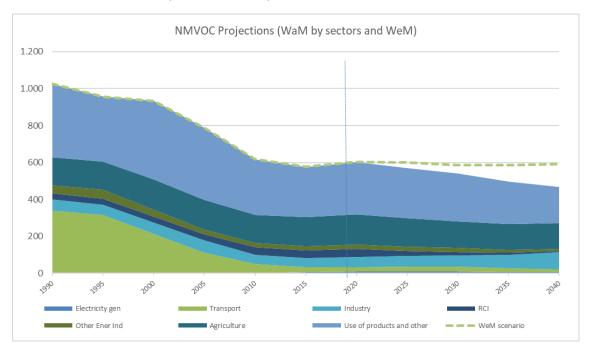


Figure 9.5.7 NMVOC emission and projections by sector (WaM by sector and WeM)

Policies and measures in the WaM scenario

The slight decreases in 2030 in the WaM scenario, compared to the WeM are due to measures in agriculture (package of measures number 18 of the list of PAMs, which would contribute with a 36% of the total reductions for the year 2030 on the WaM stage), measures related to the use of products (package of measures number 15, with a 33% of the projected reductions: Directive 2010/75/EU on industrial emissions; Directive 1999/12/CE on the limitation of VOC emissions due to the use of organic solvents in certain activities and facilities; and Directive 2004/42/EC, concerning the limitation of VOC emissions due to the use of organic solvents in certain paints and varnishes) and to the reduction of open burning of agricultural waste (pruning remains) (package of measures number 18 of PAMs, accounting for 17% of the projected reductions). The package of measures number 1 of the list of PAMs, the changes in the electricity mix, lead to an increase in 2030 in NMVOC emissions with respect to the WeM scenario.

Table 9.5.3 NMVOC projected emissions as reported according to Annex IV tabular format

					Projected e	missions (kt)		
					NM	voc		
				WeM scenario			WaM scenario	
NFR codes	Activity sectors	2019	2020	2030	2040	2020	2030	2040
1A1	Energy industries	10.30	10.45	8.86	4.60	10.58	12.93	8.23
1A2	Manufacturing Industries and Construction	20.79	20.98	22.14	33.08	20.82	21.39	55.77
1A3b	Road Transport	20.17	21.16	23.06	21.16	21.12	23.24	11.99
1A3bi	R.T., Passenger cars	5.28	5.13	3.12	2.67	5.24	5.45	2.51
1A 3bii	R.T., Light duty vehicles	0.42	0.43	0.46	0.46	0.41	0.31	0.05
1A3biii	R.T., Heavy duty vehicles	1.25	1.26	1.23	1.13	1.24	1.06	0.49
1A3biv	R.T., Mopeds & Motorcycles	11.40	12.40	17.57	16.45	12.26	13.52	7.26
1A3bv	R.T., Gasoline evaporation	1.82	1.96	0.69	0.44	1.96	2.91	1.68
1A 3bvi	R.T., Auto mobile tyre and brake wear	NA	NA	NA	NA	NA	NA	NA
1A3bvii	R.T., Automobile road abrasion	NA	NA	NA	NA	NA	NA	NA
1A3a,c,d,e	Off-road transport	2.93	3.00	2.76	3.03	2.93	2.74	1.93
1A4	Stationary combustion: Residential, Commercial/Institutional, other	51.17	49.39	32.86	24.42	48.10	24.80	8.93
1A5	Other	0.08	0.08	0.09	0.09	0.08	0.09	0.09
1B	Fugitive emissions	23.20	23.54	23.45	22.48	23.28	22.19	13.68
2A,B,C,H,I,J,K,L	Industrial Processes	35.94	36.65	37.91	38.39	36.65	37.91	38.37
2D, 2G	Solvent and other product use	257.62	256.96	259.70	274.71	256.96	244.49	182.17
3B	Animal husbandry and manure management	78.51	77.99	75.85	72.98	77.99	75.85	72.98
3B 1a	Cattle Dairy	22.34	22.22	21.35	19.77	22.22	21.35	19.77
3B 1b	Cattle Non-Dairy	17.17	17.03	16.28	15.47	17.03	16.28	15.47
3B2	Sheep	1.23	1.20	1.04	0.98	1.20	1.04	0.98
3B3	Swine	14.14	14.31	14.50	14.45	14.31	14.50	14.45
3B4a	Buffalo	NO	NO	NO	NO	NO	NO	NO
3B4d	Goats	0.62	0.56	0.58	0.55	0.56	0.58	0.55
3B4e	Horses	1.08	1.10	1.28	1.29	1.10	1.28	1.29
3B4f	M ules and asses	0.06	0.05	0.05	0.05	0.05	0.05	0.05
3B4g	Poultry	21.87	21.53	20.76	20.42	21.53	20.76	20.42
3B4h	Other	NA	NA	NA	NA	NA	NA	NA
3D	Plant production and agricultural soils	86.26	85.75	83.62	80.83	85.75	67.15	65.30
3F,I	Field burning and other agriculture	0.17	0.16	0.16	0.16	0.16	0.16	0.16
5	Waste	21.17	17.58	16.94	16.55	17.55	8.26	7.27
6A	Other	NA	NA	NA	NA	NA	NA	NA
NATIONAL TOTAL	National total (excluding Canary Islands)	608.30	603.69	587.39	592.47	601.96	541.19	466.87

Reduction commitments compliance

Regarding the compliance of the reduction commintments set in the Gothenburg Protocol and in the Directive (EU) 2016/2284 on the reduction of national emissions of certain atmospheric pollutants, as shown in the following graph, the projection foresees compliance with the reduction commitment of -22% in 2020 (with respect to 2005 levels), in the two scenarios (WeM and WaM), but the linear trajectory does not lead to compliance in 2030. According to projected data, in the year 2030 the WaM scenario would reach a level of reduction of emissions compared to 2005 of -37%, while the reduction commitment set by the Directive is -39% compared to 2005 emissions. It will therefore be necessary to carry out a more detailed analysis of the potential measures to be applied and their effect on future editions of the projections.

Figure 9.5.8 Expected compliance for NMVOC projections

Emissions from activities falling under NFR categories 3B (manure management) and 3D (agricultural soils) are not accounted for the purpose of complying, according to the article 4.3.d) of Directive EU/2284/2016 (The step in the 2020 emissions is due to the non inclusion of 3B and 3D activities).

9.5.1.4. NH₃

The projection of ammonia emissions in the WeM scenario remains practically constant due to the compensation that occurs in the emissions of the growing livestock numbers and the limited effect of existing policies and measures. In the scenario with additional measures (WaM), the initiatives contemplated in the PNCCA have a direct impact on emissions, reducing them by -25% (-123 kt) in 2030 compared to 2015. These are measures aimed at improving the management of manure for cattle, pigs and poultry, both within the farm by application of the BAT of the BREF documents, as well as by the limitation of slurry spreading to the field and the application of techniques that reduce the emissions of this pollutant. Other policies and measures are aimed at a sustainable and efficient fertilization of crops would have the double

effect to reduce the total amount of nitrogen compounds and implement application and soil management practices that would reduce the emissions of ammonia in the agricultural soil sector (cultivated crops).

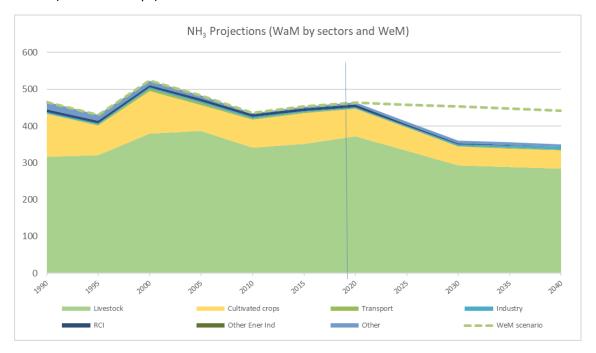


Figure 9.5.9 NH₃ emission and projections by sector (WaM by sector and WeM)

Policies and measures in the WaM scenario

The main measures that have been taken into account in the projections include:

- i. package of improvements in manure management systems (cattle, swine and poultry), BAT application of BAT documents (package of measures No. 13 of the list of PAMs, which would contribute as a whole by 64% to the absolute variation of total emissions of ammonia projected for the year 2030 on the WaM stage); and
- ii. package of improvements in crop fertilization practices and improvements in the application of manure to the field (swine and cattle) -BATs-BREF (package of measures nº 12 with a contribution of 33% to the total absolute variation of the WaM scenario in 2030).

Table 9.5.4 NH₃ projected emissions as reported according to Annex IV tabular format

					Projected e	missions (kt)		
					N	Нз		
				WeM scenario			WaM scenario	
NFR codes	Activity sectors	2019	2020	2030	2040	2020	2030	2040
1A1	Energy industries	1.48	1.45	1.54	0.64	1.51	2.92	2.07
1A2	Manufacturing Industries and Construction	1.58	1.63	1.99	3.41	1.62	1.92	6.33
1A3b	Road Transport	2.17	2.07	1.04	0.87	2.17	2.78	1.29
1A 3bi	R.T., Passenger cars	1.89	1.77	0.71	0.57	1.88	2.53	1.18
1A 3bii	R.T., Light duty vehicles	0.03	0.03	0.02	0.02	0.02	0.02	0.00
1A 3biii	R.T., Heavy duty vehicles	0.23	0.24	0.26	0.23	0.23	0.20	0.10
1A 3biv	R.T., Mopeds & Motorcycles	0.03	0.03	0.05	0.04	0.03	0.04	0.02
1A 3bv	R.T., Gasoline evaporation	NA	NA	NA	NA	NA	NA	NA
1A 3bvi	R.T., Automobile tyre and brake wear	NA	NA	NA	NA	NA	NA	NA
1A 3bvii	R.T., Automobile road abrasion	NA	NA	NA	NA	NA	NA	NA
1A3a,c,d,e	Off-road transport	0.01	0.01	0.00	0.01	0.00	0.00	0.00
1A4	Stationary combustion: Residential, Commercial/Institutional, other	7.39	7.07	4.28	2.71	6.87	3.25	0.89
1A5	Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1B	Fugitive emissions	0.03	0.04	0.04	0.04	0.04	0.04	0.00
2A,B,C,H,I,J,K,L	Industrial Processes	1.39	1.42	1.58	1.69	1.42	1.58	1.68
2D, 2G	Solvent and other product use	0.28	0.29	0.34	0.38	0.29	0.34	0.19
3B	Animal husbandry and manure management	204.95	201.61	197.71	192.32	201.61	161.33	155.82
3B 1a	Cattle Dairy	28.78	28.63	27.51	25.47	28.63	17.82	15.92
3B 1b	Cattle Non-Dairy	38.50	38.28	36.61	34.78	38.28	24.73	23.21
3B2	Sheep	9.83	8.81	7.59	7.21	8.81	7.59	7.21
3B3	Swine	73.16	72.39	72.90	72.63	72.39	64.98	64.02
3B4a	Buffalo	NO	NO	NO	NO	NO	NO	NO
3B4d	Goats	5.40	5.24	5.50	5.23	5.24	5.50	5.23
3B4e	Horses	5.24	5.17	6.03	6.07	5.17	6.03	6.07
3B4f	M ules and asses	0.08	0.08	0.08	0.08	0.08	0.08	0.08
3B4g	Poultry	43.97	43.01	41.49	40.86	43.01	34.60	34.08
3B4h	Other	NA	NA	NA	NA	NA	NA	NA
3D	Plant production and agricultural soils	248.11	244.37	240.58	235.15	244.35	181.56	177.92
3F,I	Field burning and other agriculture	0.80	0.79	0.79	0.79	0.79	0.79	0.79
5	Waste	3.06	3.07	3.33	3.51	3.44	4.04	3.92
6A	Other	NA	NA	NA	NA	NA	NA	NA
NATIONAL TOTAL	National total (excluding Canary Islands)	471.25	463.81	453.23	441.52	464.12	360.56	350.91

Reduction commitments compliance

Regarding the compliance of the ceiling set in the Gothenburg Protocol and the Directive (EU) 2016/2284 on the reduction of national emissions of certain atmospheric pollutants, as shown in the following graph, the absolute ceiling set for the period 2010-2019 is clearly underestimated according to the current methodology for calculating emissions. This fixed ceiling was established 20 years ago (in 1999 in the framework of the negotiations of the Gothenburg Protocol) according to obsolete methodologies. It is considered that compliance could not be technically fulfilled until the underestimated ceilings be substituted by the reduction commitments that come into effect after 2020. In this new scenario, nevertheless, the projection of the emissions in the WeM scenario (only taking into account the existing measures) foresees a breach of the reduction commitment. In the WaM scenario, as a result of the effect of the measures included in the PNCCA, the emission ceilings set by the Directive (EU) 2016/2284 are expected to be met in the whole projected time series.

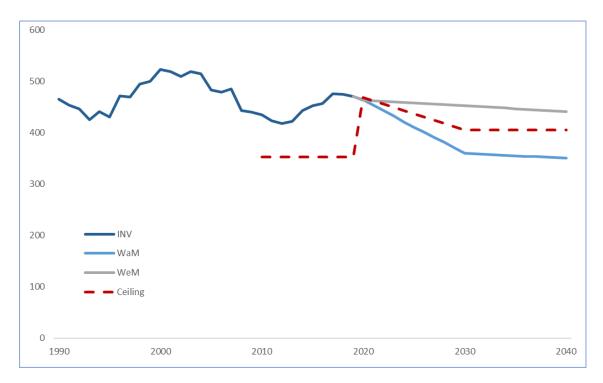


Figure 9.5.10 Expected compliance for NH₃ projections

9.5.1.5. PM_{2.5}

The projection of fine particulate matter emissions (PM_{2.5}) for the studied time series in the WeM scenario presents a constant downward trend, linked to the replacement of traditional biomass fuels by pellets and the predictable technological advances in domestic combustion and heating systems. In this scenario, the projected global levels of emissions of particulate matter are reduced in 2030 by -30% compared to 2005.

In the scenario with additional measures (WaM), the reduction of emissions is higher due to the reduction of the practices of burning of remains of pruning of fruit trees, grapevine and olive trees, and the forecast in the PNIEC of strengthening the use of pellets as fuel in the residential sector. According to these assumptions, emission levels are reduced by -52% in 2030 compared to 2005.

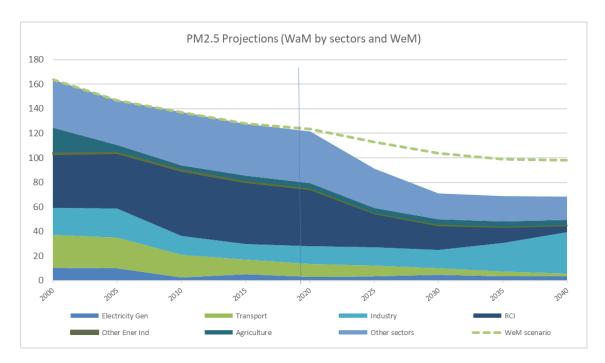


Figure 9.5.11 PM_{2.5} emission and projections by sector (WaM by sector and WeM)

Policies and measures in the WaM scenario

The main measures that have been taken into account in the projection include:

- i. measure of limitation of burning practices of the remains of pruning of fruit trees, olive trees and vines (package of measures nº 18 of the list of PAMs, which would contribute by 63% to the total absolute variation of projected particulate emissions for the year 2030 on the WaM stage);
- ii. package of measures related to the residential sector (energy efficiency and energy mix changes foreseen in the PNIEC, technological improvements, Ecodesign Directive and relative regulations, to the ecological design requirements applicable to boilers and local heating devices) (package of measures No. 9 with a contribution of 24% to the total absolute variation of the WaM scenario in 2030).

Table 9.5.5 PM_{2.5} projected emissions as reported according to Annex IV tabular format

					Projected e	missions (kt)			
					PN	1 2.5			
				WeM scenario			WaM scenario		
NFR codes	Activity sectors	2019	2020	2030	2040	2020	2030	2040	
1A1	Energy industries	3.32	3.29	3.35	1.94	3.36	4.87	3.40	
1A2	Manufacturing Industries and Construction	8.63	8.79	9.79	15.72	8.72	9.20	27.50	
1A3b	Road Transport	8.88	8.88	8.80	7.66	8.59	4.12	1.51	
1A 3bi	R.T., Passenger cars	2.47	2.61	2.98	2.74	2.42	0.32	0.08	
1A 3bii	R.T., Light duty vehicles	0.38	0.39	0.43	0.43	0.38	0.29	0.04	
1A 3biii	R.T., Heavy duty vehicles	0.71	0.71	0.70	0.63	0.70	0.54	0.26	
1A 3biv	R.T., Mopeds & Motorcycles	0.14	0.15	0.21	0.20	0.15	0.16	0.09	
1A 3bv	R.T., Gasoline evaporation	NA	NA	NA	NA	NA	NA	NA	
1A 3bvi	R.T., Automobile tyre and brake wear	3.28	3.19	2.85	2.32	3.15	1.79	0.66	
1A 3bvii	R.T., Automobile road abrasion	1.89	1.83	1.63	1.33	1.80	1.02	0.38	
1A3a,c,d,e	Off-road transport	2.37	2.11	1.25	1.38	2.08	1.18	0.82	
1A4	Stationary combustion: Residential, Commercial/Institutional, other	52.61	50.45	30.04	20.20	49.05	21.90	6.55	
1A5	Other	0.04	0.04	0.04	0.04	0.04	0.04	0.04	
1B	Fugitive emissions	0.25	0.25	0.27	0.27	0.25	0.27	0.08	
2A,B,C,H,I,J,K,L	Industrial Processes	5.85	6.02	5.97	6.30	5.68	5.97	6.26	
2D, 2G	Solvent and other product use	2.10	2.15	2.50	2.78	2.15	2.50	1.39	
3B	Animal husbandry and manure management	1.74	1.72	1.67	1.61	1.72	1.67	1.61	
3B 1a	Cattle Dairy	0.33	0.33	0.32	0.29	0.33	0.32	0.29	
3B 1 b	Cattle Non-Dairy	0.37	0.37	0.35	0.33	0.37	0.35	0.33	
3B2	Sheep	0.09	0.08	0.07	0.07	0.08	0.07	0.07	
3B3	Swine	0.19	0.19	0.19	0.19	0.19	0.19	0.19	
3B4a	Buffalo	NO	NO	NO	NO	NO	NO	NO	
3B4d	Goats	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
3B4e	Horses	0.03	0.03	0.04	0.04	0.03	0.04	0.04	
3B4f	Mules and asses	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3B4g	Poultry	0.69	0.69	0.67	0.66	0.69	0.67	0.66	
3B4h	Other	NA	NA	NA	NA	NA	NA	NA	
3D	Plant production and agricultural soils	1.01	1.02	1.02	1.02	1.02	1.02	1.02	
3F,I	Field burning and other agriculture	1.79	1.78	1.78	1.78	1.78	1.78	1.78	
5	Waste	46.25	37.07	37.08	37.12	37.07	16.50	16.54	
6A	Other	NA	NA	NA	NA	NA	NA	NA	
NATIONAL TOTAL	National total (excluding Canary Islands)	134.83	123.57	103.56	97.82	121.51	71.01	68.51	

Reduction commitments compliance

Regarding the compliance of the reduction commitments set in the Directive (EU) 2016/2284 on the reduction of national emissions of certain atmospheric pollutants, as shown in the following graph, the projection of the emissions foresees a breach of reduction commitments in the WeM scenario for practically the entire projected period. However, in the projection of the scenario WaM, with additional measures, the reduction commitment would be met in all projected horizons.

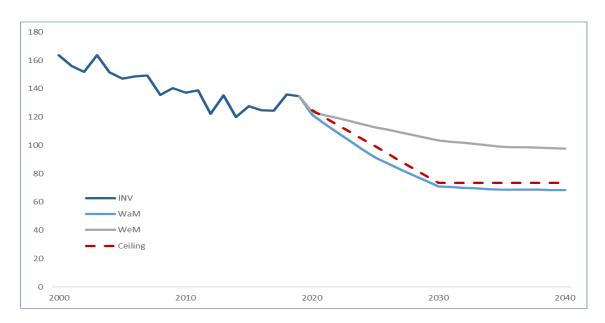


Figure 9.5.12 Expected compliance for PM_{2.5} projections

9.6. Projections editions comparison

For informative purposes a comparison of the global results of the latest projected emission data (edition 2021) compared to the previous reported projections (edition 2019) is provided.

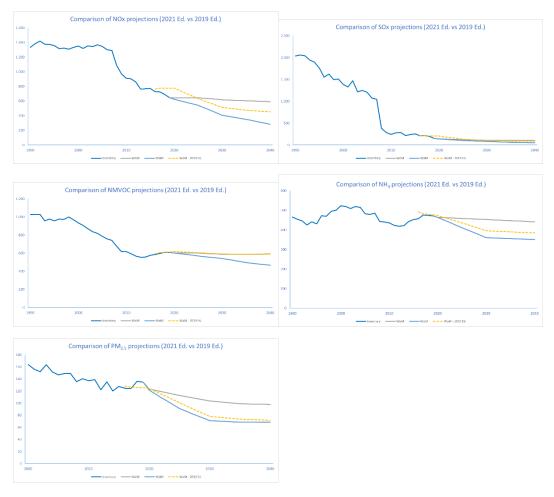
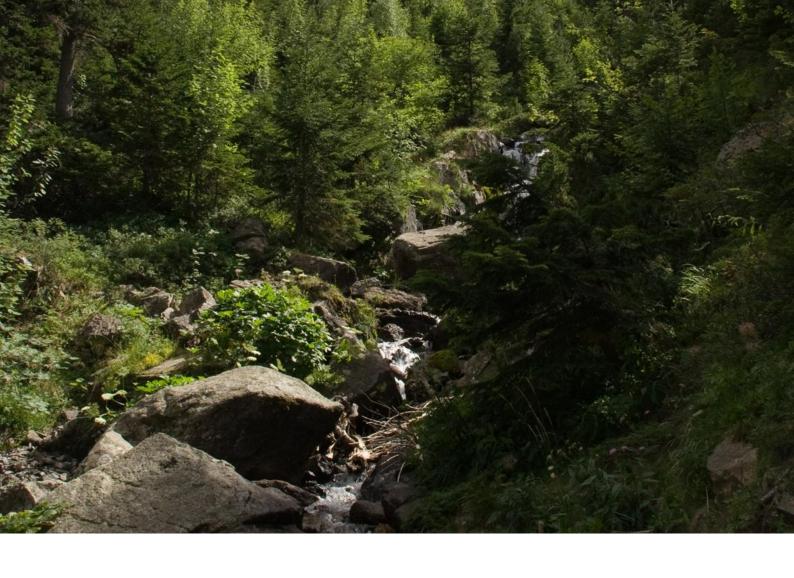


Figure 9.6.1 Projected emission data (Ed. 2021 vs. Ed. 2019)


9.7. Sensitivity analysis

In the framework of the elaboration of the Integrated National Energy and Climate Plan, sensitivity analyses of the different scenarios contemplated have been carried out, in particular with respect to the effect of different fuel price scenarios. For more information, please refer to the Integrated National Energy and Climate Plan.

The assumptions in the non-energy sectors are complex and bring together a large variety of independent variables (livestock population, industrial production, use of products, generation of waste, etc.), that make complex to choose any variable representative of the total emissions. In general, projected emissions are more related to the reference scenario used in the PNIEC and to the effect and intensity of the mitigation measures proposed in that National Energy and Climate Plan and in the National Air Pollution Control Programme, rather than to other macro parameters such as GDP or population evolution.

For more information, please consult the final report of emissions projections, available at:

https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-deinventario-sei-/Proyecciones.aspx

10. REPORTING OF GRIDDED EMISSIONS AND LPS

CONTENTS

10.	REPORTING OF GRIDDED EMISSIONS AND LPS.	463

FIGURES

Figure 10.1.1	View of spanish inventory cell grid distribution table	464
•	Maps of gridded emissions in interurban, rural and urban pattern driving in 2019	
Figure 10.1.3	Map of gridded emissions interpolated in road transport in 2005	467
Figure 10.1.4	Map of gridded emissions interpolated in road transport in 2019	467

10. REPORTING OF GRIDDED EMISSIONS AND LPS

Chapter updated in March, 2021.

Aggregated sectoral gridded emissions and LPS emissions will be reported in 2021 in accordance with Directive 2016/2284¹ which states that gridded data and LPS emissions must be regularly updated, at least, every four years as from 2017 (Annex 1, Table C).

Following the recommendation made by the TERT in the 2020 NECD review² (pursuant to Directive (EU) 2016/2284), we proceed to explain the methodology to obtain the EMEP grid.

The criterion of the Spanish Inventory to differentiate between LPS emissions and area source is the guidelines established by the EMEP 2019 Guide. However, when it has been possible to obtain information from individual facilities, they have been incorporated as LPS to the inventory database.

The balance in some pollutants between emission as an area source and emission as a large point focus is satisfactory, as for example in the case of SO_2 with a distribution of 34.5% estimated as area source and 65.5% as LPS. However, the Spanish Inventory aims to improve this ratio in other pollutants, so it wants to carry out an extension in geo-located activities or industries.

