

El informe de **Tendencias de la Calidad del Aire en España 2001 - 2024** ha sido elaborado por la Subdirección General de Prevención de la Contaminación del Ministerio para la Transición Ecológica y el Reto Demográfico.

Ministerio para la Transición Ecológica y el Reto Demográfico Secretaría General Técnica. Centro de Publicaciones 2025

Lengua/s: Español NIPO: 665230281

Gratuita / Unitaria / En línea / pdf

Agradecimientos

Nuestro agradecimiento a todos los gestores de las diferentes Redes de Calidad del Aire de España que han participado con sus datos para la realización del informe.

Foto portada

Fuente: P. Corral Zapata

Fecha elaboración del informe:

VERSIÓN	FECHA	COMENTARIO
1	Diciembre 2025	

TENDENCIAS DE LA CALIDAD DEL AIRE EN ESPAÑA 2001-2024

INDICE

ACRÓ	NIMOS UTILIZADOS	1
1.	ANTECEDENTES	3
2.	DESCRIPCION DEL DOCUMENTO	4
3.	DIÓXIDO DE AZUFRE	7
3.1.	Evolución 2001-2024 del SO ₂	7
3.2.	Niveles de SO ₂ en 2024	. 11
4.	ÓXIDOS DE NITRÓGENO	. 12
4.1.	Evolución 2001-2024 del NO ₂	. 12
4.2.	Niveles de NO ₂ en 2024	. 18
5.	PARTÍCULAS PM ₁₀	. 21
5.1.	Evolución 2001-2024 de las partículas PM ₁₀	. 21
5.2.	Niveles de PM ₁₀ en 2024	. 26
6.	PARTÍCULAS PM _{2,5}	31
6.1.	Evolución 2008-2024 de las partículas PM2,5	31
6.2.	Niveles de PM _{2,5} en 2024	. 34
7.	OZONO	. 36
7.1.	Evolución 2004-2024 del O ₃	. 36
7.2.	Niveles del O ₃ en 2024	40
8.	MONÓXIDO DE CARBONO	. 42
8.1.	Evolución 2003-2024 del monóxido de carbono (CO)	. 42
8.2.	Niveles de CO en 2024	45
9.	BENCENO	46
9.1.	Evolución 2003-2024 del benceno (C ₆ H ₆)	46
9.2.	Niveles de C ₆ H ₆ en 2024	49
10.	BENZO(A)PIRENO	. 50
10.1.	Evolución 2008-2024 del benzo(a)pireno (BaP)	. 50
10.2.	Niveles del B(a)P en 2024	. 53
11.	PLOMO	. 54
11.1.	Evolución 2001-2024 del plomo (Pb)	. 54
11.2.	Niveles del Pb en 2024	. 55
12.	ARSÉNICO	. 58
12.1.	Evolución 2008-2024 del arsénico (As)	. 58
12.2.	Niveles del As en 2024	60

13.	CADMIO	62
13.1.	Evolución 2008-2024 del cadmio (Cd)	62
13.2.	Niveles del Cd en 2024	63
14.	NÍQUEL	65
14.1.	Evolución 2008-2024 del níquel (Ni)	65
14.2.	Niveles del Ni en 2024	66
15.	CONCLUSIONES	69
ΔΝΕΧ	O I: LISTADO DE FIGURAS	71

ACRÓNIMOS UTILIZADOS

Tabla 1. Tabla de acrónimos utilizados

AEMET	Agencia Estatal de Meteorología.
A.MAD	Ayuntamiento de Madrid.
AND	Andalucía.
ARAG	Aragón.
AST	Principado de Asturias.
A.ZGZA	Ayuntamiento de Zaragoza.
САМР	Programa Integral de Control Atmosférico: Es fruto del convenio Oslo-París para la Protección del Medio Ambiente Marino del Atlántico Nordeste. Tiene por objeto conocer los aportes atmosféricos de esta región atlántica y estudiar sus efectos sobre el medio marino.
CANT	Cantabria.
CAT	Cataluña.
CEU	Ciudad Autónoma de Ceuta.
CIEMAT	Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas.
CLM	Castilla-La Mancha.
C.MAD	Comunidad de Madrid.
CSIC	Consejo Superior de Investigaciones Científicas.
C.VAL	Comunitat Valenciana.
CYL	Castilla y León.
EMEP	Programa Europeo de Monitoreo y Evaluación (European Monitoring and Evaluation Programme). Programa Concertado de Vigilancia y Evaluación del Transporte a Larga Distancia de los Contaminantes Atmosféricos en Europa: Impulsado por el Convenio de Ginebra sobre contaminación transfronteriza, para proporcionar a los países información sobre la concentración y depósito de contaminantes atmosféricos, así como del transporte de estos y de los flujos a través de las fronteras nacionales.
EXT	Extremadura.
GAL	Galicia.
I.BAL	Illes Balears.
I.CAN	Canarias.
IDAEA	Instituto de Diagnóstico Ambiental y Estudios del Agua.
ISCIII	Instituto de Salud Carlos III.
LR	La Rioja.
MdT	Margen de tolerancia: Porcentaje del valor límite o cantidad en que éste puede sobrepasarse con arreglo a las condiciones establecidas.
MEL	Ciudad Autónoma de Melilla.
MITECO	Ministerio para la Transición Ecológica y el Reto Demográfico.
MUR	Región de Murcia.
NAV	Comunidad Foral de Navarra.
NC	Nivel crítico: Nivel fijado con arreglo a conocimientos científicos por encima del cual pueden producirse efectos nocivos para algunos receptores como las plantas, árboles o ecosistemas naturales, pero no para el hombre.
OLP	Objetivo a largo plazo: Nivel de un contaminante que debe alcanzarse a largo plazo, salvo cuando ello no sea posible con el uso de medidas proporcionadas, con el objetivo de proteger eficazmente la salud humana, el medio ambiente en su conjunto y demás bienes de cualquier naturaleza.

Tabla 1. Tabla de acrónimos utilizados

PV	País Vasco (Euskadi).
UA	Umbral de alerta: Nivel a partir del cual una exposición de breve duración supone un riesgo para la salud humana que afecta al conjunto de la población y requiere la adopción de medidas inmediatas por parte de las Administraciones competentes.
UEI	Umbral inferior de evaluación: Nivel por debajo del cual es posible limitarse al empleo de técnicas de modelización para evaluar la calidad del aire ambiente.
UES	Umbral superior de evaluación: Nivel por debajo del cual puede utilizarse una combinación de mediciones fijas y técnicas de modelización y/o mediciones indicativas para evaluar la calidad del aire ambiente.
UI	Umbral de información: Nivel de un contaminante a partir del cual una exposición de breve duración supone un riesgo para la salud humana de los grupos de población especialmente vulnerables y las Administraciones competentes deben suministrar una información inmediata y apropiada.
VAG	Programa de Vigilancia Atmosférica Global: Instituido para comprender los cambios naturales y antropogénicos de la atmósfera, conocer las interacciones entre la atmósfera, el océano y la biosfera y facilitar información científicamente fiable para el desarrollo de políticas medioambientales nacionales e internacionales. Se encuentra dentro del PIAMA (Programa de Investigación de la Atmósfera y el Medio Ambiente – AREP).
VL	Valor límite: Nivel fijado basándose en conocimientos científicos, con el fin de evitar, prevenir o reducir los efectos nocivos para la salud humana, para el medio ambiente en su conjunto y demás bienes de cualquier naturaleza que debe alcanzarse en un período determinado y no superarse una vez alcanzado.
VLA	Valor límite anual.
VLD	Valor límite diario.
VLH	Valor límite horario.
vo	Valor objetivo: Nivel de un contaminante que deberá alcanzarse, en la medida de lo posible, en un momento determinado para evitar, prevenir o reducir los efectos nocivos sobre la salud humana, el medio ambiente en su conjunto y demás bienes de cualquier naturaleza.
VOLP	Valor objetivo a largo plazo: nivel de un contaminante que debe alcanzarse a largo plazo, salvo cuando ello no sea posible con el uso de medidas proporcionadas, con el objetivo de proteger eficazmente la salud humana, el medio ambiente y demás bienes de cualquier naturaleza.
vos	Valor objetivo para la protección de la salud.
vov	Valor objetivo para la protección de la vegetación.
ZBE	Zona de Bajas Emisiones.

1. ANTECEDENTES

La legislación nacional vigente sobre calidad del aire (*Real Decreto 102/2011*, *de 28 de enero, relativo a la mejora de la calidad del aire*¹) tiene por objeto regular la evaluación, el mantenimiento y la mejora de esta en relación con diferentes sustancias contaminantes, a través del establecimiento de métodos y criterios comunes que permiten medir, calcular, predecir o estimar las concentraciones de un contaminante en el aire ambiente o su depósito en superficies en un momento determinado. Ello permite obtener información comparable sobre la situación de la calidad del aire en todo el territorio nacional, información que es puesta a disposición del público y trasladada a la Comisión Europea.

En la página web del Ministerio para la Transición Ecológica y el Reto Demográfico anualmente se publican los resultados de la evaluación de calidad del aire llevada a cabo en España², la última de las cuales corresponde al año 2024 ("*Informe de la evaluación de la calidad del aire 2024*"³). Estos informes anuales reflejan la situación en la que se encuentran cada año las diferentes redes oficiales de calidad del aire respecto a los valores legislados en el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire para un conjunto de contaminantes, y proporcionan información sobre las zonas de evaluación definidas, los métodos de evaluación y los planes de calidad del aire que dichas redes han puesto en marcha para reducir o mantener los niveles de calidad del aire medidos en su territorio. También se elabora un informe anual específico sobre los datos de contaminación atmosférica en zonas rurales remotas, obtenidos en la Red EMEP (Programa Europeo de Monitorización y Evaluación) / VAG (Programa de Vigilancia Atmosférica Global) / CAMP (Programa Integral de Control Atmosférico).

Por otra parte, en diciembre de 2013, y a partir del Plan Nacional de Calidad del Aire y Protección de la Atmósfera 2013-2016, entre cuyos objetivos se encontraba el de fomentar la concienciación de la ciudadanía y la mejora de la divulgación de la información disponible sobre calidad del aire, la entonces denominada Subdirección General de Calidad del Aire y Medio Ambiente publicó el informe "Análisis de la Calidad del Aire en España. Evolución 2001-2012", un estudio detallado que contó con el respaldo de diversos organismos científicos, como IDAEA-CSIC (Instituto de Diagnóstico Ambiental y Estudios del Agua – Consejo Superior de Investigaciones Científicas), CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), AEMET (Agencia Estatal de Meteorología) e ISCIII (Instituto de Salud Carlos III), así como con la colaboración de las redes de calidad del aire españolas, en el que, además de presentar información general acerca de cómo se realiza la evaluación de la calidad del aire en España de acuerdo de la legislación vigente, se analizaba la evolución de los resultados de dicha evaluación entre los años 2001 y 2012. Este informe fue actualizado hasta 2016 con los resultados de los años 2013, 2014 y 2015.