As advanced in the previous edition of the IIR, geo-location of emissions has been upgraded through a specific project is being conducted by the Spanish inventory, with the aim to compile and analyse the available land-use cartography for Spain for 1970–2015 in order to implement IPCC approach 3 for the whole time series. During the project, the available cartography data sources for each reference year have been classified according to the hierarchy among land-use categories. All the data on land-use surface areas obtained for each reference date are being analysed and land-use changes assessed to ensure time-series consistency. The sources of geographical data used in this analysis are been:

- Historical cartographies of land occupation (coverage and / or use) of Spain:
 - Maps of Crop and Land Use. Ministry of Agriculture, Fisheries and Food. 1980-1990 and 2000-2010 editions.
 - CORINE Land Cover maps. National Geographic Institute. 1990, 2000, 2006, and 2012 editions.
 - National Forest Map scale 1:50,000 (MFE50), 1996-2007; Change layer in the MFE snapshot, 2009, 2012 and 2015. Ministry for the Ecological Transition and the Demographic Challenge.
 - Agricultural Plot Geographic Information System (SIGPAC). Ministry of Agriculture, Fisheries and Food. 2009, 2012, and 2015.
- Urban Cadastre of Spain. General Directorate of Cadastre, Ministry of Finance and Provincial Council of Álava. 1970-2015.

Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC (http://data.europa.eu/eli/dir/2016/2284/oj).

² Final Review Report available in: http://ec.europa.eu/environment/air/reduction/implementation.htm

- Cartography of water masses from the General Directorate of Water (MITERD) and Reference Geographical Information on Hydrography "IGR Hidrografía" from the National Geographic Institute (IGN).
- Road infrastructure of the National Topographic Base (BTN) of the IGN.
- Railway infrastructure of the IGN National Topographic Base (BTN).
- Directorate general of highways shapes with AMD traffic density.
- Rocky areas obtained from the analysis carried out by remote sensing from SENTINEL and LANDSAT images.
- Information on peat bogs from the Geological and Mining Institute of Spain (IGME).

The harmonization and standardization of these cartographic data sources, developed for different purposes, has been one of the major challenges in the project development. Similarly, new data provided by the cartography project are being cross-checked with data currently used in the national inventory.

The result of this project will be a land-use cartography (LULUCF maps), with 25x25 m pixel size, for the years 1990, 2000, 2006, 2009, 2012, and 2015. Work is currently underway in the elaboration of the map for 2018.

The latest version of this land-use cartography has been crossed with the EMEP grid, as well as with the layer of provinces of Spain (NUT3 level) obtaining a distribution of land uses by province for each grid cell and each of the years listed above.

Subsequently, the representation of each SNAP in each type of soil has been defined. With this operation, the distribution percentage of emissions for each activity and cell has been obtained. Below is an image of the working table in Oracle.

		Model Restric	ciones (Permis	os Estadístic	as Disparadore	s (Flashback	Dependencias	Detalles Pa	articiones Índices SQL
(H)	4		rdenar Fi	ltrar:					
				ID_MALLA		GRUPO	SUBGRUPO 0	ACTIVIDAD	∳ F
1	2015	-2	415	3802	50	6	5	2	0,00819859596621325652883463645138407030247
2	2015	-2	416	3895	50	6	5	2	0,000009691011780393920246849452070193936527
3	2015	-1	411	3458	50	6	5	2	0,0004380337324738051951575952335727659310
4	2015	-1	412	3542	50	6	5	2	0,01188699504983118257478553790929988254
5	2015	-1	413	3629	50	6	5	2	0,0014885394094685061499160758379817886506
6	2015	-1	414	3716	50	6	5	2	0,0010330618557899918983141515906826736338
7	2015	0	410	3378	50	6	5	2	0,000036825844765496896938027917866736958805
8	2015	0	411	3459	50	6	5	2	0,0018664888689038690395432044687193521752
9	2015	0	412	3543	50	6	5	2	0,0021610956270278442150474278116532478456
10	2015	0	413	3630	50	6	5	2	0,0043415732776164762705885545274468835644
11	2015	1	410	3379	50	6	5	2	0,0001376123672815936675052622193967538986
12	2015	1	411	3460	50	6	5	2	0,0040585957336289737993805505269972206178
13	2015	1	412	3544	50	6	5	2	0,0011241573665256947486345364401424966372
14	2015	1	413	3631	50	6	5	2	0,0006202247539452108957983649324924119377
15	2015	2	410	3380	50	6	5	2	0,00003488764240941811288865802745269817149
16	2015	2	411	3461	50	6	5	2	0,0001182303437208058270115633152563660256
17	2015	2	412	3545	50	6	5	2	0,0030526687108240848777575774021110900062
18	2015	2	413	3632	50	6	5	2	0,0009594101662589981044380957549491997162
19	2015	2	414	3719	50	6	5	2	0,00004264045183373324908613758910885332072
20	2015	3	411	3462	50	6	5	2	0,000025196630629024192641808575382504234972
21	2015	3	412	3546	50	6	5	2	0,0010601966887750948750053300564792166561
22	2015	3	413	3633	50	6	5	2	0,00205643269979958987638145372929515333118
23	2015	3	414	3720	50	6	5	2	0,0001085393319404119067647138631861720891
24	2015	-22	412	3521	50	6	5	3	0,0016395331977589328534941389476501883046
25	2015	-22	413	3608	50	6	5	3	0,000319727562374757880726748184802531052
26	2015	-21	411	3438	50	6	5	3	0,0005056156800345008346376482922458630599
27	2015	-21	412	3522	50	6	5	3	0,00047587358120894196201190427505492993876

Figure 10.1.1 View of Spanish inventory cell grid distribution table

In this table, field F represents the distribution percentage applied to each cell, of the emissions of each SNAP by province for each of the years of LULUCF maps. Or put another way, filtering for a year, a province and a SNAP, the sum of field F will be 1.

The generation of the gridded emission report for each year within the 1990-2019 series is therefore based on this distribution coefficient based in turn on the most recent LULUCF map possible. It follows that the report for 2019 will be based on the 2015 LULUCF map.

Regarding the emissions of the 1A3b road transport activity, which are the main contributor to the area emissions in many pollutants, a specific mapping has been made in which, on the one hand, the interurban traffic intensities available and provided by the competent institution and, on the other the urban areas with the representation of their population density. This mapping has been carried out for NOx and PM_{2.5} for the years 2005 and 2019 with the objective of taking a base year to compare the evolution of emissions.

This cartography is the result of the fusion of 3 maps generated for each of the 3 driving patterns included in the inventory. For the generation of each map, the geographical distribution of its corresponding road level or the distribution of urban centers have been taken into account and their respective emissions have been assigned. Subsequently, the emissions per unit of length or area have been estimated for each entity. In the specific case of the emission layer in the interurban driving pattern, the traffic densities have been taken into account for this distribution of emissions per unit length. The 3 EMEP grid obtained for each driving pattern are shown below in figure 10.1.2.

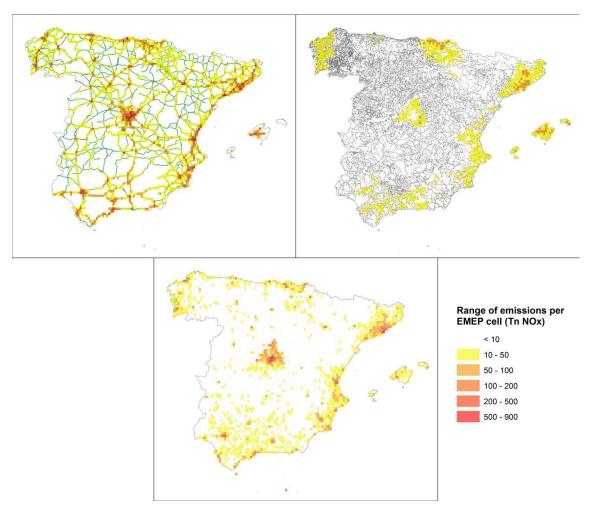


Figure 10.1.2 Maps of gridded emissions in interurban, rural and urban pattern driving in 2019

This operation has been carried out for several years of the series, using cartography as close as possible to the year of estimation. This means that the urban planning layer used for the 2005 emissions has been different from the one used for 2019. Finally, the EMEP grid has been intersected and the emissions per cell have been estimated. It is intended to incorporate the result of this analysis into 2019 gridded emissions report in order to further improve the area source emissions accuracy achieved with the LULUCF maps methodology. Below is the result of traffic emission maps for 2005 and 2019 interpolating between the EMEP cell centroids.

Figure 10.1.3 Map of gridded emissions interpolated in road transport in 2005

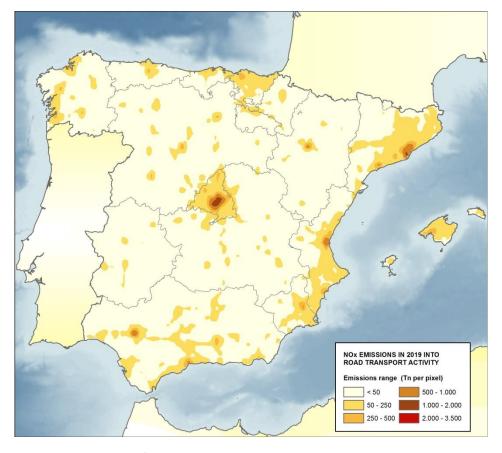


Figure 10.1.4 Map of gridded emissions interpolated in road transport in 2019

11. ADJUSTMENTS

CONTENTS

11.	ADJUSTMENTS	473
11.1.	Adjustment applications by Spain	473
11.2.	Adjustments approved prior to 2021 considered for compliance	473
11.3.	Description of adjustments approved prior to 2021	474
11.4.	2020 adjustment reviews and TERT recommendations	477
11.5.	Rejected adjustments	477
11.6.	New adjustment applications requested	479

FIGURES

Figure 11.3.1 Figure 11.3.2 Figure 11.5.1	NOx adjustment recalculation for Road transport (1A3b) – (2021 vs. 2020 Inventory edition) NOx adjustment recalculation for Agriculture (3B) – (2021 vs. 2020 Inventory edition) Comparison of ammonia reported emissions in latest Inventory (edition 2021) and ceilings (absolute ceiling for period 2010-2019 and relative ceiling for year 2020)	. 477
TABLES		
Table 11.1.1	Adjustments applications by Spain	. 473
Table 11.2.1	Adjustments applied by Spain in 2021 Inventory edition	. 473
Table 11.3.1	NOx adjustment for Road transport	. 474
Table 11.3.2	NOx adjustment for Agriculture	. 476

11. ADJUSTMENTS

Chapter updated in March, 2021.

11.1. Adjustment applications by Spain

Adjustment applications requested so far by Spain prior to 2021 and their corresponding status are listed in the following table.

Table 11.1.1 Adjustments applications by Spain

Pollutant	NFR Category	Adjustment application year	CLRTAP status	NECD status	Included in 2021 Inventory edition	Included for compliance in years
NOx	1A3bi – Passengers cars	2014	Accepted ¹	Accepted	Yes	2010-2012
NOx	1A3biii – Heavy-duty vehicles	2014	Accepted ¹	Accepted	Yes	2010-2012
NOx	3B – Manure management	2017	Accepted ²	Accepted ³	Yes	2010-2012
NH₃	3D1a – Agricultural Soils-N	2017	Rejected ⁴	Rejected ³	No	-
NH ₃	3B + 3Da2a + 3Da31a – Manure management	2017	Rejected ⁴	Rejected ³	No	-

¹ Approved by the EMEP Steering Body September 2015 (ECE/EB.AIR/GE.1/2015/2–CE/EB.AIR/WG.1/2015/2).

In the 2021 Inventory edition, NOx approved adjustments have only been included in NFR reporting Annex I tables for years 2010-2012, where total national emissions exceeded the national ceiling. In this IIR's Chapter 11 and in submitted Annex VII template, the adjustment time series covers the years 2010-2019 in order to show completeness, consistency and transparency of the calculation across the full times series.

11.2. Adjustments approved prior to 2021 considered for compliance

The following table shows the approved adjustments included by Spain in its 2021 Inventory edition (as reported in Annex VII reporting template).

Table 11.2.1 Adjustments applied by Spain in 2021 Inventory edition

Pollutant	Sector	NFR	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NOx	Road Transport	1A3bi	-61.22	-58.72	-55.52	-53.61	-54.60	-53.16	-48.63	-42.81	-29.07	-16.18
NOx	Koau Transport	1A3biii	-81.28	-73.23	-63.70	-56.33	-49.94	-41.77	-33.31	-25.86	-18.21	-12.52
NOx		3B1a	-0.80	-0.78	-0.82	-0.83	-0.84	-0.82	-0.80	-0.80	-0.79	-0.79
NOx		3B1b	-1.11	-1.09	-1.07	-1.04	-1.10	-1.23	-1.27	-1.32	-1.36	-1.36
NOx	Agriculture	3B2	-0.55	-0.44	-0.48	-0.47	-0.45	-0.48	-0.44	-0.45	-0.45	-0.43
NOx		3B3	-0.33	-0.32	-0.30	-0.29	-0.28	-0.28	-0.29	-0.30	-0.31	-0.31
NOx		3B4d	-0.26	-0.22	-0.23	-0.22	-0.22	-0.22	-0.27	-0.29	-0.26	-0.26

 $^{^{2}}$ Approved by the EMEP Steering Body September 2017 (ECE/EB.AIR/GE.1/2017/2–CE/EB.AIR/WG.1/2017/2).

³ Decision by the European Commission (Decision C(2018) 1565 of 12.03.2018.

⁴ Rejected by the EMEP Steering Body in its Fourth Joint Session of the EMEP Steering Body and the Working Group on Effects ECE/EB.AIR/GE.1/2018/2 - ECE/EB.AIR/WG.1/2018/2.

Pollutant	Sector	NFR	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NOx		3B4e	-0.19	-0.20	-0.19	-0.21	-0.21	-0.20	-0.21	-0.21	-0.22	-0.21
NOx		3B4f	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NOx		3B4gi	-0.60	-0.58	-0.51	-0.52	-0.54	-0.54	-0.53	-0.55	-0.54	-0.54
NOx		3B4gii	-0.97	-0.99	-0.99	-0.97	-1.02	-1.03	-1.07	-1.06	-1.12	-1.16
NOx		3B4giv	-0.45	-0.47	-0.47	-0.45	-0.43	-0.45	-0.46	-0.45	-0.48	-0.46
TOTAL NO	х		-147.8	-137.1	-124.3	-115.0	-109.6	-100.2	-87.3	-74.1	-52.8	-34.2

Spain declares that the methods and criteria used for the calculation of emissions in these sectors for years 2010-2019 are the same as in the year the adjustments were respectively approved, and coherent with the 2021 Inventory edition emission data.

11.3. Description of adjustments approved prior to 2021

In this section main information regarding the adjustments approved for Spain included in the current Inventory edition for compliance is summarized.

NOx for Road transport - 1A3b-Passenger cars and heavy duty vehicles

At the time of setting the emission ceilings, emission factors for vehicle emission technologies (EURO standards) were based on certain expected emission reductions. Real emissions measurements were performed as these technologies were implemented and the vehicles entered in the fleet along the years. The results of these measurements showed higher levels of nitrogen oxide (NOx) emissions than expected. Therefore, NOx emission factors were changed in order to reflect the real-world emission performance of vehicles. COPERT methodology for the road sector and its emission factors were accordingly updated.

Spain submitted an adjustment application in April 2014 for NOx emissions from Road transport sectors 1A3bi, 1A3biii to properly incorporate these changes into the national emission ceiling set for Spain for the period 2010-2019. The EMEP Steering Body in its session of 14-17 September 2015 decided to approve the requested adjustment. This adjustment is considered as accepted under the NECD for consistency with CLRTAP.

The adjustment calculation is based on the comparison between the emissions estimates calculated with the emission factors of COPERT III (the COPERT version when the 2010 emission ceiling was established) versus the corresponding updated emission factors of EMEP/EEA-GB-2016-May 2017 version (the one used in the 2021 Spanish Inventory edition). The difference in NOx emissions has been calculated, trying to quantify the impact of the lower than expected emission reductions of the EURO technologies. This has been performed for two Road transport subcategories: Passenger cars (NFR 1A3bi) and Heavy duty vehicles (NFR 1A3biii).

Main features of this adjustment are showed in the following table.

Table 11.3.1 NOx adjustment for Road transport

Party	Spain
Pollutant	NOx
Sector	Road transport

Activities			NFR-1A3bi — passengers cars. NFR-1A3biii — heavy duty vehicles.							
Justification CLRTAP			xtraordinary circumstances (para. 6.b Decision 2012/3): significant changes in mission factors applied.						es in	
Justification NECD			xtraordinary circumstances (para 1.d) ii. of Annex IV-Part 4 of Directive U/2016/2284: significant changes in emission factors applied.							
Application's date		2014-Ap	ril.							
Link to CLRTAP's application			ttps://webdab01.umweltbundesamt.at/download/adjustments2014/Adjustment Review Report SPAIN 2014.pdf?cgiproxy skip=1							
Status CLRTAP		EMEP Ste	Accepted in 2015. EMEP Steering Body session of 14-17 September 2015. (ECE/EB.AIR/GE.1/2015/2–ECE/EB.AIR/WG.1/2015/2).							
Status NECD		Accepted	d for cons	istency w	ith CLRTA	P.				
Adjustment included in 2021 Inventory		YES. Only for	years 201	.0-2012 w	here nati	onal emis	sion ceilir	ng for NOx	is exceed	ded.
	Lates	t adjustm	ent figure	es include	d in 2021	Inventor	y (NOx kt)		
Years	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NFR-1A3bi	-61.22	-58.72	-55.52	-53.61	-54.60	-53.16	-48.63	-42.81	-29.07	-16.18
NFR-1A3biii	-81.28	-73.23	-63.70	-56.33	-49.94	-41.77	-33.31	-25.86	-18.21	-12.52
TOTAL	-142.5	-132.0	-119.2	-109.9	-104.5	-94.9	-81.9	-68.7	-47.3	-28.7

Recalculations of the adjustment comparing previous submission (2020 Inventory edition) and current 2021 Inventory edition are shown in the following table and figure. Recalculations do not exceed 1% of the most recently calculated adjustment (Inventory edition 2020).

Year	NOx -1/ Inventory (k	editions	Recalculation		
	2020	2021	ed20 vs. ed21 (%)		
2010	-142.5	-142.5	0.00%		
2011	-132.0	-132.0	0.00%		
2012	-119.2	-119.2	0.00%		
2013	-109.9	-109.9	0.00%		
2014	-104.5	-104.5	0.03%		
2015	-94.9	-94.9	0.01%		
2016	-81.9	-81.9	0.02%		
2017	-68.6	-68.7	0.07%		
2018	-47.2	-47.3	0.18%		
2019	NA	-28.7	NA		

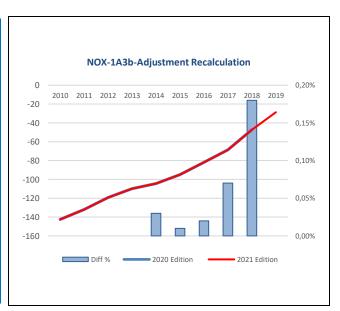


Figure 11.3.1 NOx adjustment recalculation for Road transport (1A3b) – (2021 vs. 2020 Inventory edition)

NOx for Agriculture - 3B - Manure Management

Nitrogen oxide emissions from certain agricultural sources were not considered in EMEP methodologies at the time the emission ceilings were set. This is the case for category Manure management. Implementation of EMEP/EEA 2016 in the Spanish Inventory of emissions led to the estimation of new NOx emissions in its 2017 edition. A new adjustment was then

requested in 2017 for NOx emissions derived from category NFR-3B-Manure management. The EMEP Steering Body in its session of 11-15 September 2017 decided to accept the requested adjustment. The adjustment application requested by Spain to the European Commission in accordance with NEC Directive art. 5.6 was accepted by the European Commission by decision (Decision C(2018) 1565) of 12.03.2018.

Main features of this adjustment are showed in the following table.

Table 11.3.2 NOx adjustment for Agriculture

Party		Spain								
Pollutant		NOx								
Sector		Agricultu	griculture							
Activity		NFR-3B -	- Manure	managen	nent.					
Justification CLRTAP		Extraord category	•	umstance	s (para. 6	.a Decisio	n 2012/3)	: new em	ission sou	rce
Justification NECD			•		s (para 1. on source	•	nex IV-Pa	rt 4 of Dir	ective	
Application's date		2017-Ma	ırch.							
Link to CLRTAP's							view-of-ac			
application		https://v	vebdab01	umweltb	undesam	t.at/dowi	nload/adj	<u>ustments?</u>	<u> 2017/</u>	
Link to NECD's application		https://c	https://cdr.eionet.europa.eu/es/eu/nec_revised/inventories/envwmffmq/							
Status CLRTAP		EMEP Ste				Septemb	er 2017 (I	ECE/EB.AI	R/GE.1/2	017/2–
Status NECD			d in 2018. C(2018) 1		2.03.2018					
Adjustment included in 2021 Inventory		YES. Only for	years 201	.0-2012 w	here nati	onal emis	sion ceilir	ng for NO	is exceed	ded.
	Lates	t adjustm	ent figure	es include	d in 2021	Inventor	y (NOx kt)		
Years	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NFR-3B	-5.3	-5.1	-5.1	-5.0	-5.1	-5.2	-5.3	-5.4	-5.5	-5.5
TOTAL	-5.3	-5.1	-5.1	-5.0	-5.1	-5.2	-5.3	-5.4	-5.5	-5.5

Recalculations of the adjustment comparing previous submission (2020 Inventory edition) and current 2021 Inventory edition are shown in the following table and figure. Most recent adjustment figures are 2.5%-6% lower than last year's adjustment (Inventory edition 2020). These recalculations are mainly related to methodological changes between Inventory editions in the estimation of N emissions in manure management systems, fundamentally for Goats (NFR-3B4d). Detailed information about these recalculations in emissions estimations is provided in the corresponding IIR's sectorial chapter (5-Agriculture) and in Chapter 8 – Recalculations and planned improvements.

Year	NOx -1/ Inventory (k	editions	Recalculation		
	2020	2021	ed20 vs. ed21 (%)		
2010	-5.4	-5.3	-3.1%		
2011	-5.2	-5.1	-2.7%		
2012	-5.2	-5.1	-2.7%		
2013	-5.1	-5.0	-2.7%		
2014	-5.2	-5.1	-2.6%		
2015	-5.4	-5.2	-2.5%		
2016	-5.7	-5.3	-6.0%		
2017	-5.8	-5.4	-5.9%		
2018	-5.7	-5.5	-2.9%		
2019	NA	-5.5	NA		

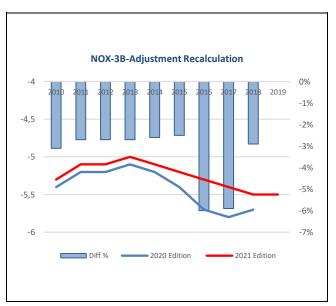


Figure 11.3.2 NOx adjustment recalculation for Agriculture (3B) – (2021 vs. 2020 Inventory edition)

11.4. 2020 adjustment reviews and TERT recommendations

Within the NECD 2020 Review, the TERT reviewed all the information provided by Spain and concluded that the adjustment continued to meet the requirements stated in the NECD for an adjustment. The review focused on checking that any recalculations performed have been done so using a methodology that follows best practice, and that transparent supporting information has been provided, and therefore recommended that the European Commission continued to accept the submission as a valid adjustment for these sources and pollutant (NOx-1A3b and NOx-3B).

11.5. Rejected adjustments

In this section main information regarding the adjustment requested by Spain and rejected within NECD and CLRTAP's frameworks is summarized.

NH₃ for agriculture -Agricultural soils and Manure management

Spain considers that its national emission ceiling for ammonia (NH₃) emissions is clearly underestimated according to the current methodologies applicable.

At the time when emission reduction commitments were set in the Gothenburg Protocol (year 1999), emissions from Spain for year 1990 (reference year to calculate the ceilings) were extracted from the latest available official Inventory Report, published in 1996. In this report, ammonia emissions were mostly estimated using the CORINAIR Inventory-Default Emissions Factors Handbook of January 1992. Methodologies used for determining ammonia emissions from agriculture categories have undergone significant changes between then and the latest editions of the Spanish Inventory, that currently apply 2019 EMEP/EEA Inventory Guidebook.

Spain considered these as extraordinary circumstances as foreseen under CLRTAP EB Decisions 2012/3 and 2012/12¹, as well as under Annex IV-Part 4 of Directive EU/2016/2284 and therefore requested on 14.03.2017 an adjustment to its ammonia emissions estimations under CLRTAP and NECD to properly assess national emissions and ceilings' compliance.

This adjustment request was rejected both by the European Commission and the LRTAP's Executive Body in 2018. It was argued for its refusal that Spain claimed in its application as "original emission factors were used for determining the emission reductions at the time when they were set" those from the CORINAIR Inventory-Default Emissions Factors Handbook of January 1992, and not the EMEP/CORINAIR inventory Guidebook 1999. The review team considered this was not in line with the review Technical Guidance² and that, therefore, was not a valid case for adjustment.

Spain has questioned these decisions considering that they do not match with the approach of the adjustment review Technical Guidance, nor correspond with the spirit laid down in the EB decisions ruling the procedure and leave no option to comply with an absolute ceiling clearly underestimated in 1999. In this light, the EB decided to request the *ad hoc* group of legal experts to clarify some of the legal concerns raised by Spain³.