La actual Subdirección General de Prevención de la Contaminación ha retomado la publicación de este análisis de la calidad el aire, al resultar de utilidad la divulgación de la evolución de las concentraciones de los contaminantes regulados en el Real Decreto 102/2011 a lo largo del tiempo. Por este motivo, el presente informe tiene por objeto mostrar las **tendencias** desde el principio de la evaluación de estos contaminantes con valor legislado para la protección de la salud y la vegetación hasta 2024, lo que ofrece una visión de la evolución de los niveles de los contaminantes en los últimos 23 años. A diferencia del informe anual de evaluación, este documento no pretende recoger información relativa al cumplimiento de la normativa de calidad del aire, sino mostrar las tendencias registradas.

¹ https://www.boe.es/eli/es/rd/2011/01/28/102/con

 $^{^2\, \}underline{\text{https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/evaluacion-y-datos-de-calidad-del-aire/datos/historico\underline{\text{calidad}}\underline{\text{aire.html}}}$

³ https://www.miteco.gob.es/content/dam/miteco/es/calidad-y-evaluacion-ambiental/sgalsi/atm%c3%b3sfera-y-calidad-del-aire/informes/2025-08-04 Informe evaluacion calidad aire Espana 2024.pdf

2. DESCRIPCION DEL DOCUMENTO

El informe se estructura por apartados para cada uno de los siguientes contaminantes que cuentan con valor legislado:

- Dióxido de azufre (SO₂)
- Dióxido de nitrógeno (NO₂) y óxidos de nitrógeno (NO_X)
- Partículas de diámetro inferior a 10 micras (PM₁₀)
- Partículas de diámetro inferior a 2,5 micras (PM_{2,5})
- Ozono (O₃)
- Monóxido de carbono (CO)
- Benceno (C₆H₆)
- Benzo(a)pireno (B(a)P)
- Plomo (Pb)
- Arsénico (As)
- Cadmio (Cd)
- Níquel (Ni)

Dentro de cada apartado se analiza tanto la evolución desde el inicio de la evaluación de cada contaminante como la situación concreta en la que se sitúa España en 2024, año al que corresponde la última evaluación comunicada a la Comisión Europea. Los datos representados son aquellos medidos en las estaciones que, para cada año, participaron en su evaluación oficial.

La **evolución hasta 2024** se aborda mediante la consideración de varias gráficas. En primer lugar, se representa un diagrama de cajas y bigotes, que muestra la distribución de las medias anuales de los valores registrados en las estaciones participantes en la evaluación de cada contaminante a lo largo del periodo considerado, donde las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul, el valor medio de las medias anuales. Se incorpora una línea con el valor legislado como referencia.

A continuación, se analiza la **evolución de las medias anuales** de las estaciones de calidad del aire, agrupadas por tipo de estación, lo cual indica la principal fuente de emisión que las influye (estaciones de fondo, industrial o de tráfico) o por la tipología de área en la que se ubica (estaciones urbana, suburbana o rural). En los casos de aquellos contaminantes que presente una clara pauta estacional, se ha incluido la representación de la **evolución de las medias mensuales**.

Posteriormente, para NO_2 , PM_{10} , $PM_{2,5}$ y O_3 , se añaden mapas que muestran la distribución geográfica de las estaciones, y sus concentraciones respecto a los valores límite u objetivo (según el caso), entre 2019 y 2024.

La terminología empleada procede de la normativa vigente y hace alusión a:

- La tipología de la principal fuente de emisión influyente:
 - Estación de fondo: Estaciones en las que no se manifiesta ninguna fuente de emisión como predominante.
 - Estación industrial: Estaciones en las que su nivel de contaminación se debe fundamentalmente a la contribución de fuentes industriales.
 - Estación de tráfico: Estaciones en las que su nivel de contaminación está determinado principalmente por las emisiones procedentes de los vehículos de una calle o carretera próxima.

• El tipo de zona:

- Estación urbana: las ubicadas en zonas edificadas de forma continua.
- Estación suburbana: aquellas que se encuentran en zonas con presencia continuada de edificios, separadas por zonas no urbanizadas (pequeños lagos, bosques, tierras agrícolas...).
- Estación rural: entendidas como las situadas en zonas que no satisfacen los criterios de las dos categorías anteriores.

Del mismo modo, los términos "zona" y "estación" se definen de la siguiente forma:

- Zona: porción de territorio delimitada por la Administración competente en cada caso, utilizada para evaluación y gestión de la calidad del aire.
- Estación: instalación o cabina individual, dotada de equipos y sensores para la adecuada medición de la calidad del aire.

La situación en 2024 se analiza en primer lugar a través de la representación de la evolución de las medias mensuales de todas las estaciones que han participado en la evaluación de cada contaminante, clasificadas por tipo de área y tipo de estación para aquellos contaminantes que no presentan una estacionalidad clara.

A continuación, se realiza un análisis particularizado por contaminante, ya que pueden provenir de distintas fuentes de emisión (tanto antropogénicas como naturales⁴) o incluso de las reacciones químicas de sus precursores en la atmósfera (contaminantes secundarios como el ozono). En el caso de las partículas, sus niveles siempre se indican en el informe sin aplicar la metodología de descuentos de fuentes naturales.

En el análisis de cada contaminante se considera la distribución de diversos estadísticos correspondientes a las estaciones que han participado en su evaluación en el año 2024, ordenados de menor a mayor por tipo de estación o tipo de área según sus características, respecto a los umbrales superior e inferior de evaluación (UES, UEI), y el valor objetivo (VO) o límite (VL) establecido por la legislación. En determinados casos, como por ejemplo ocurre con el NO₂, el tipo de área aparece desagregado a su vez por tipo de estación como información adicional.