The EMEP *ad hoc* group of legal experts presented its legal advice at the ^{39th} meeting of the EB of 9-13 December 2019⁴. The ad hoc legal experts group considered the request but did not reach a consensus view. Finally, in view of the entry into force of the amendments to the Gothenburg Protocol, in which the emission reductions are expressed in percentage terms, the need for adjustments was expected to decline and therefore the issue could be considered closed. The entry into force of the relative ceiling as from 2020 can be observed in figure 11.5.2, in which the ammonia absolute ceiling for period 2010-2019 (red dotted line) is clearly beyond any technical feasibility, whilst the relative ceiling applicable as from 2020 is substantially close to estimated emissions.

-

¹ Decision 2012/3 (ECE/EB.AIR/111/Add.1); Decision 2012/12 (ECE/EB.AIR/113/Add.1); Decision 2014/1 (ECE/EB.AIR/127/Add.1).

² Technical Guidance for Parties Making Adjustment Applications and for the Expert Review of Adjustment Applications (ECE/EB.AIR/130).

³ Report of the Executive Body on its thirty-eighth session (ECE/EB.AIR/142).

https://www.unece.org/fileadmin/DAM/env/documents/2019/AIR/EB/item 5 a Cover note and Legal advice Article 13 GProtocol October 2019 Final.pdf

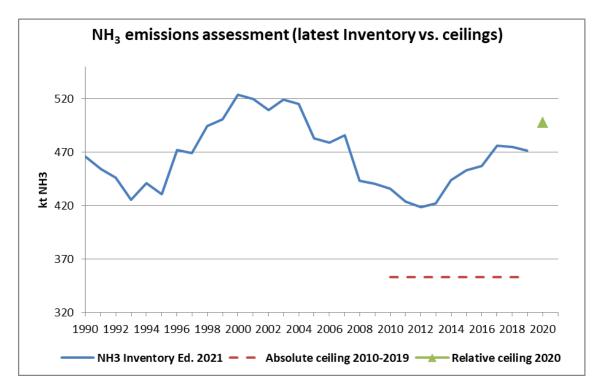


Figure 11.5.1 Comparison of ammonia reported emissions in latest Inventory (edition 2021) and ceilings (absolute ceiling for period 2010-2019 and relative ceiling for year 2020)

11.6. New adjustment applications requested

Spain has not requested new adjustment applications in 2021 reporting year.

ANNEXES

ES – IIR – 2021 ANNEXES

CONTENTS

ANNEX 1.	KEY CATEGORY ANALYSIS	485
ANNEX 2.	COMPLIANCE WITH INVENTORY REVIEWS	503
ANNEX 3.	UNCERTAINTY ANALYSIS	518
ANNEX 4.	NATIONAL EMISSIONS DATA	523
ANNEX 5.	INFORMATION ON CONDENSABLE COMPONENT OF PM	525
ANNEX 6.	EXPERT JUDGEMENT	532

ANNEX 1. KEY CATEGORY ANALYSIS

Chapter updated in March 2021.

For clarification purposes, key categories are shown in bold.

A1.1. Analysis by level (2019)

Main Pollutants

NOx

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A3b	Road transport	211.22	0.33	0.3271
1A2	Manufacturing Industries and Construction	110.81	0.17	0.4987
1A4c	Agriculture/Forestry/Fishing	77.55	0.12	0.6188
3D	Crop production and agricultural soils	71.90	0.11	0.7302
1A3d	Navigation	40.79	0.06	0.7933
1A1a	Public electricity and heat production	39.89	0.06	0.8551
1A4a + 1A4b	Commercial/institutional/residential	31.05	0.05	0.9032
5C	Incineration	16.54	0.03	0.9288
1A1b	Petroleum refining	10.41	0.02	0.9449
1A3a	Aviation LTO (civil)	8.86	0.01	0.9586
1A3c + 1A3e + 1A5	Other transport	6.55	0.01	0.9688
3B	Manure management	5.52	0.01	0.9773
1A1c	Manufacture of solid fuels and other energy industries	5.28	0.01	0.9855
1B	Fugitive Emissions from Fuels	4.98	0.01	0.9932
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	1.66	0.00	0.9958
2C	Metal production	1.49	0.00	0.9981
3F	Field burning of agricultural wastes	0.76	0.00	0.9993
2B	Chemical industry	0.42	0.00	0.9999

NMVOC

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
2D	Solvents use	257.29	0.42	0.4232
3D	Crop production and agricultural soils	86.26	0.14	0.5651
3B	Manure management	78.51	0.13	0.6942
1A4a + 1A4b	Commercial/institutional/residential	44.49	0.07	0.7674
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	25.23	0.04	0.8089
1B	Fugitive Emissions from Fuels	23.20	0.04	0.8471
1A2	Manufacturing Industries and Construction	20.79	0.03	0.8812
1A3b	Road transport	20.17	0.03	0.9144
5C	Incineration	17.49	0.03	0.9432

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
2B	Chemical industry	9.87	0.02	0.9594
1A1a	Public electricity and heat production	8.40	0.01	0.9732
1A4c	Agriculture/Forestry/Fishing	6.68	0.01	0.9842
5A	Biological treatment of waste: Solid waste disposal on land	3.58	0.01	0.9901
1A3d	Navigation	1.81	0.00	0.9931
1A1c	Manufacture of solid fuels and other energy industries	1.43	0.00	0.9955
2C	Metal production	0.76	0.00	0.9967
1A3a	Aviation LTO (civil)	0.75	0.00	0.9979
1A1b	Petroleum refining	0.46	0.00	0.9987
1A3c + 1A3e + 1A5	Other transport	0.44	0.00	0.9994
3F	Field burning of agricultural wastes	0.17	0.00	0.9997
5D	Wastewater handling	0.09	0.00	0.9999
2A	Mineral products	0.08	0.00	1.0000

SOx

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A2	Manufacturing Industries and Construction	51.97	0.35	0.3478
1B	Fugitive Emissions from Fuels	23.71	0.16	0.5065
1A1a	Public electricity and heat production	22.43	0.15	0.6565
1A4a + 1A4b	Commercial/institutional/residential	17.71	0.12	0.7750
1A3d	Navigation	11.74	0.08	0.8535
2C	Metal production	7.21	0.05	0.9018
2B	Chemical industry	3.38	0.02	0.9244
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	3.32	0.02	0.9466
1A1b	Petroleum refining	2.73	0.02	0.9649
1A1c	Manufacture of solid fuels and other energy industries	1.82	0.01	0.9770
1A4c	Agriculture/Forestry/Fishing	1.77	0.01	0.9889
1A3a	Aviation LTO (civil)	0.54	0.00	0.9925
5C	Incineration	0.53	0.00	0.9960
1A3b	Road transport	0.32	0.00	0.9981
3F	Field burning of agricultural wastes	0.17	0.00	0.9993
1A3c + 1A3e + 1A5	Other transport	0.11	0.00	1.0000

NH_3

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
3D	Crop production and agricultural soils	245.22	0.52	0.5219
3B	Manure management	208.12	0.44	0.9648
1A4a + 1A4b	Commercial/institutional/residential	7.87	0.02	0.9815
1A3b	Road transport	2.27	0.00	0.9864
1A1a	Public electricity and heat production	1.25	0.00	0.9890
1A2	Manufacturing Industries and Construction	1.17	0.00	0.9915
2B	Chemical industry	1.17	0.00	0.9940
5B	Biological treatment of waste	1.16	0.00	0.9965
3F	Field burning of agricultural wastes	0.67	0.00	0.9979
5D	Wastewater handling	0.64	0.00	0.9993
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	0.14	0.00	0.9996
2A	Mineral products	0.10	0.00	0.9998
1A1c	Manufacture of solid fuels and other energy industries	0.07	0.00	0.9999
1A4c	Agriculture/Forestry/Fishing	0.02	0.00	1.0000
1B	Fugitive Emissions from Fuels	0.01	0.00	1.0000

Particulate Matter

$PM_{2.5}$

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A4a + 1A4b	Commercial/institutional/residential	49.82	0.38	0.3752
5C	Incineration	44.68	0.34	0.7117
1A3b	Road transport	8.88	0.07	0.7786
1A2	Manufacturing Industries and Construction	8.63	0.07	0.8436
1A1a	Public electricity and heat production	2.86	0.02	0.8652
1A4c	Agriculture/Forestry/Fishing	2.80	0.02	0.8862
1A3d	Navigation	2.20	0.02	0.9028
2A	Mineral products	1.96	0.01	0.9175
3F	Field burning of agricultural wastes	1.79	0.01	0.9310
3B	Manure management	1.74	0.01	0.9441
5E	Other waste	1.55	0.01	0.9558
2C	Metal production	1.53	0.01	0.9673
2B	Chemical industry	1.52	0.01	0.9788
3D	Crop production and agricultural soils	1.01	0.01	0.9864
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	0.84	0.01	0.9927
1B	Fugitive Emissions from Fuels	0.25	0.00	0.9946

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A1c	Manufacture of solid fuels and other energy industries	0.23	0.00	0.9963
1A1b	Petroleum refining	0.22	0.00	0.9980
1A3c + 1A3e + 1A5	Other transport	0.14	0.00	0.9990
1A3a	Aviation LTO (civil)	0.06	0.00	0.9995
2D	Solvents use	0.04	0.00	0.9998
5A	Biological treatment of waste: Solid waste disposal on land	0.02	0.00	1.0000
5D	Wastewater handling	0.00	0.00	1.0000

PM_{10}

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A4a + 1A4b	Commercial/institutional/residential	51.31	0.27	0.2665
5C	Incineration	49.08	0.25	0.5213
3D	Crop production and agricultural soils	26.25	0.14	0.6577
1A3b	Road transport	12.98	0.07	0.7251
2A	Mineral products	12.56	0.07	0.7903
3B	Manure management	11.40	0.06	0.8495
1A2	Manufacturing Industries and Construction	9.35	0.05	0.8980
1A1a	Public electricity and heat production	3.56	0.02	0.9166
1A4c	Agriculture/Forestry/Fishing	2.87	0.01	0.9315
1A3d	Navigation	2.46	0.01	0.9443
2C	Metal production	2.26	0.01	0.9560
2B	Chemical industry	2.13	0.01	0.9671
3F	Field burning of agricultural wastes	1.89	0.01	0.9769
5E	Other waste	1.55	0.01	0.9849
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	1.11	0.01	0.9907
2D	Solvents use	0.52	0.00	0.9934
1B	Fugitive Emissions from Fuels	0.51	0.00	0.9961
1A1c	Manufacture of solid fuels and other energy industries	0.29	0.00	0.9976
1A1b	Petroleum refining	0.23	0.00	0.9988
1A3c + 1A3e + 1A5	Other transport	0.15	0.00	0.9995
1A3a	Aviation LTO (civil)	0.06	0.00	0.9999
5A	Biological treatment of waste: Solid waste disposal on land	0.02	0.00	1.0000

TSP

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A4a + 1A4b	Commercial/institutional/residential	53.46	0.21	0.2063
5C	Incineration	51.33	0.20	0.4045
3B	Manure management	47.77	0.18	0.5888
3D	Crop production and agricultural soils	26.25	0.10	0.6902
2A	Mineral products	24.74	0.10	0.7856
1A3b	Road transport	18.71	0.07	0.8579
1A2	Manufacturing Industries and Construction	12.25	0.05	0.9052
1A1a	Public electricity and heat production	4.71	0.02	0.9233
2C	Metal production	3.69	0.01	0.9376
1A4c	Agriculture/Forestry/Fishing	2.89	0.01	0.9487
2B	Chemical industry	2.70	0.01	0.9591
1A3d	Navigation	2.46	0.01	0.9686
3F	Field burning of agricultural wastes	1.92	0.01	0.9761
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	1.76	0.01	0.9829
5E	Other waste	1.55	0.01	0.9888
2D	Solvents use	1.06	0.00	0.9929
1B	Fugitive Emissions from Fuels	0.96	0.00	0.9966
1A1c	Manufacture of solid fuels and other energy industries	0.38	0.00	0.9981
1A1b	Petroleum refining	0.24	0.00	0.9990
1A3c + 1A3e + 1A5	Other transport	0.16	0.00	0.9997
1A3a	Aviation LTO (civil)	0.06	0.00	0.9999
5A	Biological treatment of waste: Solid waste disposal on land	0.02	0.00	1.0000

BC

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
5C	Incineration	12.60	0.44	0.4403
1A4a + 1A4b	Commercial/institutional/residential	8.36	0.29	0.7325
1A3b	Road transport	2.98	0.10	0.8367
1A2	Manufacturing Industries and Construction	2.19	0.08	0.9132
1A4c	Agriculture/Forestry/Fishing	1.60	0.06	0.9691
1A3d	Navigation	0.32	0.01	0.9803
3F	Field burning of agricultural wastes	0.17	0.01	0.9861
1A1a	Public electricity and heat production	0.09	0.00	0.9892
1A3c + 1A3e + 1A5	Other transport	0.08	0.00	0.9920
2C	Metal production	0.06	0.00	0.9942

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A1c	Manufacture of solid fuels and other energy industries	0.05	0.00	0.9958
1A1b	Petroleum refining	0.03	0.00	0.9971
1A3a	Aviation LTO (civil)	0.03	0.00	0.9981
2B	Chemical industry	0.03	0.00	0.9991
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	0.02	0.00	0.9998
2A	Mineral products	0.00	0.00	0.9999
2D	Solvents use	0.00	0.00	1.0000

CO and Priority Heavy Metals

CO

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
5C	Incineration	579.67	0.36	0.3632
1A4a + 1A4b	Commercial/institutional/residential	442.22	0.28	0.6403
1A2	Manufacturing Industries and Construction	181.50	0.11	0.7540
1A3b	Road transport	154.86	0.10	0.8511
2C	Metal production	114.77	0.07	0.9230
1A4c	Agriculture/Forestry/Fishing	30.59	0.02	0.9422
1A1a	Public electricity and heat production	23.94	0.01	0.9572
3F	Field burning of agricultural wastes	22.12	0.01	0.9710
2B	Chemical industry	16.12	0.01	0.9811
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	8.68	0.01	0.9866
1A3a	Aviation LTO (civil)	6.22	0.00	0.9905
1A3d	Navigation	4.89	0.00	0.9935
1A1c	Manufacture of solid fuels and other energy industries	3.99	0.00	0.9960
1B	Fugitive Emissions from Fuels	2.03	0.00	0.9973
1A1b	Petroleum refining	1.84	0.00	0.9985
1A3c + 1A3e + 1A5	Other transport	1.51	0.00	0.9994
5A	Biological treatment of waste: Solid waste disposal on land	0.70	0.00	0.9998
5D	Wastewater handling	0.18	0.00	0.9999
5B	Biological treatment of waste	0.08	0.00	1.0000

Pb

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A3b	Road transport	34.82	0.35	0.3536
2C	Metal production	34.35	0.35	0.7025
1A2	Manufacturing Industries and Construction	10.12	0.10	0.8053
2A	Mineral products	8.99	0.09	0.8966
1A4a + 1A4b	Commercial/institutional/residential	4.49	0.05	0.9422
5C	Incineration	3.92	0.04	0.9820
1A1a	Public electricity and heat production	0.73	0.01	0.9894
1A3a	Aviation LTO (civil)	0.33	0.00	0.9928
1A1b	Petroleum refining	0.22	0.00	0.9950
1A4c	Agriculture/Forestry/Fishing	0.13	0.00	0.9963
1A3c + 1A3e + 1A5	Other transport	0.12	0.00	0.9975
1A3d	Navigation	0.10	0.00	0.9986
1A1c	Manufacture of solid fuels and other energy industries	0.10	0.00	0.9996
3F	Field burning of agricultural wastes	0.04	0.00	0.9999

Cd

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
5C	Incineration	1.58	0.23	0.2262
1A4a + 1A4b	Commercial/institutional/residential	1.45	0.21	0.4337
2C	Metal production	1.44	0.21	0.6401
1A2	Manufacturing Industries and Construction	0.82	0.12	0.7571
2A	Mineral products	0.39	0.06	0.8132
1A3b	Road transport	0.33	0.05	0.8604
3F	Field burning of agricultural wastes	0.29	0.04	0.9021
1A1b	Petroleum refining	0.29	0.04	0.9432
1A1a	Public electricity and heat production	0.27	0.04	0.9819
1A4c	Agriculture/Forestry/Fishing	0.07	0.01	0.9916
1A1c	Manufacture of solid fuels and other energy industries	0.04	0.01	0.9970
1A3d	Navigation	0.01	0.00	0.9985
5E	Other waste	0.01	0.00	0.9998
1A3c + 1A3e + 1A5	Other transport	0.00	0.00	1.0000

Hg

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
2C	Metal production	1.13	0.37	0.3658
1A1a	Public electricity and heat production	0.59	0.19	0.5587
1A2	Manufacturing Industries and Construction	0.54	0.18	0.7339
5C	Incineration	0.25	0.08	0.8150
1A3b	Road transport	0.16	0.05	0.8668
1A4a + 1A4b	Commercial/institutional/residential	0.15	0.05	0.9156
2D	Solvents use	0.10	0.03	0.9495
1A1b	Petroleum refining	0.06	0.02	0.9675
3F	Field burning of agricultural wastes	0.05	0.02	0.9826
1A3d	Navigation	0.02	0.01	0.9878
1A4c	Agriculture/Forestry/Fishing	0.01	0.00	0.9927
5E	Other waste	0.01	0.00	0.9956
1A1c	Manufacture of solid fuels and other energy industries	0.01	0.00	0.9981
2A	Mineral products	0.00	0.00	0.9991
1A3a	Aviation LTO (civil)	0.00	0.00	0.9995
1A3c + 1A3e + 1A5	Other transport	0.00	0.00	0.9999

POPs

DIOX

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
2C	Metal production	67.79	0.39	0.3936
1A4a + 1A4b	Commercial/institutional/residential	58.00	0.34	0.7304
5C	Incineration	16.54	0.10	0.8265
5E	Other waste	15.89	0.09	0.9187
1A2	Manufacturing Industries and Construction	7.74	0.04	0.9636
1A3b	Road transport	3.28	0.02	0.9827
1A1a	Public electricity and heat production	1.91	0.01	0.9938
1A4c	Agriculture/Forestry/Fishing	0.36	0.00	0.9959
1A1c	Manufacture of solid fuels and other energy industries	0.30	0.00	0.9976
1A3d	Navigation	0.21	0.00	0.9989
3F	Field burning of agricultural wastes	0.17	0.00	0.9998

PAHs

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
1A4a + 1A4b	Commercial/institutional/residential	36.99	0.58	0.5798
2C	Metal production	11.51	0.18	0.7602
1A2	Manufacturing Industries and Construction	9.72	0.15	0.9126
1A3b	Road transport	2.18	0.03	0.9468
1A1a	Public electricity and heat production	0.92	0.01	0.9612
3F	Field burning of agricultural wastes	0.76	0.01	0.9731
5C	Incineration	0.59	0.01	0.9824
1B	Fugitive Emissions from Fuels	0.49	0.01	0.9901
1A4c	Agriculture/Forestry/Fishing	0.44	0.01	0.9970
1A1c	Manufacture of solid fuels and other energy industries	0.14	0.00	0.9991
1A3d	Navigation	0.03	0.00	0.9996
1A3c + 1A3e + 1A5	Other transport	0.02	0.00	0.9999
1A3a	Aviation LTO (civil)	0.01	0.00	1.0000

HCB

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
3D	Crop production and agricultural soils	10.71	0.83	0.8309
1A1a	Public electricity and heat production	0.82	0.06	0.8948
1A4a + 1A4b	Commercial/institutional/residential	0.56	0.04	0.9383
1A2	Manufacturing Industries and Construction	0.47	0.04	0.9747
2C	Metal production	0.15	0.01	0.9866
1A3d	Navigation	0.08	0.01	0.9924
1A4c	Agriculture/Forestry/Fishing	0.05	0.00	0.9960
5C	Incineration	0.04	0.00	0.9987

PCBs

NFR Code	NFR Category	Emissions (kt)	Level valuation	Accumulated total
2C	Metal production	23.97	0.93	0.9328
1A4a + 1A4b	Commercial/institutional/residential	1.11	0.04	0.9760
1A2	Manufacturing Industries and Construction	0.24	0.01	0.9855
1A3d	Navigation	0.22	0.01	0.9941
5C	Incineration	0.08	0.00	0.9971
1A4c	Agriculture/Forestry/Fishing	0.05	0.00	0.9989
1A1a	Public electricity and heat production	0.03	0.00	1.0000

A1.2. Analysis by trend (2019)

Main Pollutants

NOx

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A1a	Public electricity and heat production	208.04	39.89	0.05	0.22	0.2249
1A3b	Road transport	561.38	211.22	0.05	0.22	0.4488
3D	Crop production and agricultural soils	67.41	71.90	0.03	0.15	0.5939
1A4c	Agriculture/Forestry/Fishing	106.10	77.55	0.02	0.10	0.6907
1A4a + 1A4b	Commercial/institutional/residential	23.43	31.05	0.01	0.07	0.7635
1A2	Manufacturing Industries and Construction	189.04	110.81	0.01	0.07	0.8348
5C	Incineration	9.47	16.54	0.01	0.04	0.8789
3F	Field burning of agricultural wastes	21.23	0.76	0.01	0.04	0.9141
1A3a	Aviation LTO (civil)	2.81	8.86	0.01	0.03	0.9418
2В	Chemical industry	7.92	0.42	0.00	0.01	0.9545
3B	Manure management	5.24	5.52	0.00	0.01	0.9655
1A1c	Manufacture of solid fuels and other energy industries	6.75	5.28	0.00	0.01	0.9729
1B	Fugitive Emissions from Fuels	6.35	4.98	0.00	0.01	0.9800
1A3c + 1A3e + 1A5	Other transport	9.97	6.55	0.00	0.01	0.9863
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	1.35	1.66	0.00	0.00	0.9901
1A3d	Navigation	86.14	40.79	0.00	0.00	0.9935
1A1b	Petroleum refining	19.66	10.41	0.00	0.00	0.9968
2C	Metal production	1.35	1.49	0.00	0.00	0.9998
5A	Biological treatment of waste: Solid waste disposal on land	0.00	0.04	0.00	0.00	1.0000

NMVOC

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A3b	Road transport	334.75	20.17	0.17	0.48	0.4779
3D	Crop production and agricultural soils	74.79	86.26	0.04	0.11	0.5904
2D	Solvents use	369.05	257.29	0.04	0.10	0.6938
3B	Manure management	70.49	78.51	0.04	0.10	0.7923
1A4a + 1A4b	Commercial/institutional/residential	33.51	44.49	0.02	0.07	0.8583
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	21.86	25.23	0.01	0.03	0.8913
5C	Incineration	11.19	17.49	0.01	0.03	0.9204
1A1a	Public electricity and heat production	0.76	8.40	0.01	0.02	0.9417
2B	Chemical industry	6.10	9.87	0.01	0.02	0.9585
1A2	Manufacturing Industries and Construction	30.32	20.79	0.00	0.01	0.9660

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1B	Fugitive Emissions from Fuels	43.78	23.20	0.00	0.01	0.9734
3F	Field burning of agricultural wastes	4.62	0.17	0.00	0.01	0.9803
5A	Biological treatment of waste: Solid waste disposal on land	2.08	3.58	0.00	0.01	0.9866
1A4c	Agriculture/Forestry/Fishing	14.33	6.68	0.00	0.00	0.9914
1A1c	Manufacture of solid fuels and other energy industries	0.55	1.43	0.00	0.00	0.9944
5E	Other waste	1.21	0.01	0.00	0.00	0.9963
1A3a	Aviation LTO (civil)	0.26	0.75	0.00	0.00	0.9979
1A3d	Navigation	3.57	1.81	0.00	0.00	0.9987
1A1b	Petroleum refining	0.36	0.46	0.00	0.00	0.9994
2C	Metal production	1.42	0.76	0.00	0.00	0.9996
5D	Wastewater handling	0.03	0.09	0.00	0.00	0.9998
2A	Mineral products	0.02	0.08	0.00	0.00	1.0000

SOx

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A1a	Public electricity and heat production	1407.36	22.43	0.04	0.44	0.4440
1A2	Manufacturing Industries and Construction	281.18	51.97	0.02	0.17	0.6164
1B	Fugitive Emissions from Fuels	63.12	23.71	0.01	0.10	0.7213
1A4a + 1A4b	Commercial/institutional/residential	25.02	17.71	0.01	0.09	0.8086
1A3d	Navigation	34.05	11.74	0.00	0.05	0.8594
2C	Metal production	5.73	7.21	0.00	0.04	0.8967
1A1b	Petroleum refining	125.55	2.73	0.00	0.04	0.9323
1A3b	Road transport	52.69	0.32	0.00	0.02	0.9518
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	2.34	3.32	0.00	0.02	0.9691
2B	Chemical industry	9.95	3.38	0.00	0.01	0.9837
1A1c	Manufacture of solid fuels and other energy industries	11.02	1.82	0.00	0.01	0.9893
1A4c	Agriculture/Forestry/Fishing	13.99	1.77	0.00	0.00	0.9933
1A3a	Aviation LTO (civil)	0.19	0.54	0.00	0.00	0.9962
5C	Incineration	0.71	0.53	0.00	0.00	0.9989
3F	Field burning of agricultural wastes	4.62	0.17	0.00	0.00	0.9998

NH_3

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
3F	Field burning of agricultural wastes	22.16	0.80	0.05	0.26	0.2582
3D	Crop production and agricultural soils	226.65	248.11	0.04	0.23	0.4835
3B	Manure management	184.20	204.95	0.04	0.22	0.7063
5D	Wastewater handling	20.18	2.01	0.04	0.22	0.9261
1A3b	Road transport	0.34	2.17	0.00	0.02	0.9479
2B	Chemical industry	2.92	1.15	0.00	0.02	0.9694
1A4a + 1A4b	Commercial/institutional/residential	6.43	7.37	0.00	0.01	0.9798
5B	Biological treatment of waste	0.27	1.04	0.00	0.01	0.9890
1A2	Manufacturing Industries and Construction	2.11	1.58	0.00	0.01	0.9956
5E	Other waste	0.15	0.00	0.00	0.00	0.9974
1A1c	Manufacture of solid fuels and other energy industries	0.08	0.16	0.00	0.00	0.9983
2A	Mineral products	0.06	0.12	0.00	0.00	0.9991
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	0.07	0.11	0.00	0.00	0.9996
1B	Fugitive Emissions from Fuels	0.02	0.03	0.00	0.00	0.9998
1A4c	Agriculture/Forestry/Fishing	0.01	0.02	0.00	0.00	0.9999

Particulate Matter

PM_{2.5}

NFR Code	NFR Category	Emissions (kt) 2000	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
5C	Incineration	29.16	44.68	0.13	0.28	0.2792
1A4a + 1A4b	Commercial/institutional/residential	43.22	49.82	0.09	0.20	0.4742
3F	Field burning of agricultural wastes	17.58	1.79	0.08	0.17	0.6411
1A3b	Road transport	25.42	8.88	0.07	0.16	0.7987
1A1a	Public electricity and heat production	10.22	2.86	0.03	0.07	0.8714
1A2	Manufacturing Industries and Construction	14.75	8.63	0.02	0.04	0.9163
1A4c	Agriculture/Forestry/Fishing	7.14	2.80	0.02	0.04	0.9565
1A3d	Navigation	1.56	2.20	0.01	0.01	0.9689
1A1b	Petroleum refining	1.16	0.22	0.00	0.01	0.9785
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	0.38	0.84	0.00	0.01	0.9855
2A	Mineral products	2.83	1.96	0.00	0.00	0.9901
3B	Manure management	1.88	1.74	0.00	0.00	0.9928
1B	Fugitive Emissions from Fuels	0.48	0.25	0.00	0.00	0.9947
3D	Crop production and agricultural soils	1.09	1.01	0.00	0.00	0.9963
1A1c	Manufacture of solid fuels and other energy industries	0.16	0.23	0.00	0.00	0.9976
2B	Chemical industry	1.99	1.52	0.00	0.00	0.9989
5E	Other waste	1.88	1.55	0.00	0.00	0.9992
2D	Solvents use	0.08	0.04	0.00	0.00	0.9995

NFR Code	NFR Category	Emissions (kt) 2000	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A3a	Aviation LTO (civil)	0.05	0.06	0.00	0.00	0.9997
5A	Biological treatment of waste: Solid waste disposal on land	0.00	0.02	0.00	0.00	0.9999
2C	Metal production	1.88	1.53	0.00	0.00	0.9999

PM₁₀

NFR Code	NFR Category	Emissions (kt) 2000	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
2A	Mineral products	22.20	41.80	0.10	0.17	0.1727
5C	Incineration	32.03	1.59	0.10	0.17	0.3413
1A4a + 1A4b	Commercial/institutional/residential	44.87	55.13	0.08	0.14	0.4816
3D	Crop production and agricultural soils	28.45	4.90	0.07	0.12	0.6066
3F	Field burning of agricultural wastes	18.56	1.17	0.05	0.10	0.7025
1A3b	Road transport	29.04	32.74	0.04	0.07	0.7723
1A1a	Public electricity and heat production	22.59	8.51	0.04	0.07	0.8387
1A4c	Agriculture/Forestry/Fishing	7.30	11.42	0.02	0.04	0.8789
3B	Manure management	10.76	13.57	0.02	0.04	0.9151
1A2	Manufacturing Industries and Construction	18.01	11.51	0.01	0.02	0.9344
2C	Metal production	3.02	0.28	0.01	0.01	0.9493
1A3d	Navigation	1.76	3.23	0.01	0.01	0.9624
5E	Other waste	1.88	2.69	0.00	0.01	0.9710
1B	Fugitive Emissions from Fuels	1.44	2.21	0.00	0.01	0.9787
1A1c	Manufacture of solid fuels and other energy industries	0.24	1.25	0.00	0.01	0.9862
1A1b	Petroleum refining	1.62	0.28	0.00	0.01	0.9933
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	0.50	0.77	0.00	0.00	0.9960
2D	Solvents use	0.95	0.43	0.00	0.00	0.9982
1A3a	Aviation LTO (civil)	0.05	0.15	0.00	0.00	0.9990
1A3c + 1A3e + 1A5	Other transport	0.19	0.06	0.00	0.00	0.9996

TSP

NFR Code	NFR Category	Emissions (kt) 2000	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
5C	Incineration	33.56	51.33	0.08	0.20	0.1950
1A1a	Public electricity and heat production	35.53	4.71	0.07	0.18	0.3746
3B	Manure management	39.29	47.77	0.05	0.13	0.5071
1A4a + 1A4b	Commercial/institutional/residential	46.84	53.46	0.05	0.13	0.6379
3F	Field burning of agricultural wastes	18.88	1.92	0.04	0.10	0.7379
2A	Mineral products	44.22	24.74	0.03	0.08	0.8146
1A3b	Road transport	34.00	18.71	0.02	0.06	0.8759

NFR Code	NFR Category	Emissions (kt) 2000	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A2	Manufacturing Industries and Construction	21.32	12.25	0.01	0.03	0.9104
3D	Crop production and agricultural soils	28.45	26.25	0.01	0.03	0.9414
1A4c	Agriculture/Forestry/Fishing	7.30	2.89	0.01	0.02	0.9634
1A1b	Petroleum refining	2.07	0.24	0.00	0.01	0.9741
1B	Fugitive Emissions from Fuels	2.71	0.96	0.00	0.01	0.9832
1A3d	Navigation	1.76	2.46	0.00	0.01	0.9916
2D	Solvents use	1.89	1.06	0.00	0.00	0.9949
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	2.70	1.76	0.00	0.00	0.9976
1A1c	Manufacture of solid fuels and other energy industries	0.34	0.38	0.00	0.00	0.9985
5E	Other waste	1.88	1.55	0.00	0.00	0.9992
2B	Chemical industry	3.40	2.70	0.00	0.00	0.9995
2C	Metal production	4.75	3.69	0.00	0.00	0.9997
1A3a	Aviation LTO (civil)	0.05	0.06	0.00	0.00	0.9999

BC

NFR Code	NFR Category	Emissions (kt) 2000	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
5C	Incineration	8.21	12.60	0.17	0.34	0.3429
1A3b	Road transport	12.86	2.98	0.16	0.33	0.6718
1A4a + 1A4b	Commercial/institutional/residential	7.49	8.36	0.07	0.15	0.8227
1A4c	Agriculture/Forestry/Fishing	3.81	1.60	0.03	0.06	0.8830
1A2	Manufacturing Industries and Construction	4.42	2.19	0.03	0.05	0.9357
3F	Field burning of agricultural wastes	1.63	0.17	0.03	0.05	0.9882
1A1a	Public electricity and heat production	0.24	0.09	0.00	0.00	0.9925
1A3d	Navigation	0.33	0.32	0.00	0.00	0.9966
1A1b	Petroleum refining	0.08	0.03	0.00	0.00	0.9978
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	0.01	0.02	0.00	0.00	0.9986
1A3a	Aviation LTO (civil)	0.03	0.03	0.00	0.00	0.9991
2C	Metal production	0.07	0.06	0.00	0.00	0.9996
1A3c + 1A3e + 1A5	Other transport	0.10	0.08	0.00	0.00	0.9998
1A1c	Manufacture of solid fuels and other energy industries	0.07	0.05	0.00	0.00	0.9999
2A	Mineral products	0.00	0.00	0.00	0.00	1.0000

CO and Priority Heavy Metals

CO

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A3b	Road transport	2035.20	154.86	0.17	0.37	0.3734
5C	Incineration	310.25	579.67	0.12	0.25	0.6233
1A4a + 1A4b	Commercial/institutional/residential	425.64	442.22	0.07	0.15	0.7714
3F	Field burning of agricultural wastes	615.76	22.12	0.06	0.13	0.8980
1A2	Manufacturing Industries and Construction	268.46	181.50	0.02	0.04	0.9377
2C	Metal production	151.65	114.77	0.01	0.03	0.9668
1A1a	Public electricity and heat production	6.61	23.94	0.01	0.01	0.9785
1A4c	Agriculture/Forestry/Fishing	38.20	30.59	0.00	0.01	0.9868
2B	Chemical industry	22.61	16.12	0.00	0.00	0.9906
2G + 2H + 2I + 2J + 2K + 2L	Other products use and industrial processes	6.95	8.68	0.00	0.00	0.9938
1A3a	Aviation LTO (civil)	2.93	6.22	0.00	0.00	0.9966
1A1c	Manufacture of solid fuels and other energy industries	4.63	3.99	0.00	0.00	0.9977
1A3d	Navigation	9.51	4.89	0.00	0.00	0.9983
1B	Fugitive Emissions from Fuels	2.69	2.03	0.00	0.00	0.9988
1A1b	Petroleum refining	2.26	1.84	0.00	0.00	0.9993
5A	Biological treatment of waste: Solid waste disposal on land	0.07	0.70	0.00	0.00	0.9997
1A3c + 1A3e + 1A5	Other transport	2.54	1.51	0.00	0.00	0.9999

Pb

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A3b	Road transport	2491.59	34.82	0.02	0.50	0.5000
2C	Metal production	47.84	34.35	0.01	0.27	0.7709
1A2	Manufacturing Industries and Construction	26.79	10.12	0.00	0.08	0.8467
2A	Mineral products	5.66	8.99	0.00	0.07	0.9198
1A4a + 1A4b	Commercial/institutional/residential	5.86	4.49	0.00	0.04	0.9553
5C	Incineration	2.05	3.92	0.00	0.03	0.9873
1A1a	Public electricity and heat production	2.86	0.73	0.00	0.01	0.9925
1A3a	Aviation LTO (civil)	0.72	0.33	0.00	0.00	0.9950
1A1b	Petroleum refining	0.45	0.22	0.00	0.00	0.9967
1A4c	Agriculture/Forestry/Fishing	0.14	0.13	0.00	0.00	0.9977
1A3c + 1A3e + 1A5	Other transport	0.60	0.12	0.00	0.00	0.9985
1A3d	Navigation	0.18	0.10	0.00	0.00	0.9993
1A1c	Manufacture of solid fuels and other energy industries	0.63	0.10	0.00	0.00	0.9999
5E	Other waste	0.01	0.00	0.00	0.00	1.0000

Cd

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A2	Manufacturing Industries and Construction	15.78	0.82	0.10	0.32	0.3191
3F	Field burning of agricultural wastes	8.12	0.29	0.06	0.18	0.4973
5C	Incineration	0.83	1.58	0.05	0.15	0.6465
1A4a + 1A4b	Commercial/institutional/residential	1.19	1.45	0.04	0.13	0.7723
2C	Metal production	1.29	1.44	0.04	0.12	0.8946
2A	Mineral products	0.26	0.39	0.01	0.04	0.9302
1A3b	Road transport	0.20	0.33	0.01	0.03	0.9607
1A1b	Petroleum refining	0.25	0.29	0.01	0.02	0.9852
1A4c	Agriculture/Forestry/Fishing	0.02	0.07	0.00	0.01	0.9920
1A1c	Manufacture of solid fuels and other energy industries	0.01	0.04	0.00	0.00	0.9958
1A1a	Public electricity and heat production	1.24	0.27	0.00	0.00	0.9985
1A3d	Navigation	0.02	0.01	0.00	0.00	0.9992
5E	Other waste	0.01	0.01	0.00	0.00	0.9999
1A3c + 1A3e + 1A5	Other transport	0.00	0.00	0.00	0.00	1.0000

Hg

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
2C	Metal production	1.06	1.13	0.08	0.33	0.3266
2B	Chemical industry	1.88	0.00	0.05	0.22	0.5426
1A1a	Public electricity and heat production	3.38	0.59	0.04	0.15	0.6939
3F	Field burning of agricultural wastes	1.29	0.05	0.03	0.13	0.8239
1A3b	Road transport	0.11	0.16	0.01	0.05	0.8749
1A4a + 1A4b	Commercial/institutional/residential	0.17	0.15	0.01	0.04	0.9152
5C	Incineration	0.69	0.25	0.00	0.02	0.9350
1A2	Manufacturing Industries and Construction	1.71	0.54	0.00	0.02	0.9537
2D	Solvents use	0.21	0.10	0.00	0.02	0.9712
1A1b	Petroleum refining	0.05	0.06	0.00	0.02	0.9875
1A4c	Agriculture/Forestry/Fishing	0.02	0.01	0.00	0.00	0.9907
1A1c	Manufacture of solid fuels and other energy industries	0.05	0.01	0.00	0.00	0.9934
5E	Other waste	0.01	0.01	0.00	0.00	0.9958
1A3d	Navigation	0.04	0.02	0.00	0.00	0.9981

POPs

DIOX

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
1A1a	Public electricity and heat production	133.83	1.91	0.12	0.30	0.2952
2C	Metal production	77.21	67.79	0.09	0.21	0.5078
1A4a + 1A4b	Commercial/institutional/residential	56.12	58.00	0.08	0.20	0.7125
5C	Incineration	126.68	16.54	0.08	0.19	0.9073
5E	Other waste	18.31	15.89	0.02	0.05	0.9567
1A2	Manufacturing Industries and Construction	10.35	7.74	0.01	0.02	0.9774
3F	Field burning of agricultural wastes	4.62	0.17	0.00	0.01	0.9870
1A3b	Road transport	4.03	3.28	0.00	0.01	0.9966
1A4c	Agriculture/Forestry/Fishing	0.15	0.36	0.00	0.00	0.9983
1A1c	Manufacture of solid fuels and other energy industries	0.42	0.30	0.00	0.00	0.9991
1A3d	Navigation	0.27	0.21	0.00	0.00	0.9997
1A1b	Petroleum refining	0.18	0.02	0.00	0.00	1.0000

PAHs

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
3F	Field burning of agricultural wastes	21.18	0.76	0.16	0.48	0.4803
1A4a + 1A4b	Commercial/institutional/residential	41.03	36.99	0.08	0.24	0.7231
1A2	Manufacturing Industries and Construction	7.90	9.72	0.05	0.13	0.8556
1A3b	Road transport	0.05	0.9071			
1A1a	Public electricity and heat 0.05 0.92 c		0.01	0.03	0.9364	
2C	Metal production	15.00	11.51	0.01	0.02	0.9586
1B	Fugitive Emissions from Fuels	1.46	0.49	0.01	0.02	0.9772
5C	Incineration	0.31	0.59	0.00	0.01	0.9894
1A4c	Agriculture/Forestry/Fishing	0.22	0.44	0.00	0.01	0.9987
1A1c	Manufacture of solid fuels and other energy industries	0.24	0.14	0.00	0.00	0.9997
1A3a	Aviation LTO (civil)	0.00	0.01	0.00	0.00	0.9999
1A3c + 1A3e + 1A5	Other transport	0.02	0.02	0.00	0.00	1.0000

HCB

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
2B	Chemical industry	323.79	0.00	0.03	0.50	0.4988
3D	Crop production and agricultural soils	53.56	10.71	0.02	0.41	0.9043
1A1a	Public electricity and heat production	0.74	0.82	0.00	0.04	0.9406
1A4a + 1A4b	Commercial/institutional/residential	0.45	0.56	0.00	0.02	0.9655
1A2	Manufacturing Industries and Construction	0.55	0.47	0.00	0.02	0.9860
2C	Metal production	0.11	0.15	0.00	0.01	0.9928
1A3d	Navigation	0.12	0.08	0.00	0.00	0.9961
1A4c	Agriculture/Forestry/Fishing	0.06	0.05	0.00	0.00	0.9981
5C	Incineration	1.82	0.04	0.00	0.00	0.9993

PCBs

NFR Code	NFR Category	Emissions (kt) 1990	Emissions (kt) 2019	Rating trend	Contribution to the trend	Accumulated total
2C	Metal production	19.00	23.97	0.21	0.50	0.4988
1A2	Manufacturing Industries and Construction	3.77	0.24	0.13	0.31	0.8056
1A4a + 1A4b	Commercial/institutional/residential	2.75	1.11	0.06	0.14	0.9455
5C	Incineration	0.39	0.08	0.01	0.03	0.9726
1A1a	Public electricity and heat production	0.19	0.03	0.01	0.01	0.9866
1A4c	Agriculture/Forestry/Fishing	0.19	0.05	0.01	0.01	0.9987
1A3d	Navigation	0.22	0.22	0.00	0.00	1.0000

ANNEX 2. COMPLIANCE WITH INVENTORY REVIEWS

Chapter updated in March 2021.

A2.1. Compliance with 2014 UNECE stage 3 in-depth review

67 out of 70 recommendations are considered resolved. 3 recommendations (35, 69, 125) have the status of "addressing".

	Paragraph		Recommendation	Spain's observations	
	8	-	The ERT thanks the Party for facilitating the review process by providing detailed explanations and information during the review. The ERT recognises the effort made by the Party to refer to the original EMEP/EEA Guidebook version where default factors have been applied, and in many instances, the IIR also indicates whether the factors come from latest version of the EMEP/EEA Guidebook (i.e. 2013). The ERT commends and encourages the Party to continue to do so and, in particular, to indicate whether the emission factors are adopted in the latest version of the EMEP/EEA Guidebook.	Resolved. Big efforts have been done to update to latest version of the EMEP/EEA Guidebook. As a result, very few EF from older versions still remains. For transparency purposes, sector-specific chapters of IIR indicate detailed information on the sources of EF and the version adopted in each case.	
PART A: KEY REVIEW FINDINGS	14	-	Spain has compiled and presented in its IIR a level Key Source Category Analysis for the following pollutants: NO_X , $NMVOC$, SO_X , NH_3 , CO , $PM_{2.5}$, PM_{10} and TSP, lead (Pb), cadmium (Cd), mercury (Hg), dioxins and PAHs. A Key Category Analysis is not presented for PCBs.	Resolved. Fully included in 2017 Edition. Further information in IIR: chapter 1 and Annex 1 "Key Category analysis".	
	22	-	The ERT recommends that Spain performs additional reviews of emission sources entered as NE to determine if these sources can be estimated or whether they should be indicated as 'Not Occurring' (NO) or 'Included Elsewhere (IE).	Resolved. An analysis of the use of NE is included in IIR. See chapter 1, section 1.8.1. After the review, the Inventory considers that the emission sources currently entered as NE could neither be entered as NO nor IE.	
	28	-	ERT recommends that Spain provides information on sector-specific information on QA/QC procedures in future submissions.	Resolved. Information on sector-specific QA/QC procedures are included IIR. See chapter 1, section 1.6.6	
PART B: CROSS-CUTTING IMPROVEMENTS IDENTIFIED BY THE ERT	32	А	The 2012 inventory submission includes first estimates of PCB emissions for many sectors. A Key Category Analysis needs to be presented for PCBs.	Resolved. Fully implemented in 2017 Edition. Further information in IIR: Chapter 1 and Annex 1 "Key Category analysis".	
	32	В	To the extent possible, provide a web link to the register in which documentation relating to inventory preparation is contained, for use by CLRTAP reviewers. Alternatively, a table could be presented listing the documentation.	, · · ·	

	Paragraph		Recommendation	Spain's observations	
	32	С	Although efforts have been made to collect information from refining plants, gases flared at oil refineries could not be accounted for and, therefore, a proxy (crude oil processed) has been used.	Resolved. The Inventory has explored ways to implement this recommendation through consultations to plant operators. However, due to the lack of complete, accurate, consistent and comparable information, the Inventory considers the use of crude oil processed the best option to estimate emissions from flares. Furthermore, this category only accounts for 1.5% for NMVOC and 13.4% for SO _X to the total 1B key category, so the Inventory considers it is not a priority category within 1B.	
PART B: RECOMMENDATIONS ENERGY	35	-	Spain reports emissions from commercial/institutional and household mobile machinery in categories 1A4ai and 1A4bi. The ERT encourages Spain to report emissions from mobile sources under the corresponding NFR categories.	Addressing. Partly implemented in 2020 Inventory Edition. Separate emissions for mobile machinery from commercial/institutional category have been reported under 1a4aii category (Section 3.4 G). The source of information used for category 1A4b is the Energy Statistics reported by Spain to Eurostat/AIE. Currently, this source of information does not split into stationary and mobile. Thus, the Inventory planned improvements of this sector are focused on making separate estimates for subcategory 1A4bii.	
	38	-	The ERT encourages Spain to include emission factor values in future IIR versions, or to provide explicit references within the IIR to any Appendices where these factors are reported, which would increase transparency significantly.	Resolved. Sector-specific chapters of IIR include references to sources of emissions factors where values can be consulted.	
	40	-	The notation key 'NE' is used for categories and pollutants which the ERT considers to be negligible. However, with the exception of categories 1A1a and 1A1c, NH_3 emissions are reported as 'NA' although (minor) emissions might be occurring from these sources and therefore 'NE' should be used instead.	Resolved. Revised and included in 2015 Edition (NFR Sector 1 and 2).	
	42	-	The ERT encourages Spain to review the emission factors and compare them with the most recent version of the EMEP/EEA Guidebook, especially for the key sources.	Resolved. Big efforts have been done to update to the latest version of the EMEP/EEA Guidebook. As a result, very few EF from older versions still remains. For transparency purposes, sector-specific chapters of IIR indicate detailed information on the sources of EF and the version adopted in each case.	

	Para	ıgraph	Recommendation	Spain's observations
	43	-	The ERT commends Spain for providing a qualitative analysis at SNAP level 1 as well as a quantitative approach at SNAP level 3 for the four NEC pollutants.	Resolved. Included in 2016 edition a more disaggregated qualitative analysis classification NFR (5 levels) rather than SNAP (2 levels). See IIR section 1.7 and annex 3
	44	-	Spain has implemented QA/QC procedures for the Energy sector. Energy sector-specific QA/QC procedures are mainly based on occasional expert consultation and/or specific national or EU projects (ESD review), especially where energy consumption data are concerned. The QA/QC plan does not explicitly mention periodic reviews of the Energy sector by independent experts.	Resolved. Since October 2017, a QA audit is being performed by an independent consultancy firm. The audit plan envisages a four-year programme of work, being planned to an in-depth review
	46	-	The ERT recommends that Spain investigates this high amount of petroleum coke consumption as well as the sulphur content.	Resolved. This issue is not currently happening due to the new consumption considerations and the emission factors' update
	47	-	The ERT recommends that Spain reviews the sulphur contents used for calculation and that it compares the results with other data sources such as measurement based data from the LCP Directive or the E-PRTR register.	Resolved. In Edition 2018 of the Inventory, SO_X emission factors for this sector were revised leading to new emissions values in the category that do not show the reasons for the recommendation seen by the ERT in the Stage-3 review 2014
PART B:	48	-	The ERT also noted that the overall trend of those pollutants followed the trend in biomass consumption. Because this source is a key source of PM_{10} , PAHs and dioxin, the ERT recommends that Spain includes a description of the emission trend in the IIR.	Resolved. References to the link between biomass consumption and emission trends for PM_{10} , PAH and dioxin are included in different sections of IIR. See sections 3.3.2 and 3.4 G-3 for details
RECOMMENDATIONS ENERGY	49	-	The ERT noted that the PAH emissions reported from non-ferrous metals industries contributed 12% of the national total in 2012, and were mainly caused by anode furnaces in the primary aluminium industries. The ERT recommends that Spain reports emissions from primary aluminium under category 2.C.3 in order to increase the comparability of the inventory.	Resolved. Update to EMEP/EEA 2016 guidebook was performed in 2018 Inventory edition and PAHs has been reallocated from 1.A.2.b to 2.C.3 category. See 2018 IIR, chapter 4, section 4.5 for details on recalculations
	50	-	The ERT recommends that Spain investigates the source of 1.A.1.c natural gas consumption (e.g. by contacting statistics compilers) and includes this information in the future IIR, together with the selected emission factors.	Resolved. Implemented in 2016 Inventory Edition.
	51	-	During the review Spain explained that from the year 2007 onwards, measured emissions had been considered, while prior to 2007 emissions had mainly been estimated by means of emission factors. The ERT recommends that Spain reviews the emission factors used until 2006 in order to avoid a potential overestimation of dioxin emissions.	Resolved. The Inventory confirms the suitability of the emission factors used for category 1A1a. Details on the sources of these emission factors are included in IIR. See section 3.4 A.2.