Generalmente, el estadístico utilizado en este análisis es la media anual. Conviene indicar que, puesto que este informe no busca analizar el cumplimiento legal sino mostrar tendencias en la calidad del aire en España, se han utilizado también estadísticos que no se ajustan exactamente a los objetivos de calidad legislados, como es el caso de los percentiles. El **percentil X-ésimo** identifica un dato de una serie ordenada de menor a mayor que deja por debajo suyo el X % de los datos de la serie. Es decir, cuando no se dispone del 100 % de la serie anual de una estación, el percentil X-ésimo permite conocer cómo de cerca o de lejos está la misma de alcanzar el valor legislado de que se trate

El valor del percentil se calcula según el contaminante, teniendo en cuenta los valores legislados. Por ejemplo, el valor límite horario de NO_2 de $200 \,\mu g/m^3$ no podrá superarse en más de 18 horas al año, de modo que se calcula el valor del percentil de la siguiente manera:

Si un año tiene 8.760 horas, menos 18 horas son 8.742, 8742/8760 = **99,8**

https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/evaluacion-y-datos-decalidad-del-aire/fuentes-naturales.html

⁴ Cuando las superaciones de los valores límite de un contaminante sean atribuibles a fuentes naturales, no se considerarán superaciones a los efectos de cumplimiento de la normativa y no originarán obligación de ejecutar planes de actuación. Existe una metodología para identificar dichos episodios, calcular sus aportes y sustraerlas de las superaciones atribuibles a fuentes naturales, admitida por la Comisión Europea. No obstante, las concentraciones de PM₁₀ y PM_{2.5} aparecen en este informe sin aplicar la metodología de descuentos por fuentes naturales. Más información en:

Otro ejemplo es el valor límite diario de PM_{10} de 50 $\mu g/m^3$ que no podrá superarse en más de 35 ocasiones al año, en este caso el valor del percentil se calcula de la siguiente manera:

Si un año tiene 365 días, menos 35 días son 365-35=330, 330/365 = **90,4**

Además, algunos contaminantes, como el SO_2 , el NO_2 o el O_3 , presentan niveles especiales establecidos en el Real Decreto 102/2011 a partir de los cuales el riesgo de exposición supone un riesgo añadido, y dichos niveles (umbrales) también se han tenido en cuenta en el análisis particularizado; en concreto se trata de los siguientes:

- Umbral de información: Nivel de un contaminante a partir del cual una exposición de breve duración supone un riesgo para la salud humana de los grupos de población especialmente vulnerables y las Administraciones competentes deben suministrar una información inmediata y apropiada.
- Umbral de alerta: Nivel a partir del cual una exposición de breve duración supone un riesgo para la salud humana que afecta al conjunto de la población y requiere la adopción de medidas inmediatas por parte de las Administraciones competentes.

El tratamiento de cada contaminante finaliza, si procede, con un apartado específico dedicado a la distribución regional de sus niveles a lo largo del año (promedio mensual de los valores medios diarios de las estaciones de cada región). Para ello se realizan mapas de calor, en los que se muestra un gradiente de colores entre el verde y el naranja , según los niveles de concentración del contaminante de que se trate sean menores o mayores.

En este análisis, las regiones se corresponden con las redes oficiales de control de la calidad del aire operativas en el año 2024. Se justifica la ausencia de estaciones rurales en las redes correspondientes a los Ayuntamientos de Madrid y Zaragoza por tratarse de aglomeraciones; tampoco hay estaciones calificadas como suburbanas en La Rioja. Ceuta sólo dispone de una estación urbana, y Melilla cuenta ya en 2024 con dos estaciones, ninguna de ellas rural. Los acrónimos utilizados al hablar de las redes de calidad del aire son los siguientes:

AND Andalucía C.VAL Comunitat Valenciana **ARAG EXT** Extremadura Aragón A.ZGZA Ayto. Zaragoza GAL Galicia **AST** Principado de Asturias C.MAD Comunidad de Madrid I.BAL Ayto. de Madrid Illes Balears A.MAD MUR **I.CAN** Islas Canarias Región de Murcia **CANT** Cantabria NAV Comunidad Foral de Navarra CLM Castilla-La Mancha PV País Vasco (Euskadi) CYL Castilla y León LR La Rioja CAT Cataluña CEU Ciudad Autónoma de Ceuta Ciudad Autónoma de Melilla MEL

Tabla 2. Redes de calidad del aire (2024)

3. <u>DIÓXIDO DE AZUFRE</u>

3.1. Evolución 2001-2024 del SO₂

La evolución de los niveles de SO₂ (Figura 1) indica una tendencia hacia la disminución de los valores medios a lo largo del tiempo, siendo especialmente significativas las reducciones que se produjeron en 2003 y posteriormente a partir de 2008, año de crisis económica y de implementación de la Directiva europea que reguló el contenido en azufre de los combustibles. Los máximos registrados en los últimos años indican una estabilización desde el año 2018, si bien en 2024 se ha registrado el mínimo de toda la serie. Cabe aclarar que, al no estar definido actualmente en la legislación un valor para la protección de la salud de promedio anual que pueda ser comparable con los datos representados se ha establecido, a afectos ilustrativos, el valor de 20 μg/m³, correspondiente al nivel crítico para la protección de la vegetación (periodo de promedio anual e invierno).