	Para	ngraph	Recommendation	Spain's observations
	52	-	The ERT encourages the Party to include summary tables of emission factors (in particular for 1.A.4 - mobile sources) in future IIRs in order to enhance transparency and comparability.	Resolved. Information of sources for EF used under this category is included in IIR. See section 3.4 G.2.
	54	-	Emissions of Pb and Hg from air traffic (1.A.3.a) are currently not estimated, but the Party acknowledges the suggestion made in the 2013 EMEP/EEA Guidebook for estimating heavy metals emissions from this source and will consider it in future inventories. The ERT encourages the Party to carry out this work plan.	Details on sources for EF are included in IIR. See sections
PART B: RECOMMENDATIONS	55	-	Emissions of Pb, Hg and PAH from road vehicle tyre and brake wear (1.A.3.b.vi) are currently reported as NE. There are Pb and PAH factors available in the 2013 EMEP/EEA Guidebook for this source. The ERT recommends that the Party considers them accordingly and reports emissions in the next submission.	Details on sources for EF are included in IIR. See section
TRANSPORT	56	-	Dioxins emissions from railway traffic (1.A.3.c) are currently not estimated. The Party acknowledges the suggestion made in the 2013 EMEP/EEA Guidebook for estimating dioxin emissions from this source and will consider it for future inventories. The ERT encourages the Party to carry out this work plan.	Resolved. Implemented in 2016 Inventory Edition.
	60	-	The ERT noted that implied emission factors for PM_{25} and PM_{10} for Spain under 1.A.4.c.iii (national fishing) are at the lower end of the scale when comparing them with a selected group of Parties (AT, BE, DE, DK, FI, FR, GB, IE, IT, NL, NO). The ERT recommends that the Party reviews the emission factors for this sector.	Resolved. Implemented in 2016 Inventory Edition.
	62	-	The ERT encourages the Party to provide more details on the sector-specific OA/QC procedures that have been applied to the mobile sources in future IIRs.	Resolved. See section 1.6.6
PART B: RECOMMENDATIONS TRANSPORT	RECOMMENDATIONS 64 -		The ERT commends the Party for providing a detailed discussion in its IIR of the input data, assumptions and the methodology applied to the Road Transport sector. However, as the final emissions reported by Spain for this sector are based on fuel sold, the process of reconciling fuel consumption as estimated from traffic activities with fuel sales statistics has not been discussed in the IIR. During the review, the Party provided a detailed document explaining this process. The ERT encourages the Party to include this information in future IIRs.	Resolved. Section 3.4 E

	Para	ngraph	Recommendation	Spain's observations
	65 -		The ERT notes that emissions of NO_X , SO_X and $PM_{2.5}$ in the current (2014) submission now show opposite trends compared to the previous (2013) submission. The current submission suggests an overall downward trend for these pollutants while the previous submission indicated an upward trend. It was not clear to the ERT why these two datasets gave such different emission trends.	Resolved. Emissions of particulate matter and SO _X , from 1A3d maritime navigation and 1A4ciii national fishing, have been recalculated upwards since 2011. Emission factors of particulate matter and NO _X , from 1A3d maritime navigation and 1A4ciii national fishing, have been updated to those proposed in EMEP/EAA (2016) Guidebook. See 3.4 F
	67	-	The ERT also notes the Party's intention to verify the foundation of the MINETUR series as a priority improvement plan. The ERT strongly supports this work plan and encourages the Party to pursue it.	Resolved. Implemented in 2018 Inventory Edition.
	68	-	The ERT encourages the Party to make separate estimates for the 1.A.4.a.ii sub-sector to avoid a potential underestimation of the emissions from the 1.A.4.a sector, in particular NO_X and PM .	Resolved. Section 3.4 G
	69	-	The ERT encourages the Party to make separate estimates for the 1.A.4.b.ii sub-sector to avoid a potential underestimation of the emissions from the 1.A.4.b sector, in particular NO_X and PM .	Addressing. The source of information used for category 1A4b is the Energy Statistics reported by Spain to Eurostat/AIE. Currently, this source of information does not split into stationary and mobile. Thus, the Inventory planned improvements for this sector are focused on making separate estimates for subcategory 1A4bii.
	71	-	The ERT thanks Spain for this extra information and recommends that Spain includes this data in the submissions to improve the transparency of future IIRs, in accordance with any confidentiality restrictions that some of these data may be subject to.	Resolved. The IIR includes the most relevant information of the sector as well as references to emissions factors used.
PART B: RECOMMENDATIONS INDUSTRIAL PROCESSES	72	-	ERT notes that Spain has used the correct notation keys this time and compliments Spain on this. However, the ERT notes that individual PAH species in some sub-sectors are reported as IE in the NFR tables, while at the same time NE is used for the PAH total of the same sub-category (see paragraphs under "Sector-specific recommendations").	Resolved. Spain uses a draft table of notation keys. Each cell is automatically erased when there are emissions in a certain tuple (category*pollutant). As Spain only has estimates on total PAHs, when there are no emissions the notation keys will be IE for individuals and NE for total PAHs. The efficiency of the loading process will be damaged if all notation keys are changed to NE.
	74	-	the ERT encourages Spain to include plans for addressing the missing emissions (NE) in its IIR, either by obtaining data allowing for an emission estimate to be made, or by reporting the emissions as not applicable (NA).	Resolved. Spain has substantially reduced the number of NE to the minimum technically and methodologically affordable. An analysis of the use of NE is included in IIR. See chapter 1, section 1.8.1. The number of categories/pollutants for which EMEP/EEA GB provides an emission factor and the Inventory does not estimate

	Paragraph		Recommendation	Spain's observations
				emissions is very low (below 0,7%)
	79	-	The ERT commends Spain for this and encourages Spain to present the uncertainties for the Industrial Processes sector according to NFR in order to help support the improvement process when reporting emissions.	Resolved. Implemented in 2016 Inventory edition.
	81	-	The ERT recommends that NE should be used instead of IE, since the emissions of individual PAH species are not quantified anywhere else in the submitted estimates.	Resolved. Spain uses a draft table of notation keys. Each cell is automatically erased when there are emissions in a certain tuple (category*pollutant). As Spain only has estimates on total PAHs, when there are no emissions the notation keys will be IE for individuals and NE for total PAHs. The efficiency of the loading process will be damaged if all notation keys are changed to NE.
	82	-	The ERT thanks Spain for this explanation and encourages the Party to improve their submission's completeness and provide the PM_{10} , PM_{25} and TSP data time series with the next submission.	Resolved. Implemented in 2016 and 2017 Inventory editions.
	83	-	The Solvents and Other Product Use sector of Spain is not completely transparent. Where information is provided in Appendices or on websites this should be cited in the relevant sections of the IIR.	Resolved. The number of categories & and rubrics compiled by the inventory makes difficult to write and update a detailed report for each submission. The IIR synthesize the most relevant information of each sector.
	84	-	The ERT encourages Spain to reconsider the structure of the "Solvents and Other Product Use" chapter at NFR source category level in the next submission.	Resolved. Since 2015 Inventory edition, the IIR includes the most relevant information of the sector at NFR source category level.
	85	-	The ERT recommends that Spain includes information on which Tier methods have been used in the next submission.	Resolved. Fully implemented in 2018 Inventory edition.
PART B: RECOMMENDATIONS	88	-	The ERT recommends that Spain considers including these in the next submission (see also Transparency).	Resolved. Since 2015 Inventory edition, the IIR includes the most relevant information of the sector.
SOLVENTS	89	-	The ERT encourages Spain to consider, where possible, how activity data could be included clearly and unambiguously in the NFR Tables in the next submission.	Resolved. The constraints of the new NFR tables continue so Spain finds obstacles to properly document detailed and heterogeneous activity variables. Nevertheless, the IIR contains certain information considered relevant to understand trends and evolutions of emissions within the sector.
	90	-	The ERT recommends that Spain includes plans addressing the missing emissions (NE) in its IIR, either by obtaining data allowing for an emission estimate to be made, or by reporting the emissions as not applicable.	Addressing. Please see the answer for paragraph 74

	Paragraph		Recommendation	Spain's observations
	94	-	The ERT recommends that Spain explains these differences, which are due to the different geographical coverage under the NECD and LRTAP, also in the "Solvent" chapter in the next submission.	Resolved. The new EMEP grid allows Spain to report equal emissions for NEC and CLRTAP reporting (National total for compliance assessment).
	95	-	The ERT notes that this has not been done and reiterates its encouragement to implement sector-specific QA/QC procedures for the key sources in the next submission.	Resolved. Spain performs quality controls between correspondent consumption and production activities. Additionally, the emissions are regularly compared with surrounding European countries.
	96	-	The ERT encourages Spain to carry out the uncertainty analysis at NFR level in the future.	Resolved. Included in 2016 and 2017 Inventory editions.
	97	-	The ERT notes that the emissions of the key sources were not all calculated based on the Tier 2 methodology and recommends that the Party calculates all key sources based on the Tier 2 methodology. For more information see the relevant sector section.	Resolved. Most and larger emitting activities are estimated using a Tier 2 approach within 2D key source.
PART B: RECOMMENDATIONS SOLVENTS	99	-	The ERT notes that this has not been done and reiterates its encouragement to report key sources using a more disaggregated level of the NFR nomenclature (such as 3A1, 3A2 and 3A3 instead of 3A) in the next IIR submission.	Resolved. Since 2015 Inventory edition, the IIR includes the most relevant information of the sector at NFR source category level.
	101	-	Despite this, the ERT recommends that Spain determines emission factors based on the real solvent contents of products in the future.	Resolved. Spain has reviewed NMVOC emissions under 2D for 2017 Inventory edition. The study carried out has taken into account some of the data provided to the Ministry in compliance with national regulation (Royal Decree 117/2003, transposition of the VOC solvents emissions directive). Subcategories emission estimates have been recalculated based on the official data, in those cases when quality assurance and completeness requirements have been fulfilled.
PART B: RECOMMENDATIONS SOLVENTS	102	-	The ERT notes that this has not been done and reiterates its encouragement to develop methodologies compatible with higher Tier methods (with the use of emission factors based on the real solvent contents of products).	Resolved. Spain has reviewed NMVOC emissions under 2D for 2017 Inventory edition. The study carried out has taken into account some of the data provided to the Ministry in compliance with national regulation (Royal Decree 117/2003, transposition of the VOC solvents emissions directive). Subcategories emission estimates have been recalculated based on the official data, in those cases when quality assurance and completeness requirements have been fulfilled.

	Para	ngraph	Recommendation	Spain's observations	
	104	-	The ERT notes that this has not been done and reiterates its encouragement to investigate and estimate emissions from the consumption of solvents other than PER in order to consolidate the estimation of the consumption of non-chlorinated solvents in the next submission.	Resolved. Spain has reviewed NMVOC emissions under 2D for 2017 Inventory edition. The study carried out has taken into account some of the data provided to the Ministry in compliance with national regulation (Royal Decree 117/2003, transposition of the VOC solvents emissions directive). Subcategories emission estimates have been recalculated based on the official data, in those cases when quality assurance and completeness requirements have been fulfilled.	
	107	-	The ERT recommends that Spain estimates NO_{χ} and $NMVOC$ emissions from 4B and 4D, PM emissions from sheep and goats and PM emission from the field burning of agricultural wastes.	Resolved. NO_X and NMVOC emissions from 3B (old 4B) (3B1a, 3B1b, 3B2, 3B3, 3B4giv, 3B4d, 3B4e, 3B4f, 3B4gi, 3B4gii y 3B4giii) and 3D (old 4D) (3Da1, 3Da2a, 3Da2b, 3Da2c, 3Da3, 3Dc y 3De) have been estimated in 2017 Inventory edition. PM emissions from sheep and goats (3B2 y 3B4d) have been estimated in 2017 Inventory edition. PM emission from the field burning of agricultural wastes (3F) has been estimated in 2017 Inventory edition.	
PART B: RECOMMENDATIONS AGRICULTURE	108	-	Implementing emission factors and methodologies as recommended in the 2013 EMEP/EEA Guidebook.	Resolved. 2016 EMEP/EEA Guidebook factors and methodologies have been implemented in the 2017 Edition.	
	109	-	The ERT encourages the Party to undertake uncertainty analysis and to implement QA/QC checks to avoid errors.	Resolved. Implemented in 2017 Inventory edition.	
	110bis	-	Conversion factor of 46/30 should be used when NO emissions are converted to NO_X (as NO_2) emissions.	Resolved. The product of the EF by the amount of nitrogen applied allows the emissions of NO to be calculated as the mass of nitrogen that must then be translated using factor 46/14 to the molecular mass of NO2.	
	111	-	$4B-NH_3$. N excretion: Spain also stated that it was planning to develop a national methodology for sheep and goats.	Resolved. $3B\text{-NH}_3$ (former 4B) has been estimated for all animals with a Tier 2 2016 EMEP/EEA Guidebook methodology in the 2017 Inventory edition.	
PART B: RECOMMENDATIONS AGRICULTURE	112	4B Manure management. The ERT recommends that Spain implements the new NFR format, because 4D has been extended to include a new categor "3Da2a - Animal manure applied to soils".			

	Para	ngraph	Recommendation	Spain's observations
	113	-	The ERT encourages Spain to implement the NFR format 4D.	Resolved. Implemented in 2017 Inventory edition (2016 EMEP/EEA Guidebook factors and methodologies are implemented).
	115	-	The ERT encourages Spain to continue these improvements.	Resolved. Details on sources of EF used are included in IIR. See section 6.4 A
	116	-	The ERT encourages Spain to add this information in its submissions or, if possible, to include the sources in the inventory to avoid possible underestimations.	Resolved. Detailed information of these sources are included in IIR. See section 6.4 A
PART B: RECOMMENDATIONS	117	-	The ERT reiterates its recommendations from the 2009 review and encourages the Party to report the uncertainties also in NFR.	Resolved. For this edition, uncertainties have been reported as requested.
WASTE	118	-	The ERT encourages Spain to include in future reports an overview of documents related to the results of the quality checks listed in the QA/QC plan and further to include a summary of conclusions and advice in the annual review of the QA/QC plan.	
	119	-	The ERT encourages Spain to make these descriptions more SMART (specific, measureable, achievable, relevant and time-bound).	Resolved. To be analysed and considered for future editions.
	120	-	The ERT recommends implementing the 2013 EMEP/EEA Guidebook in the next submission.	Resolved.
	121	-	Emissions from wastewater handling are reported as NE. In this sub-sector mainly NMVOCs from wastewater treatment and $\mathrm{NH_3}$ from latrines are of interest. The Party responded in the 2009 review that emissions from wastewater handling would be included in 2010 reporting.	Resolved. Included as requested.
PART B: RECOMMENDATIONS	122	-	Concerning $\mathrm{NH_3}$ from latrines, the Party indicated that there was no activity date available. However, the Eurostat database showed that only 2% of the Spanish inhabitants are not connected to a sewage treatment plant. Using NA for this source seems the correct notation.	Resolved. Included as requested.
WASTE	123	-	The ERT reiterates its encouragement from the 2009 review, namely to calculate emissions from this source using country-specific data or the 2013 EMEP/EEA Guidebook.	Resolved. EF updated to EMEP/EEA Guidebook (2016) in 2017 Inventory edition.
	124	-	The ERT encourages Spain to use a country-specific emission factor for mercury arising from the cremation of human remains.	Resolved. EF has been updated to the EMEP/EEA Guidebook (2016) in 2017 Inventory edition.
	125	-	The ERT encourages Spain to include this source in future submissions.	Addressing. To be analysed and considered for future editions. We are looking for sources of information in order to complete this activity data for de next edition.

Paragraph		Recommendation	Spain's observations
126	-	The ERT recommends that the Party improves the transparency of this issue in future submissions.	Resolved. Since 2001, no burning of unmanaged waste is done in Spain, according to the focal point on waste. So, no emissions from this source are envisaged and hence, no allocation of emissions is necessary.
127 -		The ERT recommends correcting the assumption of consider Waste as a Key Category for $\rm NH_3$ for the years 2008 to 2012.	Resolved. "Wastewater handling (5D)" is considered Key Category for its trend (not level).

A2.2. Compliance with 2020 comprehensive technical review pursuant to the directive (EU) 2016/2284

8 out of 9 recommendations are considered resolved. 1 recommendations have the status of "addressing".

[Table 4:] All recommendations, revised estimates, technical corrections and unquantified potential technical corrections including those additionally made during the NECD Review 2020 and those not implemented from previous reviews, for NOx, NMVOC, SO₂, NH₃, PM_{2.5}

ES-1A4ciii- 2020-0002	Yes	1A4ciii Agriculture/Forestry/Fis hing: National Fishing, NO _X , 2018	For category 1A4ciii National Fishing, NO _x , for 2018 the TERT noted that there is a lack of transparency regarding use of Tier 1 method for a key category. This does not relate to an over- or under-estimate of emissions, based on estimations provided by Spain using fishing fleet data from Eurostat by applying main engine power and engine type categories described in Tier 2 methodology. In response to a question raised	Resolved	3.6
			during the review, Spain explained that the Spanish Inventory Team initiated work to upgrade to Tier 2 method but was not successful in completing the task and that the team will continue working to implement Tier 2 methodology in fishing emission estimates. The TERT recommends that Spain calculates NO _X emissions from category 1A4ciii in the next submission using a Tier 2 methodology.		
ES-3-2020- 0002	Yes	3B3 Manure Management - Swine, NH ₃ , 2000-2017	The TERT notes that significant recalculations have been applied (reductions between 13-16% change) for the key category 3B3 Manure Management – Swine, for the pollutant NH ₃ , and years 2000-2017. The TERT noted that there is a lack of transparency regarding the reason for this lower NH ₃ emission compared to the 2019 submission. IIR Table 5.5.1 does not give any specific explanation for NH ₃ recalculation but mentions changes in more general terms for all pollutants. This issue does not relate to an over- or underestimate of emissions. In response to a question raised during the review, Spain explained that housing period for Iberian swine has changes compared to previous inventory, where zero pasture period was assumed. An excel sheet provided by Spain, indicate that approximately 41% of the N-excretion take place on pasture. Thus, even the fact that Iberian swine only account for 10% of the total swine, this high grazing fraction means that 6% of the total N-excretion from swine takes place on pasture. This explained the lower NH ₃ emission from 3B3, which also explain a higher emission for 3Da3 compared to submission 2019. The TERT recommends that Spain include this detailed information in IIR.	Resolved	5.3 and 5.4

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation made in previous review report	Status	Section in IIR
ES-3B3-2020- 0002	Yes	3B3 Manure Management - Swine, NH ₃ , 2005-2018	For NH ₃ emission from 3B3 Manure Management - Swine, the TERT noted that that there is a lack of transparency regarding the inclusion of reduction effect due to use of abatement technology. The abatement technologies are mentioned in the IIR p.322-323, but further information on AD (the distribution of abatement technology) and EF (reducing potential) could improve the transparency and understanding of how the technology is included in the estimation. This does not relate to an over- or under-estimate of emissions. In response to a question raised during the review, Spain explained that abatement practice was based on a phone survey was completed in 2015, which include a questionnaire about abatement practices for ammonia reduction both, in terms of infrastructure and best practices of manure management. Abatement technology takes place in production of white swine, which account for approximately 90% of the total swine production, which indicate that changes for this category has a large impact at the overall emission from Swine. The TERT recommends that Spain include more detailed information on AD (the distribution of abatement technology and description of the documentation) and correct the reference to reflect the data use for NH ₃ reduction potential.		5.4
ES-3-2020- 0001	No	3B4d Manure Management - Goats, NO _X , NH ₃ , NMVOC, PM _{2.5} , PM ₁₀ , 1990-2018	The TERT notes, with reference to 3B4d Manure Management – Goats and years 1990-2018, a significant annually change in IEF for NO ₂ , NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ and TSP, while the number of goats for same period is nearly unchanged, which could indicate an over- or under-estimate. Goats are not a key source for any pollutants and the TERT noted that the issue is below the threshold of significance for a technical correction. In response to a question raised during the review Spain provided an Excel sheet including data for N-excretion and housing/grazing period for goats 1990-2018. In general, the trend is of increasing housing days caused by a more intensively production. However, significant annual variations are seen for housing/grazing period, which make the IEF jump up and down. The TERT recommends that Spain consider why the housing/grazing days differ significantly from year to year, and to consider if use of an 3-5 years average could be a possibility to avoid the annually jumps and dips. The TERT also recommends Spain explain the significantly annual variation in the IIR for next submission.	Resolved	5.4

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation made in previous review report	Status	Section in IIR
ES-3Da2a- 2020-0002	No	3Da2a Animal Manure Applied to Soils, NO _x , 1990-2018	The TERT notes with reference to 3D2a2 Animal Manure Applied to Soils and years 1990-2018, that there is a lack of transparency regarding the calculation of NO ₂ emission. In IIR Table p. 327 is stated that EF NO ₂ is based on Tier 1 methodology, but no information regarding the amount of N manure applied to soils is provided in the IIR. Based on CRF Table 3D (2020 submission) it is noted that 447343951 kg N in manure is applied to soils and using the default NO ₂ EF 0.04 kg NO ₂ per kg N applied, this result in a total emission of 17.89 kt NO ₂ . In the NFR (2020 submission), this amount is 4.46 kt NO ₂ , which is significantly lower. In response to a question raised during the review Spain confirmed that a Tier 1 methodology was used, but an error regarding the amount of N applied to soils was identified and a corrected estimate was attached, which shows a change below the significance of threshold. The TERT recommends Spain to correct the NO ₂ emission for 3D2a2 and include information for N amount from animal manure applied to soils, for the next submission 2021. Spain confirms during the review, that the corrected estimate and AD will be included in the next submission 2021.	Resolved	5.3 and 5.4

[Table 6:] All recommendations, revised estimates, technical corrections and unquantified potential technical corrections including those additionally made during the NECD Review 2020 and those not implemented from previous reviews, for heavy metals and POPs

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	Status	Section in IIR
ES-0A-2020- 0001	No	OA National Total - National Total for the Entire Territory - Based on Fuel Sold/Fuel Used, PM _{2.5} , BaP, PAHs, PCBs, HCB, Cd, Hg, Pb, PCDD/F, PM ₁₀ , CO, BC, 1990 - 2018	The TERT commends Spain for its quantitative estimation of uncertainty for NO _x , SO _x , NMVOC and NH ₃ and notes that Spain also has a clear and transparent qualitative estimation of uncertainty for other NECD pollutants. Spain has indicated during the review that efforts are being carried out in order to perform a quantitative analysis of uncertainties of particles, heavy metals and POPs. The TERT notes this ongoing improvement which will see full results at middle term. In the short-term, the TERT recommends that Spain continue to include new pollutants to the analysis (e.g. PM _{2.5}) for its next submission.	Resolved	1.7 and Annex.3

[Table 8:] All recommendations, revised estimates and unquantified potential technical corrections made during the NECD Review 2020 for LPS data

Observation	RE or UPTC in 2020	NFR, Pollutant(s), Year(s)	Recommendation	Status	Section in IIR
ES-LPS-A- 2020-0002	RE	A Public Power, PM _{2.5} , PM ₁₀ , 2015	For 169 LPSs in GNFR A_PublicPower, for PM _{2.5} and PM ₁₀ , and for the year 2015, the TERT noted that the reported PM ₁₀ emissions are lower than PM _{2.5} emissions. In response to a question raised during the review, Spain explained that this is due to a typing error in the national database. Spain provided a revised estimate for year 2015 and stated that it will be included in the next submission. The TERT agreed with the revised estimate provided by Spain. The TERT recommends that Spain include the revised estimate in its 2021 LPS and IIR submission.	Addressing	
ES-LPS-K- 2020-0001	NO	K Agriculture Livestock, 2015	The TERT notes that for the year 2015, emissions are reported for NFR code(s): 3B3 Manure Management - Swine, 3B4gi Manure Management - Laying hens, 3B4gii Manure Management - Broilers in the national inventory but not for GNFR code K_AgriLivestock in the LPS submission. During the review Spain informed the TERT that efforts are being carried out to widen the number of installations identified as point emissions sources, aiming at closing the gap between inventory LPS reporting and PRTR reporting. The TERT recommend Spain to continue this work and where possible report agricultural farms (poultry and swine) with a NH ₃ emission above 10000 kg NH ₃ for the LPS reporting. The TERT also recommends that Spain documents its approach including how it reconciles its mapping of emissions for LPS and gridded elements in its IIR.	Resolved	5.4

[Table 10:] All recommendations and unquantified potential technical corrections made during the NECD Review 2020 for gridded data

Observation	RE or UPTC in 2020	NFR, Pollutant(s), Year(s)	Recommendation	Status	Section in IIR
ES-GRID- GEN-2020- 0001	NO	General, SO ₂ , NO _x , NH ₃ , NMVOC, PM _{2.5} , 2015	For 2015 the TERT noted that there is a lack of transparency regarding gridded emissions. This does not relate to an over- or under-estimate of emissions. In response to a question raised during the review, Spain explained some of the methods used to make the gridded estimates.	Resolved	Cap. 10

Observation	RE or UPTC in 2020	NFR, Pollutant(s), Year(s)	Recommendation	Status	Section in IIR
			The TERT recommends that Spain provides a chapter in the IIR outlining the data and methods used to generate all of the gridded estimates, in accordance with the requirements outlined in Annex 2 of the reporting guidelines in its future submissions.		

ANNEX 3. UNCERTAINTY ANALYSIS

Chapter updated in March 2021.