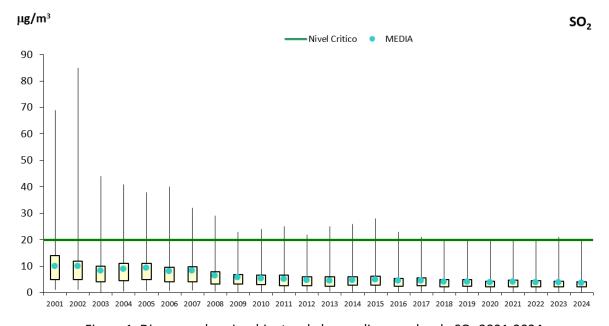


Figura 1. Diagrama de caja y bigotes de las medias anuales de SO₂ 2001-2024

En la Figura 2. Evolución de las medias anuales de SO2 (2001-2024) por tipo de área, se pone en evidencia esa estabilización observada en la Figura 1, principalmente en las medias de las estaciones ubicadas en medio rural.

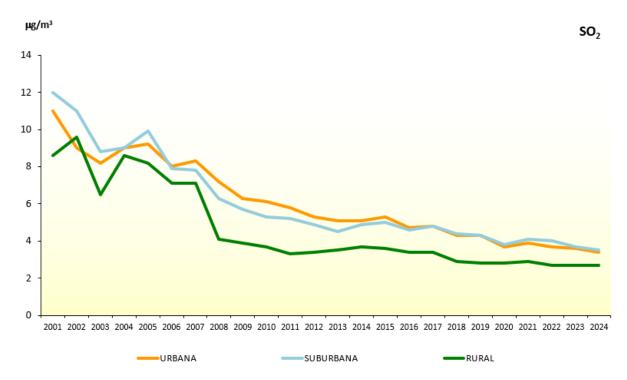


Figura 2. Evolución de las medias anuales de SO₂ (2001-2024) por tipo de área

La Figura 3. Evolución de las medias anuales de SO2 (2001-2024) por tipo de estación apunta a que los niveles más altos se registran en las estaciones industriales ya que este contaminante está altamente vinculado con las emisiones de focos puntuales de combustión y con las emisiones fugitivas y, en menor medida, con las procedentes de determinados procesos industriales (refinerías, etc.), la generación eléctrica y la navegación.

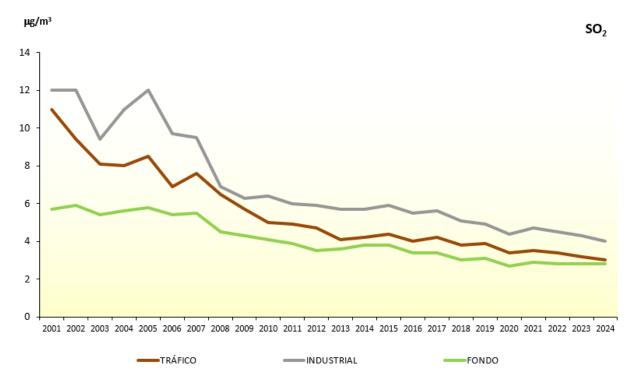


Figura 3. Evolución de las medias anuales de SO₂ (2001-2024) por tipo de estación

En la Figura 4 se representan las medias mensuales de todo el periodo 2001-2024, atendiendo a la tipología del área donde se ubican las estaciones. Se observa cómo la disminución del año 2008 fue especialmente marcada en las estaciones de tipo rural:

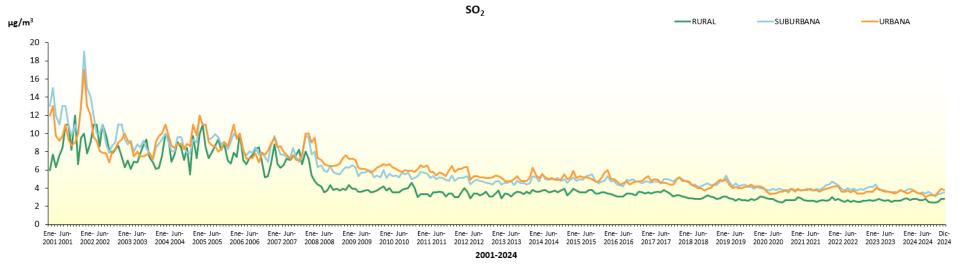


Figura 4. Evolución de las medias mensuales de SO₂ de 2001 a 2024 por tipo de área

La Figura 5 también representa las medias mensuales de todo el periodo 2001-2024, pero según la tipología de la estación. Muestra una pauta estacional clara con mínimos en el periodo vacacional estival, especialmente marcado en las estaciones de tráfico del 2001 al 2008, año en el que se limitó el contenido de azufre máximo para gasolinas y gasóleo de automoción⁵. Esta pauta continúa hasta el año 2019 aunque con valores mucho menores. También se aprecia la bajada en marzo de 2020 en las estaciones de tráfico debido a las medidas adoptadas por la pandemia del COVID-19. En 2024 los niveles de tráfico y fondo se acercan mucho, sobre todo en el segundo semestre, pero habrá que avanzar en el tiempo para poder ver si se trata de un hecho puntual o de una tendencia.