A3.1. Uncertainty Analysis NOx

	Sector	Emissions in 1990	Emissions in 2019	Level assess ment	Cumulative total	Activity data uncertainty	Emission factor uncertainty		Contribution to variance in 2019	Type A sensitivity	Type B sensitivity	Uncertainty in trend in total emissions due to EF	Uncertainty in trend in total emissions due to AD	Uncertainty introduced into the trend in total national emissions
NFR	Name sector	kt	kt	(%)	(%)	(%)	(%)	(%)				(%)	(%)	(%)
1A3bi	Road transport: Passenger cars	315.1	126.5	19.6	19.6	17	16.97	24.0	22.1	0.019	0.095	0.33	2.28	5.31
1A3biii	Road transport: Heavy duty vehicles and buses	222.9	60.5	9.4	29.0	17	16.97	24.0	5.1	0.036	0.045	0.60	1.09	1.55
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	110.8	52.7	8.2	37.1	5.29	76	76.2	38.7	0.001	0.040	0.05	0.30	0.09
1A3dii	National navigation (shipping)	86.1	40.8	6.3	43.4	50	40	64.0	16.4	0.001	0.031	0.03	2.16	4.68
3Da1	Inorganic N-fertilizers (includes also urea application)	42.8	40.2	6.2	49.7	5	160	160.1	99.5	0.015	0.030	2.34	0.21	
1A1a	Public electricity and heat production	208.0	39.9	6.2	55.8	1.5	20	20.1	1.5	0.046	0.030	0.91	0.06	0.83
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	51.3	37.8	5.8	61.7	15	39.6	42.3	6.1	0.010	0.028	0.38	0.60	0.51
1A3bii	Road transport: Light duty vehicles	22.4	22.3	3.5	65.1	17	16.97	24.0	0.7	0.009	0.017	0.15	0.40	0.18
1A4bi	Residential: Stationary	18.9	20.2	3.1	68.3	20	40.35	45.0	2.0	0.008	0.015	0.33	0.43	0.30
1A4ciii	Agriculture/Forestry/Fishing: National fishing	41.5	20.2	3.1	71.4	75	40	85.0	7.0	0.000	0.015	0.00	1.60	
1A4ci	Agriculture/Forestry/Fishing: Stationary	13.2	19.6	3.0	74.4	15	40	42.7	1.7	0.010	0.015	0.40	0.31	0.25
3Da2a	Animal manure applied to soils	14.7	17.6	2.7	77.2	70.8	160	175.0	22.8	0.008	0.013	1.26	1.32	3.33
5C2	Open burning of waste	9.0	16.4	2.5	79.7	40	100	107.7	7.5	0.009	0.012	0.90	0.70	1.30
3Da3	Urine and dung deposited by grazing animals	9.3	12.5	1.9	81.6	70.8	160	175.0	11.5	0.006	0.009	0.96	0.94	1.81
1A4ai	Commercial/institutional: Stationary	4.6	10.8	1.7	83.3	5	35.6	35.9	0.4	0.006	0.008	0.23	0.06	0.06
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	6.7	10.6	1.6	84.9	4.42	23	23.4	0.1	0.006	0.008	0.13	0.05	0.02
1A1b	Petroleum refining	19.7	10.4	1.6	86.6	10	10.98	14.9	0.1	0.001	0.008	0.01	0.11	0.01
1A2d	Stationary combustion in manufacturing industries and construction: Pulp. Paper and Print	5.4	10.4	1.6	88.2	4.87	10	11.1	0.0	0.006	0.008	0.06	0.05	0.01
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	38.5	8.9	1.4	89.5	10	40	41.2	0.3	0.007	0.007	0.29	0.09	0.09
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	9.5	8.7	1.3	90.9	4.61	14	14.7	0.0	0.003	0.007	0.04	0.04	0.00
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	10.8	7.5	1.2	92.1	3.48	1	3.6	0.0	0.002	0.006	0.00	0.03	0.00
1A2e	Stationary combustion in manufacturing industries and construction: Food processing. beverages and tobacco	3.8	6.7	1.0	93.1	4.5	39	39.3	0.2	0.004	0.005	0.14	0.03	0.02
1A3ai(i)	International aviation LTO (civil)	1.6	6.5	1.0	94.1	25	10	26.9	0.1	0.004	0.005	0.04	0.17	0.03
1A1c	Manufacture of solid fuels and other energy industries	6.7	5.3	0.8	94.9	15	13.2	20.0	0.0	0.002	0.004	0.02	0.08	0.01
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals	3.4	5.2	0.8	95.7	4.27	48	48.2	0.2	0.003	0.004	0.13	0.02	0.02
1A3c	Railways	6.9	4.0	0.6	96.4	2	77.5	77.5	0.2	0.001	0.003	0.04	0.01	0.00
1B2c	Venting and flaring (oil, gas, combined oil and gas)	3.8	3.7	0.6	96.9	10	16.59	19.4	0.0	0.001	0.003	0.02	0.04	0.00
*	Other categories	46.1	19.9	3.1	100.0	100	100	141.4	18.9	0.002	0.015	0.19	2.11	4.47
kt		1,333.7	645.9						263.1					33.0
Uncertain	ty								16.2					5.7

A3.2. Uncertainty Analysis NMVOC

	Sector	Emissions in 1990	Emissions in 2019	Level assess ment	Cumulative total	Activity data uncertainty	Emission factor uncertainty	Combined uncertainty	Contribution to variance in 2019	Type A sensitivity	Type B sensitivity	Uncertainty in trend in total emissions due to EF	Uncertainty in trend in total emissions due to AD	Uncertainty introduced into the trend in total national emissions
NFR	Name sector	kt	kt	(%)	(%)	(%)	(%)	(%)				(%)	(%)	(%)
3Da2a	Animal manure applied to soils	64.9	74.9	12.3	12.3	50.1	300	304.2	1,404.2	0.035		10.65	5.18	
2D3d	Coating applications	190.3	63.6			24	58		43.0	0.048		2.78	2.10	12.16
2D3a	Domestic solvent use including fungicides	67.3	63.2	10.4		2	67			0.023		1.52	0.17	2.35
2D3g	Chemical products	40.3	60.1	9.9		17	78			0.035		2.75	1.41	9.53
1A4bi	Residential: Stationary	33.3	35.7	5.9		20	293.05	293.7	296.5	0.016		4.55	0.98	21.67
2D3h	Printing	8.8	26.5	4.4		40	125		32.7	0.021		2.59	1.46	
2D3e	Degreasing	37.0	23.4	3.9		10	200	200.2	59.4	0.001		0.29	0.32	0.19
3B1a	Manure management - Dairy cattle	27.0	22.3	3.7		50.1	300	304.2	124.8	0.006		1.85	1.54	5.82
2H2	Food and beverages industry	19.3	22.0	3.6		7	490	490.0	315.4	0.010		5.06	0.21	25.67
2D3i	Other solvent use (please specify in the IIR)	18.5	19.5	3.2		10			3.8	0.008		0.50	0.27	0.32
1B2ai	Fugitive emissions oil: Exploration, production, transport	13.1	18.0	3.0	70.6	10	200	200.2	35.3	0.010	0.018	2.00	0.25	4.06
5C2	Open burning of waste	11.2	17.5	2.9		40	200	204.0		0.011	0.017	2.11	0.96	
3B1b	Manure management - Non-dairy cattle	14.9	17.2	2.8		50.1	300	304.2	73.7	0.008	0.017	2.43	1.19	7.32
3B4gii	Manure management - Broilers	9.6	15.4	2.5		50.1	300	304.2	59.3	0.009		2.83	1.06	
3B3	Manure management - Swine	10.5	14.1	2.3		50.1	300	304.2	50.0	0.008		2.31	0.98	
1A3biv	Road transport: Mopeds & motorcycles	45.9	11.4	1.9		21	21.21	29.8	0.3	0.015	0.011	0.33	0.33	0.22
2B10a	Chemical industry: Other (please specify in the IIR)	6.1	9.9	1.6	84.6	10	75	75.7	1.5	0.006	0.010	0.46	0.14	0.23
3De	Cultivated crops	9.0	9.8	1.6	86.2	3	300	300.0	23.6	0.004	0.010	1.32	0.04	1.75
1A1a	Public electricity and heat production	0.8	8.4	1.4	87.6	3	121	121.0	2.8	0.008	0.008	0.94	0.03	0.88
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	16.1	7.4	1.2	88.8	4.61	50	50.2	0.4	0.002	0.007	0.10	0.05	0.01
1A4aii	Commercial/institutional: Mobile	0,0	7,1	1,2	90,0	15	100	101,1	1,4	0,007	0,007	0,70	0,15	0,51
1A3bi	Road transport: Passenger cars	190.9	5.3	0.9	90.9	21	21.21	29.8	0.1	0.105	0.005	2.23	0.15	4.98
3B4giv	Manure management - Other poultry	4.2	4.5	0.7	91.6	1.5	97.2	97.2	0.5	0.002	0.004	0.19	0.01	0.04
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	11.8	4.3	0.7	92.3	15	35.92	38.9	0.1	0.003	0.004	0.10	0.09	0.02
1A2e	Stationary combustion in manufacturing industries and construction: Food processing. beverages and tobacco	0.2	4.2	0.7	93.0	4.5	48	48.2	0.1	0.004	0.004	0.19	0.03	0.04
5A	Biological treatment of waste - Solid waste disposal on land	2.1	3.6	0.6	93.6	30	92.3	97.1	0.3	0.002	0.003	0.21	0.15	0.07
1B2av	Distribution of oil products	27.2	3.3	0.5	94.1	40	2	40.0	0.0	0.012	0.003	0.02	0.18	0.03
1A2d	Stationary combustion in manufacturing industries and construction: Pulp. Paper and Print	2.0	3.2	0.5	94.7	5	100	100.1	0.3	0.002	0.003	0.20	0.02	0.04
2H1	Pulp and paper industry	2.6	3.2	0.5	95.2	5	100	100.1	0.3	0.002	0.003	0.16	0.02	0.03
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	3.1	2.4	0.4	95.6	5.29	76	76.2	0.1	0.001	0.002	0.04	0.02	0.00
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	0.3	2.4	0.4	96.0	4.42	40	40.2	0.0	0.002	0.002	0.08	0.01	0.01
3B4gi	Manure management - Laying hens	1.8	1.9	0.3	96.3	50.1	300	304.2	0.9	0.001	0.002	0.25	0.13	0.08
1A3bv	Road transport: Gasoline evaporation	82.5	1.8	0.3	96.6	21	21.21	29.8	0.0	0.046	0.002	0.97	0.05	0.95
1A3dii	National navigation (shipping)	3,6	1,8	0,3	96,9	50	50	70,7	0,0	0,000	0,002	0,01	0,12	0,02
1A4ai	Commercial/institutional: Stationary	0.2	1.7	0.3	97.2	15	40	42.7	0.0	0.002	0.002	0.06	0.03	0.00
*	Other categories	49.5	17.3	2.8	100.0	100	100	141.4	16.1	0.012	0.017	1.18	2.38	7.05
Kt		1,025.9	608.3						2,692.0					275.9
Uncertair	aty								51.9					16.6

A3.3. Uncertainty Analysis SOx

	Sector	Emissions in 1990	Emissions in 2019	Level assess ment	Cumulative total	Activity data uncertainty	Emission factor uncertainty		Contribution to variance in 2019	Type A sensitivity	Type B sensitivity	Uncertainty in trend in total emissions due to EF	Uncertainty in trend in total emissions due to AD	Uncertainty introduced into the trend in total national emissions
NFR	Name sector	kt	kt	(%)	(%)	(%)	(%)	(%)				(%)	(%)	(%)
1A1a	Public electricity and heat production	1,407.4	22.4	15.0		1.5	20	20.1	9.1	0.039	0.011	0.79	0.02	0.62
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	88.8	22.1	14.8	29.8	5.29	1	5.4	0.6	0.008	0.011	0.01	0.08	0.01
1B2aiv	Fugitive emissions oil: Refining / storage	39.1	20.7	13.8	43.7	10	2	10.2	2.0	0.009	0.010	0.02	0.14	0.02
1A3dii	National navigation (shipping)	34.1	11.7	7.9		50	30	58.3	21.0	0.005		0.14	0.41	0.18
1A4bi	Residential: Stationary	19.0	8.9	6.0		20		44.9	7.2		0.004	0.15	0.12	0.04
	Commercial/institutional: Stationary	6.0	8.7	5.8		5	40.3	40.6	5.6	0.004	0.004	0.16	0.03	0.03
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals	18.5	7.4	4.9	68.3	4.27	2	4.7	0.1	0.003	0.004	0.01	0.02	0.00
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	47.5	6.8	4.5	72.8	4.42	363	363.0	272.6	0.002	0.003	0.59	0.02	0.35
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	28.5	6.3	4.2		35.75	4	36.0	2.3	0.002	0.003	0.01	0.16	
1A2e	Stationary combustion in manufacturing industries and construction: Food processing. beverages and tobacco	36.3	5.2	3.5	80.5	4.5	2	4.9	0.0	0.001	0.003	0.00	0.02	0.00
2H1	Pulp and paper industry	2.3	3.3	2.2	82.7	5	100	100.1	4.9	0.002	0.002	0.15	0.01	0.02
2B10a	Chemical industry: Other (please specify in the IIR)	9.7	3.1	2.1	84.8	2	20	20.1	0.2	0.001	0.002	0.02	0.00	0.00
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	28.9	3.1	2.1	86.9	4.61	2	5.0	0.0	0.000	0.002	0.00	0.01	0.00
1B2c	Venting and flaring (oil. gas. combined oil and gas)	24.0	3.0	2.0	88.9	10	18.87	21.4	0.2	0.001	0.001	0.01	0.02	0.00
2C3	Aluminium production	2.7	2.9	1.9	90.8	2	20	20.1	0.2	0.001	0.001	0.03	0.00	0.00
1A1b	Petroleum refining	125.5	2.7	1.8	92.7	10	2	10.2	0.0	0.003	0.001	0.01	0.02	0.00
1A1c	Manufacture of solid fuels and other energy industries	11.0	1.8	1.2	93.9	4.6	2	5.0	0.0	0.000	0.001	0.00	0.01	0.00
2C7a	Copper production	1.0	1.4	1.0	94.9	5	2	5.4	0.0	0.001	0.001	0.00	0.00	0.00
2C1	Iron and steel production	1.3	1.2	0.8	95.7	40	190	194.2	2.4	0.001	0.001	0.10	0.03	0.01
1A4ci	Agriculture/Forestry/Fishing: Stationary	1.2	1.0	0.7	96.3	15	40	42.7	0.1	0.000	0.001	0.02	0.01	0.00
1A2d	Stationary combustion in manufacturing industries and construction: Pulp. Paper and Print	25.5	1.0	0.7	97.0	4.87	6	7.7	0.0	0.000	0.000	0.00	0.00	0.00
*	Other categories	80.0	4.5	3.0	100.0	100	100	141.4	17.9	0.001	0.002	0.07	0.31	0.10
Kt		2,038.6	149.5						346.4					1.4
Uncertain	ty								18.6					1.2

A3.4. Uncertainty Analysis NH₃

	Sector	Emissions in 1990	Emissions in 2019	Level assess ment	Cumulative total	Activity data uncertainty	Emission factor uncertainty	Combined uncertainty	Contribution to variance in 2019	Type A sensitivity	Type B sensitivity	Uncertainty in trend in total emissions due to EF	Uncertainty in trend in total emissions due to AD	Uncertainty introduced into the trend in total national emissions
NFR	Name sector	kt	kt	(%)	(%)	(%)	(%)	(%)				(%)	(%)	(%)
3Da2a	Animal manure applied to soils	109.8	133.6	28.3	28.3	70.8	50	86.7	603.6	0.048	0.287	2.41	28.72	830.49
3Da1	Inorganic N-fertilizers (includes also urea application)	92.3	73.8	15.7	44.0	5	50	50.2	62.0	0.042	0.159	2.10	1.12	5.65
3B3	Manure management - Swine	59.0	73.2	15.5	59.5	70.8	136	153.3	566.6	0.029	0.157	3.92	15.73	262.74
3B1b	Manure management - Non-dairy cattle	28.1	38.5	8.2	67.7	70.8	136	153.3	156.9	0.021	0.083	2.92	8.28	77.04
3Da3	Urine and dung deposited by grazing animals	22.8	36.6	7.8	75.5	70.8	136	153.3	142.2	0.029	0.079	3.96	7.88	77.78
3B1a	Manure management - Dairy cattle	39.3	28.8	6.1	81.6	70.8	136	153.3	87.7	0.024	0.062	3.20	6.19	48.54
3B4gii	Manure management - Broilers	20.6	24.2	5.1	86.7	70.8	136	153.3	61.9	0.007	0.052	0.98	5.20	27.98
3B4giv	Manure management - Other poultry	13.0	13.2	2.8	89.5	70.8	136	153.3	18.5	0.000	0.028	0.02	2.84	8.07
3B2	Manure management - Sheep	11.5	9.8	2.1	91.6	70.8	136	153.3	10.2	0.004	0.021	0.54	2.11	4.75
1A4bi	Residential: Stationary	6.4	7.4	1.6	93.2	3	100	100.0	2.4	0.002	0.016	0.19	0.07	0.04
3B4gi	Manure management - Laying hens	7.7	6.6	1.4	94.6	70.8	136	153.3	4.6	0.003	0.014	0.36	1.41	2.13
3B4d	Manure management - Goats	2.3	5.4	1.1	95.7	70.8	136	153.3	3.1	0.006	0.012	0.88	1.16	2.13
3B4e	Manure management - Horses	2.0	5.2	1.1	96.8	35	50	61.0	0.5	0.007	0.011	0.34	0.56	0.43
3Da2b	Sewage sludge applied to soils	1.1	2.5	0.5	97.4	70.8	136	153.3	0.7	0.003	0.005	0.42	0.55	0.48
*	Other categories	49.7	12.4	2.6	100.0	100	100	141.4	13.9	0.081	0.027	8.13	3.77	80.34
Kt		465.7	471.3						1,734.65					1,428.6
Uncertain	ity								41.6					37,8

A3.5. Uncertainty Analysis PM_{2.5}

	Sector	Emissions in 1990	Emissions in 2019	Level assess ment	Cumulative total	Activity data uncertainty	Emission factor uncertainty	Combined uncertainty	Contribution to variance in 2019	Type A sensitivity	Type B sensitivity	Uncertainty in trend in total emissions due to EF	Uncertainty in trend in total emissions due to AD	Uncertainty introduced into the trend in total national emissions
NFR	Name sector	kt	kt	(%)	(%)	(%)	(%)	(%)				(%)	(%)	(%)
1A4bi	Residential: Stationary	41.1	47.8	35.5	35.5	20.0	99.7	101.7	1,301.4	0.085	0.292	8.51	8.25	140.60
5C2	Open burning of waste	29.2	44.7	33.1	68.6	63.0	200.0	209.7	4,825.9	0.126	0.273	25.20	24.29	1,225.08
1A3bvi	Road transport: Automobile tyre and brake wear	2.8	3.3	2.4	71.0	17.0	32.3	36.5	0.8	0.006	0.020	0.19	0.48	0.27
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	3.4	3.0	2.2	73.2	4.6	77.5	77.6	2.9	0.001	0.018	0.08	0.12	0.02
1A1a	Public electricity and heat production	10.2	2.9	2.1	75.4	1.5	30.0	30.0	0.4	0.034	0.017	1.01	0.04	1.03
1A3bi	Road transport: Passenger cars	9.7	2.5	1.8	77.2	17.0	13.0	21.4	0.2	0.034	0.015	0.44	0.36	0.32
1A3dii	National navigation (shipping)	1.6	2.2	1.6	78.8	50.0	50.0	70.7	1.3	0.006	0.013	0.28	0.95	0.98
2G	Other product use (please specify in the IIR)	0.7	2.1	1.5	80.3	2.0	13.0	13.2	0.0	0.009	0.013	0.12	0.04	0.01
1A3bvii	Road transport: Automobile road abrasion	1.7	1.9	1.4	81.7	17.0	24.9	30.2	0.2	0.003	0.012	0.08	0.28	0.08
1A4ai	Commercial/institutional: Stationary	2.1	1.9	1.4	83.1	5.0	33.7	34.0	0.2	0.001	0.011	0.02	0.08	0.01
1A2d	Stationary combustion in manufacturing industries and construction: Pulp. Paper and Print	2.4	1.9	1.4	84.5	4.9	77.0	77.2	1.1	0.001	0.011	0.05	0.08	0.01
3F	Field burning of agricultural residues	17.6	1.8	1.3	85.8	63.0	24.1	67.5	0.8	0.077	0.011	1.86	0.97	4.42
1A2e	Stationary combustion in manufacturing industries and construction: Food processing. beverages and tobacco	1.8	1.7	1.3	87.1	4.5	85.5	85.7	1.2	0.001	0.010	0.10	0.07	0.01
5E	Other waste (please specify in IIR)	1.9	1.6	1.2	88.3	25.2	50.5	56.4	0.4	0.000	0.009	0.00	0.34	0.11
2B10a	Chemical industry: Other (please specify in the IIR)	2.0	1.5	1.1	89.4	10.0	132.0	132.4	2.2	0.001	0.009	0.09	0.13	0.03
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	5.7	1.5	1.1	90.5	15.0	39.3	42.1	0.2	0.020	0.009	0.77	0.19	0.63
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	2.3	1.2	0.9	91.3	6.3	39.3	39.8	0.1	0.005	0.007	0.19	0.06	0.04
2C1	Iron and steel production	1.0	1.0	0.8	92.1	3.1	472.0	472.0	13.4	0.001	0.006	0.58	0.03	0.33
3Dc	Farm-level agricultural operations including storage. handling and transport of agricultural products	1.1	1.0	0.7	92.8	3.0	400.0	400.0	9.0	0.001	0.006	0.27	0.03	0.07
2A5a	Quarrying and mining of minerals other than coal	1.3	0.9	0.7	93.5	5.0	100.0	100.1	0.5	0.001	0.006	0.11	0.04	0.01
1A4ci	Agriculture/Forestry/Fishing: Stationary	0.6	0.9	0.7	94.2	15.0	39.8	42.6	0.1	0.002	0.005	0.10	0.12	0.02
2H1	Pulp and paper industry	0.4	0.8	0.6	94.8	5.0	194.0	194.1	1.5	0.003	0.005	0.62	0.04	0.38
2A3	Glass production	0.7	0.8	0.6	95.4	5.0	120.2	120.3	0.5	0.001	0.005	0.16	0.03	0.03
1A3biii	Road transport: Heavy duty vehicles and buses	6.9	0.7	0.5	95.9	17.0	13.0	21.4	0.0	0.030	0.004	0.39	0.10	0.16
1A4ciii	Agriculture/Forestry/Fishing: National fishing	0.9	0.4	0.3	96.2	75.0	50.0	90.1	0.1	0.002	0.003	0.08	0.28	0.09
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	3.3	0.4	0.3	96.5	10.0	40.0	41.2	0.0	0.014	0.003	0.56	0.04	0.32
1A3bii	Road transport: Light duty vehicles	3.5	0.4	0.3	96.8	17.0	13.0	21.4	0.0	0.015	0.002	0.20	0.06	0.04
3B4giv	Manure management - Other poultry	0.5	0.4	0.3	97.1	50.1	400.0	403.1	1.3	0.000	0.002	0.08	0.16	0.03
*	Other categories	7.6	3.9	2.9	100.0	100.0	100.0	141.4	16.8	0.014	0.024	1.43	3.37	13.40
Kt		163.8	134.8						6,182.4					1,388.5
Uncertair	ty								78.6					37.3

ANNEX 4. NATIONAL EMISSIONS DATA

Chapter updated in March 2021.

A4.1. National emissions data

The EMEP grid domain employed in the current IIR edition includes the Balearic Islands and Ceuta and Melilla autonomous cities, and excludes the Canary Islands. As a consequence, geographical coverage of CLRTAP's and NEC Directive's Reports fully match.

The current IIR edition describes the information related to the emission estimates covered by the EMEP grid domain.

In this Annex, national emissions data, including the Canary Islands, are provided for information purposes only.

In addition, NO_X and NMVOC emissions for the period 1988 to 1989 have been included in compliance with the Protocol concerning the Control of Emissions of Nitrogen Oxides and the Protocol on Volatile Organic Compounds.

Year	NOx (kt)	NMVOC (kt)	SOx (kt)	NH ₃ (kt)	PM _{2.5} (kt)	PM ₁₀ (kt	TSP (kt)	BC (kt)	CO (kt)
1987	1,210								
1988	1,251	1,035							
1989	1,366	1,000							
1990	1,400	1,056	2,116	470					3,996
1995	1,453	985	1,818	434					3,110
2000	1,453	965	1,420	528	168	254	339	41	2,596
2005	1,443	811	1,228	488	151	244	338	40	1,912
2010	985	633	260	439	140	205	273	36	1,670
2011	976	607	295	427	141	204	269	36	1,644
2012	930	582	298	422	125	182	240	30	1,408
2013	826	568	232	425	138	194	250	33	1,610
2014	825	569	251	447	122	178	234	28	1,437
2015	835	589	268	456	130	189	251	29	1,538
2016	793	598	227	461	127	190	252	28	1,515
2017	798	611	234	479	127	187	252	28	1,513
2018	761	624	212	478	139	201	269	31	1,660
2019	717	622	165	474	138	199	266	30	1,621

Year	Pb (t)	Cd (t)	Hg (t)	As (t)	Cr (t)	Cu (t)	Ni (t)	Se (t)	Zn (t)	DIOX (g I TEQ)	PAHs (t)	HCB (kg)	PCB (kg)
1990	2,683	30	12	16	31	105	202	8	340	436	89	382	27
1995	889	23	14	13	33	124	235	8	310	471	79	208	41
2000	508	18	10	17	39	166	250	10	398	207	72	193	33
2005	139	13	9	15	40	186	230	10	406	187	71	136	36
2010	124	9	6	13	31	174	142	8	426	181	72	12	34
2011	102	9	6	14	31	162	126	8	434	181	72	13	31
2012	94	8	6	12	31	152	110	8	373	178	68	11	29
2013	100	9	5	14	28	146	95	8	440	173	68	8	27

Year	Pb (t)	Cd (t)	Hg (t)	As (t)	Cr (t)	Cu (t)	Ni (t)	Se (t)	Zn (t)	DIOX (g I TEQ)	PAHs (t)	HCB (kg)	PCB (kg)
2014	101	8	5	11	29	150	83	8	372	176	69	12	27
2015	99	8	5	13	30	155	82	8	415	183	69	10	27
2016	95	8	6	13	30	158	88	8	412	175	79	12	25
2017	92	8	6	13	30	161	97	8	410	172	70	12	27
2018	96	9	5	15	31	163	93	8	464	174	69	13	27
2019	102	8	4	13	28	161	85	8	460	174	64	13	26

ANNEX 5. INFORMATION ON CONDENSABLE COMPONENT OF PM

Chapter updated in March 2021.