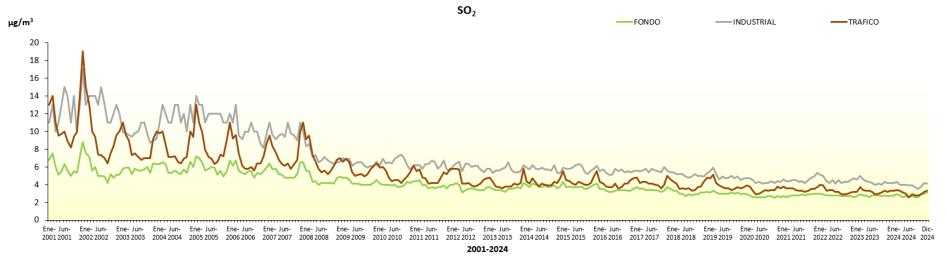


Figura 5. Evolución de las medidas mensuales de SO₂ de 2001 a 2024 por tipo de estación

⁵ Real Decreto 1700/2003, de 15 de diciembre, por el que se fijan las especificaciones de gasolinas, gasóleos, fuelóleos y gases licuados del petróleo, y el uso de biocarburantes. https://www.boe.es/eli/es/rd/2003/12/15/1700

3.2. Niveles de SO₂ en 2024

En la Figura 6 se muestra la distribución del percentil 99,2 por tipología de estación. Este estadístico se emplea como aproximación al valor límite diario (VLD) de SO_2 . Los datos confirman los bajos niveles comentados, ya que de las 411 estaciones que se emplearon para evaluar SO_2 en 2024, tan solo tres superan el Umbral Inferior de Evaluación (UEI), las tres de tipo industrial, y de ellas ninguna supera además el Umbral Superior de Evaluación (UES), aunque una lo iguala. En general, las estaciones de tipo industrial son aquellas que registraron en el año 2024 mayores valores del Percentil 99,2.

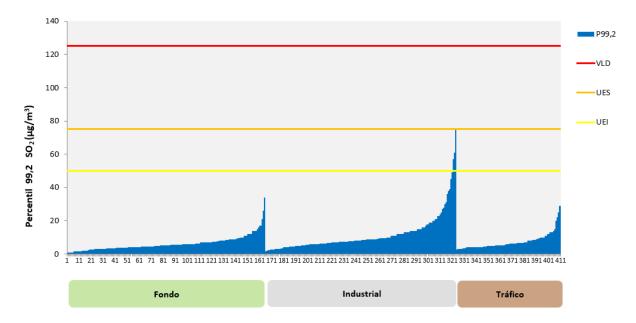


Figura 6. Distribución del P99,2 de SO₂ por tipología de estación en 2024

Para considerar la distribución regional, se ha elaborado la Figura 7, que muestra el promedio mensual de los valores medios diarios por red de calidad del aire para SO₂ en 2024.

En 2024, la red que registra los valores más acusados es la de Ceuta (que ya fue la Red con los niveles más altos en 2023), en su única estación de fondo ubicada en el puerto.

						20	24					
Mes Red	1	2	3	4	5	6	7	8	9	10	11	12
AND	4	4,2	4,2	4,1	4,1	4,2	4,3	4,3	3,9	4,1	4,1	4,2
ARAG	2,7	2,6	2,9	2,4	2,2	2,4	2,5	2,5	2,5	2,6	2,9	2,7
A.ZGZA	5,2	5,5	6	5,4	4	2,4	2,3	2,3	2,1	2,1	2,7	3,1
AST	3,7	3,8	3,2	3,3	3,5	3,1	3,4	2,7	2,7	2,8	4,3	4,8
I.BAL	2,4	2,2	2	2,1	2,3	2,3	2,1	2	2	2,1	2	2,1
I.CAN	3,4	3,7	3,5	3,4	3,2	3,4	3,4	3	3	4,2	5	5,1
CANT	0,82	0,94	0,81	0,56	0,5	0,6	0,96	1	1,2	1,6	1,5	1,2
CLM	3,3	2,7	3,4	2,6	2,6	2,9	2,9	2,9	2,6	3,3	3,1	2,8
CYL	3,3	3,2	2,9	2,6	2,6	2,2	2,3	2,3	2,4	2,7	3,1	3,2
CAT	2,1	2,1	1,8	1,9	1,8	2	2,3	2,3	2,1	2,3	2,3	2,1
C.VAL	3,9	3,9	3,6	3,7	3,7	3,5	3,4	3,3	3,5	3,6	3,7	3,8
EXT	1	1,2	0,71	0,64	0,63	0,59	0,8	0,81	0,77	0,83	0,84	0,98
GAL	3,6	3,5	3,2	2,6	2,9	2,9	2,7	2,4	2,5	2,3	2,6	2,6
C.MAD	2,6	2,2	2,4	2,4	1,7	1,8	2,1	2,2	2,3	2,6	2,9	3,8
A.MAD	2,1	2,1	2	2,9	2,9	1,7	2,6	2,4	2,5	2,6	2,7	3,3
MUR	4,9	5	5,1	5,1	5,4	5	4,9	4,1	3,5	3,7	3,4	2,5
NAV	3,9	3,8	3,7	3,3	2,6	2,2	2,6	2,2	2,1	2,3	2,8	2,6
PV	4,3	4,7	4,3	4,6	4,6	3,7	4,2	4,6	4,2	3,8	4,2	3,8
LR	2,1	2,1	2,1	3	2,4	2,4	2,3	2,3	2,4	2,5	2,4	1,8
CEU	8,1	12	12	9,6	12	9,2	6,5	4,5	7,4	7,8	5	7,6
MEL	3,2	2,2	2,7	2,1	2,6	2	2,3	2,2	1,4	2,5	3,1	5,1

Figura 7. Distribución por regiones de valores medios mensuales de SO₂ (μg/m³) 2024

4. <u>ÓXIDOS DE NITRÓGENO</u>

4.1. Evolución 2001-2024 del NO₂

En la evolución de los niveles de NO_2 (Figura 8) destaca, en primer lugar, una bajada progresiva en los valores medios, que a partir de 2011 no superan los 20 μ g/m³, y que tras cuatro años con los niveles estabilizados en los 13 μ g/m³ (2020-2023), en 2024 ha seguido bajando, hasta alcanzar el nivel más bajo de la serie (12 μ g/m³). En segundo lugar, destaca la bajada drástica de los máximos desde el año 2020, que se prolonga aún en 2024 (de nuevo, con el valor más bajo desde 2001, 33 μ g/m³).