A5.1. Information on the condensable component of PM

Within the CLRTAP, the Executive Body at its thirty-eight session formally requested that Parties describe their practices for reporting the condensable component of PM in their IIRs, (ECE/EB,AIR/142 para 18,f). The purpose is to provide transparent information that can easily be used by the modellers. To this end, information regarding the inclusion or not of the condensable component of PM in the reported emissions is provided in this annex. An extract of this annex has been included in the relevant sector chapters in order to inform on the matter on a sector basis.

NFR	Source/sector name	conde	sions: the nsable onent is	EF reference and comments
		included	excluded	
1A1a	Public electricity and heat production		х	LPS: continuous stack measurements of TSP (mainly opacimeters, calibrated by gravimetry and isokinetic sampling); PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data Area sources: default EF from CEPMEIP Database (2000).
1A1b	Petroleum refining		Х	Varying degrees of complexity; in majority emission factors represent filterable PM emissions.
1A1c	Manufacture of solid fuels and other energy industries		х	LPS (coke plants): country-specific TSP and PM ₁₀ EF; PM _{2.5} fraction based in CEPMEIP Area sources: mainly default EF from CEPMEIP Database (2000), but also from EEA/EMEP Guidebook (2019) where most of the EF used represents only filterable PM emissions.
1A2a	Stationary combustion in manufacturing industries and construction: Iron and Steel	•	cluded but clear	Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019); TSP (mainly opacimeters, calibrated by gravimetry and isokinetic sampling); PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data Periodic measurements (between one time a week and once a year).

NFR	Source/sector name	PM emiss conde compo	nsable	EF reference and comments	
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019); TSP (mainly opacimeters, calibrated by gravimetry and isokinetic sampling); PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data Periodic measurements (between one time a month and once a year).	
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019).	
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019). Periodic measurements (between one time a month and more than once a year).	
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	Mostly excluded but unclear		Varying degrees of complexity: in majority emissions factors represent filterable PM emissions, but it may not be clear whether only the filterable part or the total part is represented (EMEP/EEA Guidebook (2019).	
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	Mostly excluded but unclear		Varying degrees of complexity; in majority emission factors represent filterable PM emissions (EMEP/EEA Guidebook (2019), OFICEMEN).	
1A2gvii	Mobile combustion in manufacturing industries and construction (please specify in the IIR)	Х		EF from EEA/EMEP Guidebook (2019).	
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)		Х	PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data Periodic measurements (between one time a week and once a year).	
1A3ai(i)	International aviation LTO (civil)	X		EF from FEIS model (EUROCONTROL).	

NFR	Source/sector name	conde	sions: the nsable onent is	EF reference and comments
1A3aii(i)	Domestic aviation LTO (civil)	Х		
1A3bi	Road transport: Passenger cars	X		EF from EEA/EMEP Guidebook (2016): The measurement procedure regulated for vehicle exhaust PM mass characterisation requires that samples are taken at a temperature lower than 52°C, At this temperature, PM contains a large fraction of condensable species, Hence, PM mass emission factors in this sector are considered to include both filterable and condensable material.
1A3bii	Road transport: Light duty vehicles	Х		
1A3biii	Road transport: Heavy duty vehicles and buses	Х		
1A3biv	Road transport: Mopeds & motorcycles	Х		
1A3bv	Road transport: Gasoline evaporation	N	IA	
1A3bvi	Road transport: Automobile tyre and brake wear	Х		EF from EEA/EMEP Guidebook (2016).
1A3bvii	Road transport: Automobile road abrasion	Х		
1A3c	Railways	Х		Default T1 EF from EEA/EMEP Guidebook (2019).
1A3di(ii)	International inland waterways	N	10	
1A3dii	National navigation (shipping)	Х		EF from EEA/EMEP Guidebook (2019).
1A3ei	Pipeline transport		Х	Default EF from CEPMEIP Database (2000).
1A3eii	Other (please specify in the IIR)	N	10	
1A4ai	Commercial/Institutional: Stationary	Depending on category and fuel.		EF from EEA/EMEP Guidebook (2019), Chapter 1A4, Small combustion Boilers – Solid and Liquid fuels: It is unclear whether PM emissions include or not the condensable component Boilers – Gaseous fuels: Condensable component excluded Boilers – Biomass: Condensable component included Turbines – All fuels: It is unclear whether PM emissions include or not the condensable component Stationary engines – Liquid fuels: Condensable component excluded Stationary engines – Gaseous fuels: It is unclear whether PM emissions include or not the condensable component.
1A4aii	Commercial/Institutional: Mobile	Х		Default EF from EEA/EMEP Guidebook (2019), Chapter 1A4. Non-road mobile machinery, table 3-1.

NFR	Source/sector name	conde	sions: the ensable onent is	EF reference and comments
1A4bi	Residential: Stationary	Depending on category and fuel.		EF from EEA/EMEP Guidebook (2019), Chapter 1A4, Small combustion Boilers – Solid fuels: Condensable component excluded Boilers – Gas oil: Condensable component excluded. Boilers – Rest of Liquid fuels: It is unclear whether PM emissions include or not the condensable component Boilers – Gaseous fuels: It is unclear whether PM emissions include or not the condensable component Boilers – Gaseous fuels: It is unclear whether PM emissions include or not the condensable component Boilers – Biomass: Condensable component included.
1A4bii	Residential: Household and gardening (mobile)	I	IE	
1A4ci	Agriculture/Forestry/Fishing: Stationary	Depending on category and fuel.		EF from EEA/EMEP Guidebook (2019), Chapter 1A4, Small combustion Boilers – Solid and Liquid fuels: It is unclear whether PM emissions include or not the condensable component Boilers – Gaseous fuels: Condensable component excluded Boilers – Biomass: Condensable component included Stationary engines – Gas oil: Condensable component excluded Stationary engines – Rest of Liquid fuels: It is unclear whether PM emissions include or not the condensable component.
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	Х		EF from EEA/EMEP Guidebook (2019).
1A4ciii	Agriculture/Forestry/Fishing: National fishing	Х		EF from EEA/EMEP Guidebook (2019).
1A5a	Other stationary (including military)	ı	IE	
1A5b	Other, Mobile (including military, land based and recreational boats)	Х		Aggregated methodology from 1A3a, 1A3b, 1A3dii (see categories above)
1B1a	Fugitive emission from solid fuels: Coal mining and handling	No information available.		EF from EEA/EMEP Guidebook (2019).
1B1b	Fugitive emission from solid fuels: Solid fuel transformation	No information available.		EF from EEA/EMEP Guidebook (2019).
1B1c	Other fugitive emissions from solid fuels	NO		
1B2ai	Fugitive emissions oil: Exploration, production, transport	NA		
1B2aiv	Fugitive emissions oil: Refining and storage	No information available.		EMEP/EEA Guidebook (2019). Continuous measurements.
1B2av	Distribution of oil products	N	NΑ	

NFR	Source/se	ctor name	PM emissions: the condensable component is		EF reference and comments
1B2b	Fugitive emissions fro (exploration, product transmission, storage other)	ion, processing,	NA		
1B2c	Venting and flaring (or and gas)	oil, gas, combined oil	No informat	ion available.	Continuous measurements.
1B2d	Other fugitive emissi production	ons from energy	N	10	
2A1	Cement production		I	E	
2A2	Lime production		No informat	ion available.	EMEP/EEA GB 2019.
2A3	Glass production		No informat	ion available.	EMEP/EEA GB 2019.
2A5a	Quarrying and mining than coal	g of minerals other	No informat	ion available.	EMEP/EEA GB 2016.
2A5b	Construction and der	nolition	No informat	ion available.	EMEP/EEA GB 2013.
2A5c	Storage, handling and products	d transport of mineral	No informat	ion available.	EMEP/EEA GB 2019.
2A6	Other mineral production the IIR)	cts (please specify in	N	IA	
2B1	Ammonia production	l	N	JE	
2B2	Nitric acid production	ı	N	JE	
2B3	Adipic acid production	n	N	10	
2B5	Carbide production		No informat	ion available.	EMEP/EEA GB 2019.
2B6	Titanium dioxide pro	duction	No informat	ion available.	EMEP/EEA GB 2019.
2B7	Soda ash production		No informat	ion available.	EMEP/EEA GB 2019.
2B10a	Chemical industry: O the IIR)	ther (please specify in	No informat	ion available.	EMEP/EEA GB 2019.
2B10b	Storage, handling and transport of chemical products (please specify in the IIR)		IE		
2C1	Iron and steel produc	tion	No information available.		Stack measurements of TSP and PM ₁₀ ; PM _{2.5} fractions based in CEPMEIP (2000) or EMEP/EEA GB 2019, from TSP data.
				Х	EMEP/EEA GB 2019.
2C2	Ferroalloys production			Х	EMEP/EEA GB 2019.
2C3	Aluminium production	Primary prod	No informat	ion available.	Stack measurements of TSP; PM _{2.5} and PM ₁₀ fractions based in CEPMEIP (2000), from TSP data.
		Secondary prod		Х	EMEP/EEA GB 2019.
2C4	Magnesium producti	on	N	10	
2C5	Lead production			Х	EMEP/EEA GB 2019.
2C6	Zinc production			Х	EMEP/EEA GB 2019.
2C7a	Copper production			Х	EMEP/EEA GB 2019.
2C7b	Nickel production		N	10	
2C7c	Other metal product the IIR)	Other metal production (please specify in the IIR)		IA	
2C7d	Storage, handling and products (please spe		NE		
2D3a	Domestic solvent use	including fungicides	N	IE .	

NFR	Source/sector name	PM emissions: the condensable component is	EF reference and comments
2D3b	Road paving with asphalt	Х	EMEP/EEA GB 2019.
2D3c	Asphalt roofing	No information available.	EMEP/EEA GB 2019.
2D3d	Coating applications	NA	
2D3e	Degreasing	NE	
2D3f	Dry cleaning	NE	
2D3g	Chemical products	NE	
2D3h	Printing NE		
2D3i	Other solvent use (please specify in the IIR)	NE	
2G	Other product use (please specify in the IIR)	No information available.	EMEP/EEA GB 2019.
2H1	Pulp and paper industry	No information in the EMEP/EEA GB 2019.	EMEP/EEA GB 2019.
2H2	Food and beverages industry	NE	
2H3	Other industrial processes (please specify in the IIR)	NO	
21	Wood processing	NE	
2J	Production of POPs	NA	
2K	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)	NA	
2L	Other production, consumption, storage, transportation or handling of bulk products (please specify in the IIR).	NA	
3B1a	Manure management – Dairy cattle	No information available.	EF from EEA/EMEP Guidebook (2019).
3B1b	Manure management - Non-dairy cattle	No information available.	EF from EEA/EMEP Guidebook (2019).
3B2	Manure management – Sheep	No information available.	EF from EEA/EMEP Guidebook (2019).
3B3	Manure management – Swine	No information available.	EF from EEA/EMEP Guidebook (2019).
3B4a	Manure management - Buffalo	NO	
3B4d	Manure management – Goats	No information available.	EF from EEA/EMEP Guidebook (2019).
3B4e	Manure management – Horses	No information available.	EF from EEA/EMEP Guidebook (2019).
3B4f	Manure management - Mules and asses	No information available.	EF from EEA/EMEP Guidebook (2019).
3B4gi	Manure management – Laying hens	No information available.	EF from EEA/EMEP Guidebook (2019).
3B4gii	Manure management – Broilers	No information available.	EF from EEA/EMEP Guidebook (2019).
3B4giii	Manure management - Turkeys	IE	
3B4giv	Manure management – Other poultry	No information available.	EF from EEA/EMEP Guidebook (2019).
3B4h	Manure management – Other animals (please specify in the IIR)	NO	
3Da1	Inorganic N-fertilizers (includes also urea application)	NA	

NFR	Source/sector name	PM emissions: the condensable component is	EF reference and comments
3Da2b	Sewage sludge applied to soils	NA	
3Da2c	Other organic fertilisers applied to soils (including compost)	NA	
3Da3	Urine and dung deposited by grazing animals	NA	
3Da4	Crop residues applied to soils	NA	
3Db	Indirect emissions from managed soils	NA	
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	No information available.	EF from EEA/EMEP Guidebook (2019).
3Dd	Off-farm storage, handling and transport of bulk agricultural products	NA	
3De	Cultivated crops	NA	
3Df	Use of pesticides	NA	
3F	Field burning of agricultural residues	No information available.	EF from EEA/EMEP Guidebook (2019).
31	Agriculture other (please specify in the IIR).	NO	
5A	Biological treatment of waste - Solid waste disposal on land	No information in the EMEP/EEA GB 2019.	EMEP/EEA GB 2019.
5B1	Biological treatment of waste - Composting	NE	
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities	No information in the EMEP/EEA GB 2019.	No information in the EMEP/EEA GB 2019.
5C1a	Municipal waste incineration	IE	Included in 1A1a.
5C1bi	Industrial waste incineration	IE	Included in 1A1a.
5C1bii	Hazardous waste incineration	NO	
5C1biii	Clinical waste incineration	IE	Included in 1A1a.
5C1biv	Sewage sludge incineration	х	US EPA AP-42 Section 2,4 Chapter 2,2.
5C1bv	Cremation	No information in the EMEP/EEA GB 2019.	
5C1bvi	Other waste incineration (please specify in the IIR).	NO	
5C2	Open burning of waste	No information in the EMEP/EEA GB 2019.	EMEP/EEA GB 2019.
5D1	Domestic wastewater handling	No information in the EMEP/EEA GB 2019.	EMEP/EEA GB 2019.
5D2	Industrial wastewater handling	No information in the EMEP/EEA GB 2019.	EMEP/EEA GB 2019.
5D3	Other wastewater handling	NE NE	
5E	Other waste (please specify in the IIR)	No information in the EMEP/EEA GB 2019.	EMEP/EEA GB 2019.
6A	Other (included in national total for entire territory) (please specify in the IIR)	No information in the EMEP/EEA GB 2019.	EMEP/EEA GB 2019.

ANNEX 6. EXPERT JUDGEMENT

Chapter updated in March 2021.

A6.1. Energy

EXPERT JUDGEMENT				
Expert judgment reference number	INV-ESP-JE/ENER/2015-001			
Date	December 10, 2015			
Name of the experts	María Pilar Martínez de la Calle José Luis García-Siñeriz Martínez			
Organizations to which the experts belong	Asociación para la Investigación y Desarrollo Industrial de los Recursos Naturales (AITEMIN).			
Evaluation	Emissions of particles and volatile organic compounds from coal mining in Spain.			
Basis	Application of the new 2006 IPCC Guidelines in the National Inventory.			
Results	New series of emission estimates for the period 1990-2014.			
Identification of external validators				
Result of external validation				
Approval by the National Inventory Manager				

Web link to document:

INV-ESP-JE/ENER/2015-001

GLOSSARY

GLOSSARY

Chapter updated in March, 2021.

ADHAC Spanish Association of District Heating and Cooling

AEMET State Agency of Meteorology

AENA Spanish Airports and Air Navigation

AFOEX National Association of Companies for the Fostering and Extraction of Oleaginous

Substances

AFOLU Agriculture, Forestry and Other Land Use
AICA Food Information and Control Agency

AITIM Technical Research Association of the Wood and Cork Industries

AMBILAMP Association for the Recycling of lighting equipment

ANAIP Spanish Association of Plastics Industry

ANAPE Spanish Association for Expanded Polystyrene Producers

ANCADE Spanish National Association of Manufacturers of Lime and Derivatives

ANE National Electrochemical Association

ANEO National Association of Olive Oil Companies

ANEPROMA National Association of Wood Protection Companies

ANFFE National Association of Fertilizer Manufacturers

ANFFECC National Association of Manufacturers of Frits, Enamels and Ceramic Colours

ANIACAM National Association of Cars, Trucks, Buses and Motorbikes Importers

AOP Association of Petroleum Operators

APPA Biocarburantes Association of Generators of Renewable Energy (biofuels section)

AQ-AOS Annual Questionnaire - Annual Oil Questionnaire (Annual Oil Statistics)

AQs Annual Questionnaires

ASCER Spanish Association of Manufacturers of Ceramic Floor Tiles, Wall Tiles, and

Paving

ASEFAPI Spanish Association of Manufacturers of Paint and Printing Dyes

ASEFMA Spanish Association of Bituminous Mixture Factories

ASERAL Spanish Association of Aluminium Refiners

ASOFRIO Central purchasing and services of refrigeration

ASPAPEL Association of Spanish Pulp and Paper Manufacturers

B(a)P Benzo(a)pyrene

B(b)F Benzo(b)fluoranthene
B(k)F Benzo(k)fluoranthene

BAT Best available Techniques

BBVA Foundation Bank Bilbao Vizcaya Argentaria

BC Black Carbon

BNPAE Nitrogen and Phosphorous Balance in Agriculture

BREF Best Available Techniques Reference Document

CAP Common Agricultural Policy

CEDEX Spanish Centre for Public Works Studies and Experimentation

CEIP Centre on Emission Inventories and Projections

CEPE European Council of the Paint, Printing Ink and Artists' Colours Industry

CEPMEIP Co-ordinated European Programme on Particulate Matter Emission Inventories,

Projections and Guidance

CIEDB Core Inventory Emissions Database

CIEMAT Research Centre for Energy, Environment and Technology

CITEPA Interprofessional Technical Centre for Studies on Air Pollution-France

CLH Logistics Company of Hydrocarbons

CLRTAP or LRTAP Convention on Long-Range Transboundary Air Pollution

CNE National Energy Commission

CODA Central Office for Delay Analysis (EUROCONTROL)

COFACO National Consortium of Rubber Manufacturers

CONCAWE Division of the European Petroleum Refiners Association

COPERT Computer Programme to calculate Emissions from Road Transport

CORES Corporation for Strategic Oil Reserves

CORINAIR Core Inventory of Air emissions

CRF Common Reporting Format

DG ENV Directorate-General for environment

DGAC Directorate General for Civil Aviation (Ministry of Transport, Mobility and Urban

Agenda – MITMA)

DGCEA Directorate-General for Environmental Quality and Assessment (Ministry for the

Ecological Transition and the Demographic Challenge - MITERD)

DGPEM Directorate-General for Energy Policy and Mines (Ministry for the Ecological

Transition and the Demographic Challenge - MITERD)

DGT Spanish Traffic Department (Home Office)

DIOX Dioxins and furans

DRDB Data Request Database

EAPA European Asphalt Pavement Association

ECA Emission Control Areas

EDARs Waste Water Treatment Plants
EEA European Environment Agency

EF Emission factor

EMEP European Monitoring Evaluation Programme of CLRTAP

ENAGÁS Technical Manager of the Spanish gas system

ENDESA National Electricity Company

E-PRTR European Pollutant Release and Transfer Register

EPTMC Continuing Survey of Road Goods Transport

ERT Expert Review Team

ESIG European Solvents Industry Group

ESyRCE Official Survey on Crop Areas and Yields

ETSAP Energy Technology Systems Analysis Program

EU European Union

EU-ETS European Union Emissions Trading System

EUROCONTROL European Organisation for the Safety of Air Navigation

EUROSTAT European Union Statistical Office

FAME Fatty Acid Methyl Ester

FAOSTAT Statistics Division of the Food and Agriculture Organization of the United Nations

FCC Fluid catalytic cracking

FEAF Spanish Federation of Foundry Associations
FEIQUE Spanish Federation of Chemical Industries
FEIS Fuel Burn and Emissions Inventory System

FEMP Spanish Federation of Municipalities and Provinces

GDP Gross Domestic Product

GE Gross Energy

GFCF Gross fixed capital formation

GHG Greenhouse gases
GNFR Gridded NFR

HCB Hexachlorobenzene
HELCOM Helsinki Commission

HFCs Hydrofluorocarbons

HISPALYT Spanish Association of Manufacturers of Clay Bricks and Tiles

HM Heavy Metals

ICAO International Civil Aviation Organization

IDAE Institute for Energy Saving and Diversification

IE Included Elsewhere

IEA International Energy Agency
IEB Inventory Energy Balance
IEF Implicit Emission Factor
IF Indeno(1,2,3-cd)pyrene

IGME Geological and Mining Institute of Spain

IIASA International Institute for Applied Systems Analysis

IIR Informative Inventory Report

IMO International Maritime Organization

INE National Statistics Institute
INM National Weather Institute

IPCC Intergovernmental Panel for Climate Change

IPPU Industrial Processes and Products Use

IPTS Institute for Prospective Technological Studies
IPUR Industry Association of Rigid Polyurethane

IQ Individualized Questionnaire

IQMDB Inventory quality management database

I-TEQ International Toxic Equivalent

KC Key Categories
KP Kyoto Protocol

LCP Directive Large Combustion Plants Directive

LHV Lower Heating Value

LPG Liquefied Petroleum Gases

LPS Large Point Sources

LTO cycles Landing and Take-off cycles

LULUCF Land Use, Land-Use Change and Forestry

MAGRAMA Ministry of Agriculture, Food and Environment (currently, Ministry for the

Ecological Transition and the Demographic challenge - MITERD and the Ministry

of Agriculture, Fisheries and Food-MAPA)

MAPA Ministry of Agriculture, Fisheries and Food

MAPAMA Ministry of Agriculture and Fisheries, Food and Environment (currently split into

the Ministry for the Ecological Transition and the Demographic challenge -

MITERD and the Ministry of Agriculture, Fisheries and Food -MAPA)

MAPFRE Mutuality of the Group of Owners of Rural Estates of Spain

MARPOL Marine Pollution - International Convention for the prevention of pollution from

ships

MCP Directive Medium Combustion Plant Directive

MDE Ministry of Defence

MFOM Ministry of Public Works (currently, Ministry of Transport, Mobility and Urban

Agenda-MITMA)

MINCOTUR Ministry of Industry, Trade and Tourism

MINER Ministry of Industry and Energy (currently split into the Ministry for the Ecological

Transition and the Demographic challenge -MITERD and Ministry of Industry,

Trade and Tourism –MINCOTUR)

MINETAD Ministry of Energy, Tourism and the Digital Agenda (currently, Directorate-

General for Energy Policy and Mines, Ministry for the Ecological Transition and

the Demographic challenge -MITERD)

MINETUR Ministry of Industry, Energy and Tourism (currently, Directorate-General for

Energy Policy and Mines, Ministry for the Ecological Transition and the

Demographic challenge -MITERD)

MITECO Ministry for the Ecological Transition (until December 2019, currently, Ministry

for the Ecological Transition and the Demographic challenge -MITERD)

MITERD Ministry for the Ecological Transition and the Demographic Challenge (From

January 2020)

MITMA Ministry of Transport, Mobility and Urban Agenda

MITYC Ministry of Industry, Tourism and Trade (currently, Ministry of industry, trade and

tourism - MINCOTUR)

MMR Monitoring Mechanism Regulation

MMS Manure Management System

MOPT Ministry of Public Works and Transportation (currently, Ministry of Transport,

Mobility and Urban Agenda - MITMA)

MOPTMA Ministry of Public Works and Transportation and the Environment (currently, split

into the Ministry of Transport, Mobility and Urban Agenda - MITMA and the Ministry for the Ecological Transition and the Demographic challenge -MITERD)

MSCBS Ministry of Health, Consumer Affairs and Social welfare

MSW Municipal Solid Waste

NA Not Applicable

NAPCP National Air Pollution Control Programme

NE Not estimated

NECD National Emissions Ceilings Directive

NFR Nomenclature for Reporting

NIECP National Integrated Energy and Climate Plan

NIR National Inventory Report

NK Notation Keys

NMVOC Non-methanic Volatile Organic Compounds

NO Not occurring

NPK Nitrogen phosphorus and potassium
OECC Spanish Office for Climate Change

OECD Organisation for Economic Co-operation and Development

OFICEMEN Spanish Association of Cement Manufacturers

OFICO Office for Electricity Compensations

OSPAR Convention for the Protection of the Marine Environment of the North-East

Atlantic

OSPARCOM OSPAR Commission

PAH Polycyclic aromatic hydrocarbons

PAMs Policies and Measures

PANASEF National Funeral Services Association

PARCOM-ATMOS Emission factors manual PARCOM-ATMOS

PCBs Polychlorinated biphenyls

PCDD Dioxins

PCDD/F Dioxines and Furanes

PCDF Furans

PDCA cycle Plan-Do-Check-Act cycle

PER Renewable Energy Plan

PFC Perfluorocarbons
PM Particulate Matter

PNCCA National Air Pollution Control Programme

POPs Persistent Organic Pollutants

PRTR Pollutant Release and Transfer Register

QA/QC Quality Assurance/Quality Control

RCE Spain's Road Network

REE Red Eléctrica de España (operator of the Spanish electricity transport system)

REGA General Registry of Livestock Farming

RIIA Registry of individual animal identification

RMS Regulating and Metering Stations

SEDIGAS Spanish Gas Association

SEI Spanish National Inventory System

SGALSI Subdirectorate-General for Clean Air and Industrial Sustainability (Ministry for the

Ecological Transition and the Demographic challenge -MITERD)

SGEC Subdirectorate-General of Circular Economy (Ministry for the Ecological

Transition and the Demographic challenge – MITERD)

SGPEM Subdirectorate-General of Energy Politic and Mines
SNAP Selected Nomenclature for sources of Air Pollution

SOLVAY Worldwide Chemical Company

TAN Total Ammonia Nitrogen

TERT Technical Expert Review Team

TFEIP Task Force on Emission Inventories and Projections under the

UNECE Convention on Long-range Transboundary Air Pollution

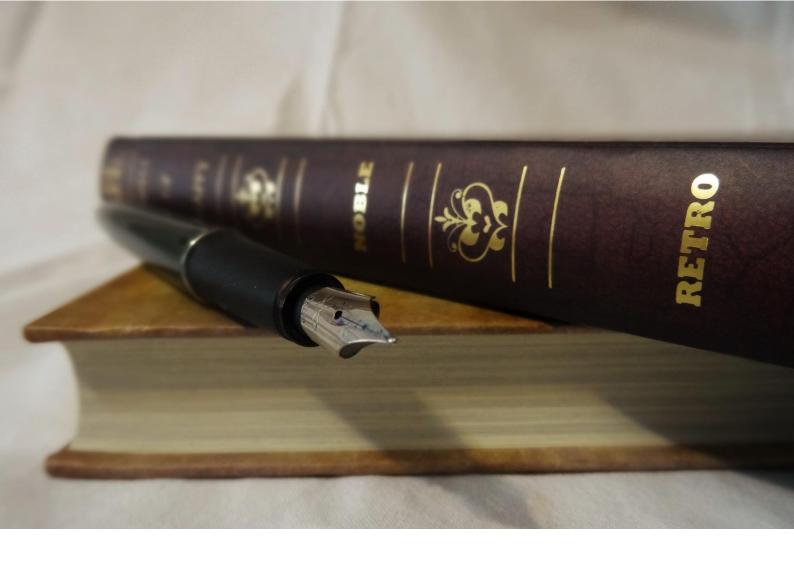
TSP Total Suspended Particulate

UNECE United Nations Economic Commission for Europe

UNESID Union of Iron and Steel Companies

UNFCCC United Nations Framework Convention on Climate Change

UNICOBRE National Union for Copper Industries


UNIPLOM Union of the lead industry

US EPA United States Environmental Protection Agency

VOC Volatile Organic Compounds
WaM With Additional Measures
WeM With Existing Measures

WG I Working Group I – "Annual inventories" under the EU Climate Change Committee

(European Commission)

REFERENCES

REFERENCES

Chapter updated in March, 2021.