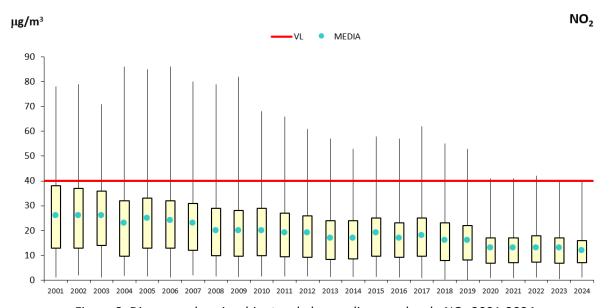


Figura 8. Diagrama de caja y bigotes de las medias anuales de NO₂ 2001-2024

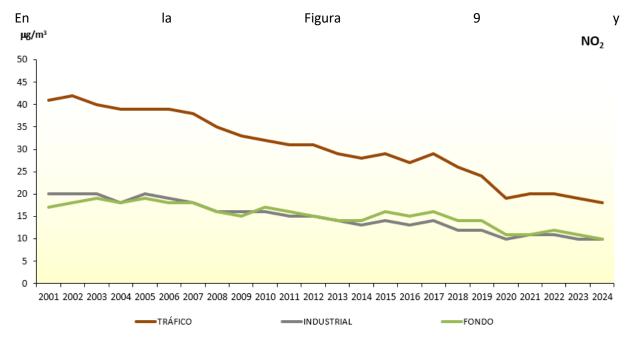


Figura 10 se observa, al diferenciar por tipologías, cómo la disminución de los niveles se manifiesta sobre todo en estaciones urbanas y de tráfico, en lo que han podido jugar un papel importante los cambios en el modelo de movilidad, la aplicación de las medidas de diversos planes de mejora de calidad del aire en las principales ciudades, así como la creación de las Zonas de Bajas Emisiones

(ZBE). En 2024 se mantienen los niveles de 2023 en las estaciones suburbanas y rurales (según el tipo de área), y en las industriales (por tipología de estación).

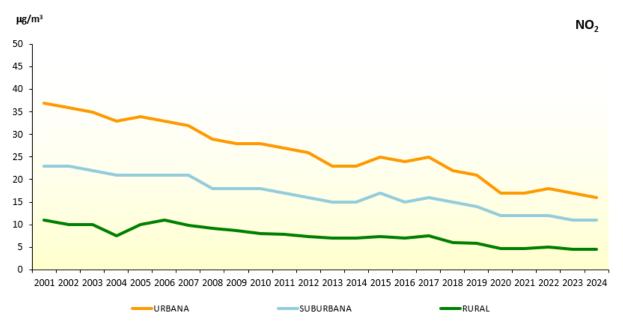


Figura 9. Evolución de las medias anuales de NO2 (2001-2024) por tipo de área

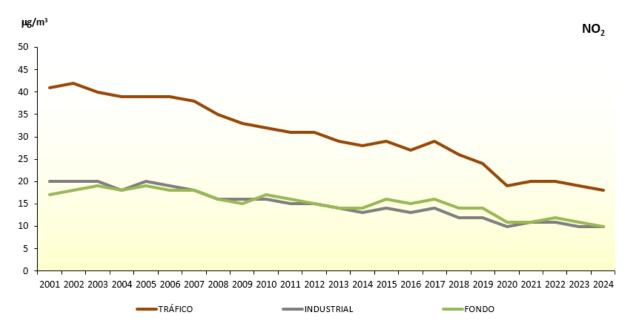


Figura 10. Evolución de las medias anuales de NO₂ (2001-2024) por tipo de estación

La Figura 11 muestra una evidente pauta estacional de este contaminante para todas las tipologías de estaciones, con valores más elevados en otoño-invierno que en primavera-verano, siendo está tendencia especialmente acusada en las zonas urbanas y en estaciones de tráfico.

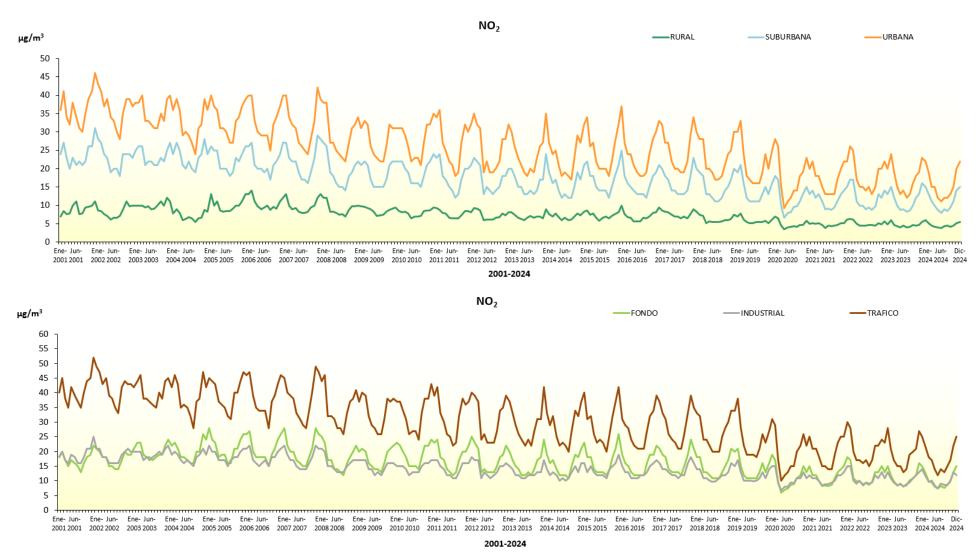


Figura 11. Evolución de las medias mensuales NO₂ de 2001 a 2024 por tipo de área (arriba) y estación (abajo)