General

- CEPMEIP. Co-ordinated European Programme on Particulate Matter Emission Inventories, Projections and Guidance.
- CORINAIR Manual (1992). "Default Emission Factors Handbook". Second Edition. Edited by CITEPA for DG-XI CEC.
- EMEP/CORINAIR Guidebook (1996). "Atmospheric Emission Inventory Guidebook". First Edition. February 1996. UNECE-convention on long-range transboundary air pollution & European Environmental Agency.
- EMEP/CORINAIR Guidebook (1999). "Atmospheric Emission Inventory Guidebook". Second Edition. September 1999. UNECE-convention on long-range transboundary air pollution & European Environmental Agency.
- EMEP/CORINAIR Guidebook (2006). "Atmospheric Emission Inventory Guidebook". Third Edition. Updated to December 2006. UNECE-Convention on long-range transboundary air pollution & European Environmental Agency.
- EMEP/CORINAIR Guidebook (2007). "Atmospheric Emission Inventory Guidebook". Third Edition. Updated to December 2007. UNECE-Convention on long-range transboundary air pollution & European Environmental Agency.
- EMEP/EEA Guidebook 2009. "Air Pollutant Emission Inventory Guidebook". UNECE Convention on long-range transboundary air pollution & European Environmental Agency.
- EMEP/EEA Guidebook 2013. "Air Pollutant Emission Inventory Guidebook 2013". EEA Technical Report No 12/2013. UNECE-Convention on long-range transboundary air pollution & European Environment Agency.
- EMEP/EEA Guidebook 2016. "Air Pollutant Emission Inventory Guidebook 2016". UNECE-Convention on long-range transboundary air pollution & European Environment Agency.
- EMEP/EEA Guidebook 2019. "Air Pollutant Emission Inventory Guidebook 2019. Technical guidance to prepare national emission inventories". EEA Report No 13/2019. UNECE-Convention on long-range transboundary air pollution & European Environment Agency. Publications Office of the European Union, 2019.
- PARCOM-ATMOS (1992). "Emission Factors Manual. PARCOM-ATMOS. Emission factors for air pollutants. 1992". P.F.J. van der Most and C. Veldt, eds., TNO Environmental and Energy Research, TNO Rept. 92-235, Apeldoorn, the Netherlands.

R.1. – Energy

- "Anuario de Estadística". Ministry of Agriculture, Fishing and Food (MAPA).
- "Anuario Estadístico General (General Statistical Yearbook)". Ministry of Home Affairs, General Directorate for Traffic.
- AOP (Spanish Association of operators of oil products). Memory 2018.
- CIEMAT. "Análisis de Compuestos Orgánicos Persistentes y elaboración de inventarios integrados en su emisión a la atmósfera, efluentes y suelos. Volumen II Actividades y conclusiones específicas en el sector cementero".

CIEMAT (Centre for Research into Energy, Environment and Technologies). Estadísticas de base de consumos y características de combustibles y emisiones estimadas en centrales térmicas (1997-2002).

- CITEPA. "Étude sur les méthodes d'évaluation des quantités émises de particules fines (PM₁₀ et inférieures) primaires et secondaires pour tous les secteurs d'activitié en vue des inventaires". Final Report. July, 2002.
- "Compilation of emission factors for persistent organic pollution. A case study of emission estimates in the Czech and Slovak Republics". Holoubek, I. *et al.* Prepared for External Affairs Canada. Masaryk University, Axys Environmental Consulting. March, 1993.
- CONCAWE (1997). "Motor vehicle emission regulations and fuel specifications: part 2 detailed information and historic review (1970-1996)".
- CONCAWE (2001). "Motor vehicle emission regulations and fuel specifications: parts 1 and 2 detailed information and historic review (1996-2000)".
- CONCAWE (2009). "Air pollutant emission estimation methods for E PRTR reporting by refineries".
- Corporation of strategic reserves of oil products. Annual Statistical Report 2018. CORES 2018.
- "Development of a Database System for the Calculation of Indicators of Environmental Pressure Caused by Transport. Transport and Environment Database System (TRENDS)".
- "Energy Balance Sheets". Eurostat. Luxembourg: Office des publications officielles des Communautés Européennes.
- "Energy Saving and Efficiency Strategy for the agricultural sector". Madrid: Ministry of Energy, Tourism and the Digital Agenda, Spanish Institute for Energy Saving and Diversification.
- "Energy Statistics of OECD Countries". Paris: International Energy Agency (IEA). OECD.
- EPA. Series AP 42 Manuals, various editions, from the United States Environmental Protection Agency.
- "Estadística de fabricación de pasta coquizable, de coquerías y de gas de horno alto". Madrid: Ministry of Energy, Tourism and the Digital Agenda, Subdirectorate General for Energy Planning and Monitoring.
- "Estadísticas de consumo de productos petrolíferos". Madrid: CORES (Oil Based Products Strategic Reserve Corporation).
- "Estadísticas del carbón". Madrid: Ministry of Energy, Tourism and the Digital Agenda, Subdirectorate-General for Energy Planning and Monitoring.
- "Estadísticas de industrias del gas". Madrid: Ministry of Energy, Tourism and the Digital Agenda, Subdirectorate-General for Energy Planning and Monitoring.
- "Estadísticas de parque de vehículos". Madrid: General Directorate for Roads. Ministry of Public Works and Transport.
- "Estadísticas de prospección y producción de hidrocarburos". Madrid: Ministry of Energy, Tourism and the Digital Agenda, Subdirectorate-General for Hydrocarbons.
- "European Aviation Fuel Burn and Emissions Inventory System for the European Environment Agency (for data from 2005)". Version 2017.01 (31 August, 2017). EUROCONTROL ("European Organisation for the Safety of Air Navigation"), Pan-European Single Sky Directorate, Environment and Climate Change Section.
- "Experiences with the heavy metals inventory in Slovakia". Economic Commission for Europe. Convention on Long-Range Transboundary Air Pollution. Task Force on Emission Inventories. March 1996, Oxford.

Federación Española de Municipios y Provincias (FEMP). "Climatización urbana en las ciudades españolas". Red Española de Ciudades por el Clima - FEMP/MAGRAMA, 2012.

- "FOI turboprop engine emissions data base". Updated to November 2003. Stockholm: FOI (Swedish Defence Research Agency).
- "Guía de Mejores Técnicas Disponibles en España de fabricación de cemento". Madrid: Ministry of the Environment, Publications Centre, 2003 (currently Ministry of Agriculture, Food and Environment).
- "ICAO Aircraft Type Designators". Montreal: ICAO (International Civil Aviation Organization).
- "ICAO engine exhaust emissions data bank". Updated to January 2012. Montreal: ICAO (International Civil Aviation Organization).
- Institute for Energy Diversification and Savings (IDAE). "Estrategia de Ahorro y Eficiencia Energética 2004-2012: Sector Agricultura y Pesca". IDAE, 2003.
- Industrial Emissions Directive 2010/75/EU (IPPC-Integrated Pollution Prevention and Control). Best Available Techniques (BAT) Reference Document for the Non-Ferrous Metals Industries. European Commission. 2017.
- Industrial Emissions Directive 2010/75/EU (IPPC-Integrated Pollution Prevention and Control). Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide. European Commission. 2017.
- "Los transportes y las infraestructuras" (previously "Los transportes y los servicios postales"). Madrid: Ministry of Public Works and Transport.
- Manuel López, Francisco de (2015). "Evaluación de las Consecuencias de la Nueva Regulación de la OMI sobre Combustibles Marinos (Evaluation of the Consequences of the New IMO Regulation on Marine Fuels)". Thesis (Doctoral), E.T.S.I. Navales (UPM).
- "Marine Exhaust Emissions Research Programme". Lloyd's Register of Shipping.
- MITECO, Secretary of state of Energy (2019). "The Book of Energy in Spain, 2017".
- OFICEMEN, Group of Spanish cement manufacturers and Consulnima, Environmental Consultancy and Engineering. "Guide to Measurement Methods and Emission Factors in the Cement Sector in Spain". December 2013.
- OFICEMEN, Group of Spanish cement manufacturers and Consulnima, Environmental Consultancy and Engineering. "Guide to Measurement Methods and Emission Factors in the Cement Sector in Spain". November 2014.
- OFICEMEN, Grouping of Spanish cement manufacturers. "Guide for monitoring the carbon dioxide emissions of the Spanish cement sector according to Regulation (EU) No. 601/2012 of 21 June 2012". January 2014.
- OFICEMEN, Group of Spanish cement manufacturers and Consulnima, Environmental Consultancy and Engineering. "Guide to Measurement Methods and Emission Factors in the Cement Sector in Spain". July 2017.
- OFICEMEN, Group of Spanish cement manufacturers and Consulnima, Environmental Consultancy and Engineering. "Guide to measurement methods and emission factors for the cement sector in Spain". November 2019.
- OFICO (Office for Electricity Compensations). Estadísticas de base de consumos y características de combustibles (1990-1994) y emisiones estimadas en centrales térmicas (1990-1996).
- OILGAS. "Enciclopedia nacional del petróleo, petroquímica y gas". Madrid: Technical Headquarters.

OSPARCOM-HELCOM-UNECE (1995). "Technical Paper to the OSPARCOMHELCOMUNECE Emission Inventory of Heavy Metals and Persistent Organic Pollutants". TNO Institute of Environmental Sciences, Energy Research and Process Innovation. December 18th, 1995.

- Parma, Zdenek *et al.* "Atmospheric emission inventory guidelines for persistent organic pollutants (POPs)". Praga, 1995.
- Red Eléctrica de España (REE). "The Spanish electricity system 2019". Madrid, June 2020.
- Samaras, Z.; Zierock, K.H. "Guidebook on the estimation of the emissions of 'other mobile machinery': Subparts 'off-road vehicles and machines', 'railways' and 'inland waterways' in the European Union". 1994.
- "Standing Survey of Road Freight". Madrid: Ministry of Public Works and Transport, Subdirectorate-General for Statistics and Surveys at the Directorate-General for Economic Programming.
- "Tráfico comercial en los aeropuertos españoles". Madrid: Ministry of Public Works and Transport, Directorate-General for Civil Aviation.
- UNESA/ENDESA/IBERDROLA/CIEMAT. "Emisiones de Metales Pesados en las Centrales Térmicas de Endesa". Heavy Metals Modelling Group (GMM). August 1998.

R.2. - Industrial processes and product use

- "Anuario de Estadística Agroalimentaria" (Food and Agriculture Statistical Yearbook). Ministry of Agriculture, Food and Fisheries (MAPA). This document has been renamed Statistical Yearbook and is published by the Spanish Ministry of Agriculture, Fishing and Food (MAPA).
- "Anuario Estadístico General (General Statistical Yearbook)". Ministry of Home Affairs, General Directorate for Traffic.
- "Anuario de Ingeniería Química" (Chemical Engineering Yearbook). Madrid: Ingeniería Química, Alcion Ingeniería Química, Red Busines Information.
- "Anuario de la piel (Leather annual report)". Madrid: Consejo Español de la Piel.
- Antunes, P.; Viana, P.; Vinhas, T.; Rivera, J. and Gaspar, E. "Emission profiles of polychlorinated dibenzodioxins, polychlorinated dibenzofurans (PCDD/Fs), dioxin-like PCBs and hexachlorobenzene (HCB) from secondary metallurgy industries in Portugal". Chemosphere. 2012.
- Asociación Española de la Carretera (AEC). Carreteras, nº 155 (sept.-oct. 2007).
- "Asphalt in figures". European Asphalt Pavement Association (EAPA). Belgium EAPA.
- "Atmospheric Emission Inventory Guidelines for Persistent Organic Pollutants (POPs)". Prague, The Czech Republic, July, 1995.
- CITEPA. "Étude sur le méthodes d'évaluation des quantités émises de particules fines (PM₁₀ et inférieures) primaires et secondaires pour tous les secteurs d'activité en vue des inventaires". Rapport final. Juillet 2002.
- Enciclopedia OILGAS. "Enciclopedia Nacional del Petróleo, Petroquímica y Gas". Sede Técnica, S.A.
- "Encuesta Industrial" (Industrial Survey). Spanish National Statistics Institute (INE).
- "Estudio sobre la Posición Competitiva del Sector de Alimentación y Bebidas en España. Sector de la Cerveza y Malta de Cerveza". Spanish Ministry of Agriculture, Fishing and Food (MAPA).
- "Estudio sobre la posición competitiva del sector de alimentación y bebida en España. Sector de Alcoholes Etílicos de Fermentación". Ministry of Agriculture, Fishing and Food (MAPA).
- "Experiences with the Heavy Metals Inventory in Slovakia". Oxford: Economic Commission for Europe, Convention on Long-Range Transboundary Air Pollution, 1996.

Heino Falcke, Simon Holbrook, Iain Clenahan, Alfredo López Carretero, Teoman Sanalan, Thomas Brinkmann, Joze Roth, Benoit Zerger, Serge Roudier, Luis Delgado Sancho; Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279

- Holoubek I. *et al.* (1993). "Compilation of emission factors for persistent organic pollutants. A case study of emission estimates in the Czech and Slovak Republics". Prepared for External Affairs Canada. Masaryk University, Axys Environmental Consulting. March, 1993.
- IDOM Ingeniería y Consultoría. "Plantas siderúrgicas de referencia medioambiental": Siderinsa-UNESID. IDOM, 1998.
- "Informe Anual" (Annual Report). Spanish Association of Pulp and Paper Manufacturers (ASPAPEL).
- "Informe Estadístico" (Statistical Report). Spanish Association of Pulp and Paper Manufacturers (ASPAPEL).
- "Informe sobre la Industria Española". Madrid: Ministry of Energy, Tourism and the Digital Agenda, Publications Center.
- IPPC. Integrated Pollution Prevention and Control. "Draft Reference Document on Best Available Techniques in the Production of Polymers". Draft April 2005.
- Klimont, Zbigniew *et al.* Interim Report IR-00-51. "Estimating Costs for Controlling Emissions of Volatile Organic Compounds (VOC) from Stationary Sources in Europe". IIASA, 2000.
- "La Alimentación en España". Ministry of Agriculture, Fishing and Food (MAPA).
- "La Industria Química en España" (The Chemical Industry in Spain). Ministry of Industry and Energy (MINER), currently Spanish Ministry of Industry, Trade and Tourism (MINCOTUR).
- "Licencias municipales de obra (Municipal construction and demolition authorizations"). Spanish National Statistics Institute (INE).
- "Los Plásticos en España" (Plastics in Spain). Spanish Confederation of Plastics Businesses (ANAIP).
- "Mercury Losses from the Chlor-Alkali Industry in 2004". OSPAR Commission, 2006.
- "Panorama minero (Mining overview)" several years. Geological and Mining Institute of Spain.
- "Statistical Yearbook." Ministry of Agriculture, Fishing and Food (MAPA). This publication replaces the Food Statistical Yearbook published in the past by the Ministry of Agriculture, Food and Fisheries.
- "The Chemical Industry in Spain". Ministry of Industry and Energy (MINER), currently Spanish Ministry of Industry, Trade and Tourism (MINCOTUR).
- UNECE-CLRTAP (1997). Draft BAT Background Document. Task Force on the Assessment of Abatement Options/Techniques for Volatile Organic Compounds. French-German Institute for Environmental Research. University of Karlsruhe, Germany. November 1997.
- U.S. EPA, 1995 ("Compilation of Air Pollutant Emission Factors. Volume I: Stationary Point and Area Sources". AP-42. 5th Edition. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.

R.3. – Agriculture

- "Anuario de Estadística". Ministry of Agriculture, Fishing and Food (MAPA) MAPA's Statistic Yearbook. http://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/
- "Balance del Nitrógeno en la Agricultura Española". Madrid: Ministry of Agriculture, Fishing and Food (MAPA) Nitrogen and Phosphorous Balance in Spanish Agriculture (BNyPAE).

"Bases zootécnicas para el cálculo del balance de nitrógeno y fósforo en ovino". (Zootechnical documents: Cattle; Sheep; Horses, mules and assess; White Swine; Laying Hens; Broilers]. Madrid: Ministry of Agriculture, Fishing and Food (MAPA). https://www.mapa.gob.es/es/ganaderia/temas/ganaderia-y-medioambiente/balance-de-nitrogeno-e-inventario-de-emisiones-de-gases/default.aspx

- "Censo Nacional de Vertidos" (National Sewage Register (MITERD)). https://www.miteco.gob.es/es/agua/temas/concesiones-y-autorizaciones/vertidos-de-aguas-residuales/censo-vertidos/
- "Encuesta sobre superficies y rendimientos de cultivos (ESYRCE)". Madrid: Ministry of Agriculture, Fishing and Food (MAPA) Crop Yield and Cultivated Areas Survey. Report on irrigation in Spain. https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/
- "Estadísticas agrarias". Madrid: Ministry of Agriculture, Fishing and Food (MAPA) Husbandry Surveys. http://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/ganaderia/default.aspx
- [IPCC Guidelines] 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan: IGES, 2006.
- "Options for Ammonia Mitigation. Guidance from the UNECE Task Force on Reactive Nitrogen", 2014.

https://www.mapa.gob.es/gl/ganaderia/temas/ganaderia-y-medio-ambiente/tfrn unece 2014eng tcm37-436095.pdf

"White swine farm manure management systems" (MAPA and ANPROGAPOR (National Producers of Swine Livestock Association)).

https://www.mapa.gob.es/es/ganaderia/publicaciones/Porcino%20Intensivo tcm30-105327.pdf

"Registro General de Explotaciones Ganaderas" (REGA). Madrid: Ministry of Agriculture, Fishing and Food (MAPA) - Livestock Farm Registry.

https://www.mapa.gob.es/es/ganaderia/temas/trazabilidad-animal/registro/default.aspx

"Registro de Identificación Individual de Animales" (RIIA). Madrid: Ministry of Agriculture, Fishing and Food (MAPA) - Animal Individual Identification Registry.

https://www.mapa.gob.es/es/ganaderia/temas/trazabilidad-animal/registro/default.aspx

R.4. – Waste

- "Agricultura, Alimentación y Medio Ambiente en España". Ministerio de Agricultura, Alimentación y Medio Ambiente, 2011-2015.
- "Agricultura y Pesca, Alimentación y Medio Ambiente en España. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, 2016-2017.
- Ayuntamiento de Madrid. Madrid-Banco de datos. Consultas K.2.2A y K.2.2B.
- Centro de Estudios y Experimentación de Obras Públicas. Estimación de la producción y tratamiento de lodos de estaciones depuradoras de aguas residuales. Ministerio de Medio Ambiente y Medio Rural y Marino. Dirección General de Calidad y Evaluación Ambiental, 2011.
- CITEPA. "Étude sur les méthodes d'évaluation des quantités émises de particules fines (PM₁₀ et inférieures) primaires et secondaires pour tous les secteurs d'activité en vue des inventaires". Rapport final. Juillet 2002.
- "Cuestionarios de Grandes Focos Puntuales de Refinerías Españolas" for National Greenhouse Gas Inventories.
- "El medio ambiente y el medio rural y marino en España". Ministerio de Medio Ambiente y Medio Rural y Marino, Centro de Publicaciones, 2008-2010.
- EPA. "Chapter 2: Solid Waste Disposal". AP-42 Volume I. 5th ed. North Carolina: EPA, 1995.

Estadística de Establecimientos Sanitarios con Régimen de Internado. Madrid: Ministerio de Sanidad y Política Social, 1999-2005.

- Fontelle, J.P., Chang, J.P. Report on complementary information in the frame of the assistance provided for CORINAIR 90 Inventory. Paris: CITEPA, 1993.
- Fundación MAPFRE-Asociación Profesional de Técnicos de Bomberos. Estudio sobre víctimas en incendios. 2010-2019.
- Good practice guidance and uncertainty management in National Greenhouse Gas Inventories. London: IPCC, OECD, IEA, 2000.
- Holoubek, Ivan *et al.* Compilation of emission factors for persistent organic pollutants: a case study of emission estimates in the Czech and Slovak Republics. Masaryk University, Axys Environmental Consulting, 1993.
- Instituto Nacional de Estadística. Anuario Estadístico de España. Madrid: INE, 1991-1995.
- Instituto Nacional de Estadística: Estadísticas de población de España. Madrid: INE, 1950-2019.
- Instituto para la Sostenibilidad de los Recursos. Generación y gestión de los residuos sanitarios en España. Madrid: ISR, 2006.
- Klimont, Zbigniew *et al.* Modelling particulate emissions in Europe: a framework to estimate reduction potential and control costs. Laxenburg: IIASA, 2002.
- Komilis, Dimitris P., HAM, Robert K. "Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste", Waste Management, vol. 26, Issue 1, 2006, pp. 62-70.
- Medio ambiente en España. Madrid: Ministerio de Medio Ambiente, Centro de Publicaciones, 1989-2008.
- El medio ambiente y el medio rural y marino en España. Madrid: Ministerio de Medio Ambiente y Medio Rural y Marino, Centro de Publicaciones, 2008.
- Population connected to wastewater treatment plants [env_ww_con]. EUROSTAT.
- Radiografía del Sector Funerario 2019. PANAFEF. Asociación Nacional de Servicios Funerarios.
- Revised 1996 IPCC guidelines for National Greenhouse Gas Inventories. London: IPCC, OECD, IEA, 1997.
- Van der Most, P.F.J., Veldt, C. Emission factors manual PARCOM-ATMOS: final version. 1992.
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories, IPCC, 2006.
- 1990-2019: "Dry matter fraction". Francesc Giró, Compostarc, 2007

R.5. - Natural emissions

- Ministry of Agriculture, Fisheries and Food. "Incendios Forestales en España. 1 enero -31 diciembre 2019. Avance Informativo" ("Forest fires in Spain: 1st January 31th December 2019. Preliminary report").

 https://www.mapa.gob.es/es/desarrollorural/estadisticas/avance 1 enero 31 diciembre 2019 tcm30-537398.pdf
- Rodriguez Murillo, J.C., "The carbon budget of the Spanish forests", Biogeochemistry, 25, 197-217, 1994.
- Seiler W., Crutzen PJ. "Estimates of gross and net flux of carbon between the biosphere and the atmosphere from biomass burning", Climatic Change, 2, 207-247, 1980.