Otra forma de apreciar la mejora de los valores de NO₂ en los últimos años se refleja en la representación geográfica de las estaciones en el territorio español en relación tanto con el valor límite horario (VLH, Figura 12) como con el valor límite anual (VLA, Figura 13) desde 2019 a 2024. En estos mapas se observa desde 2020 una reducción del número de estaciones con mayores concentraciones.

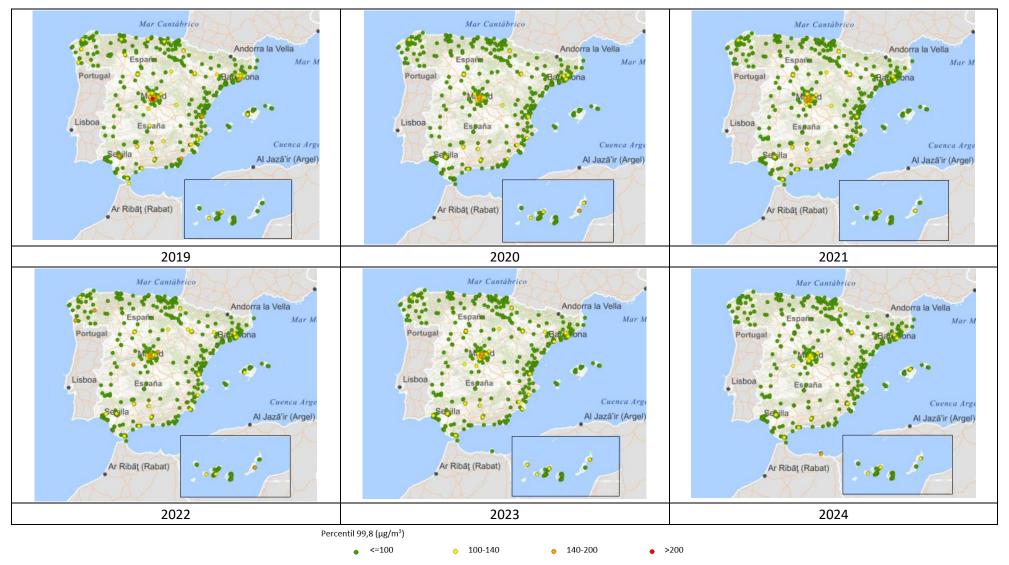


Figura 12 Evolución de los niveles de NO₂ respecto al VLH a lo largo del periodo 2019-2024

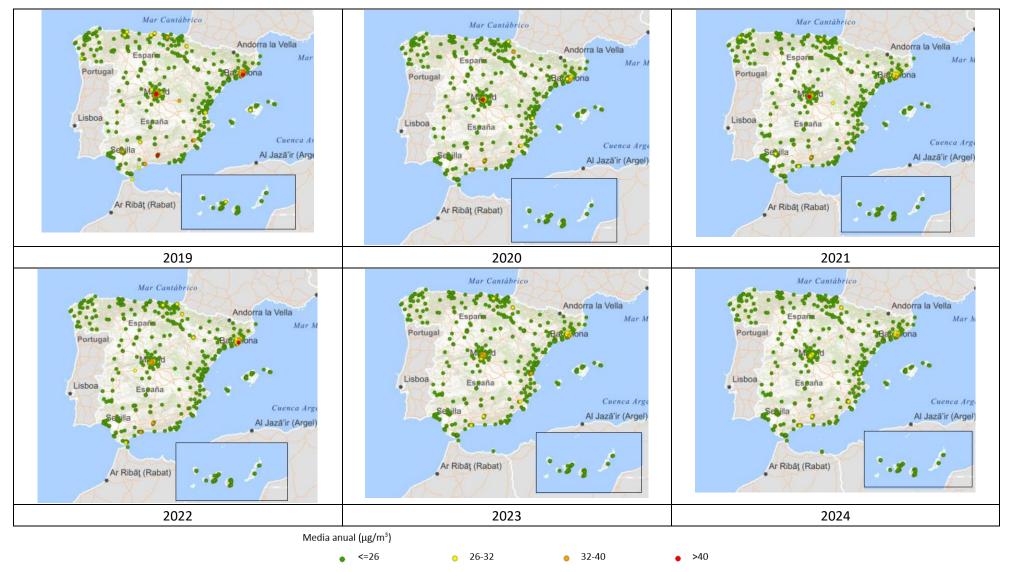


Figura 13 Evolución de los niveles de NO2 respecto al VLA a lo largo del periodo 2019-2024

4.2. Niveles de NO₂ en 2024

A continuación, se muestra la distribución de las medias anuales y la del percentil 99,8 de las estaciones que han participado en la evaluación, agrupadas por tipo de área y, en el caso de las estaciones urbanas, desagregadas por la fuente de emisión predominante (tráfico, industrial y fondo) para el año 2024. Los datos confirman que son las estaciones urbanas las que presentan los valores medios anuales más elevados, en concreto las estaciones de tráfico, seguidas de las de fondo. De las 535 estaciones que se emplearon para evaluar NO₂ en 2024, ninguna estación registró niveles por encima ni del VLA ni del VLH.

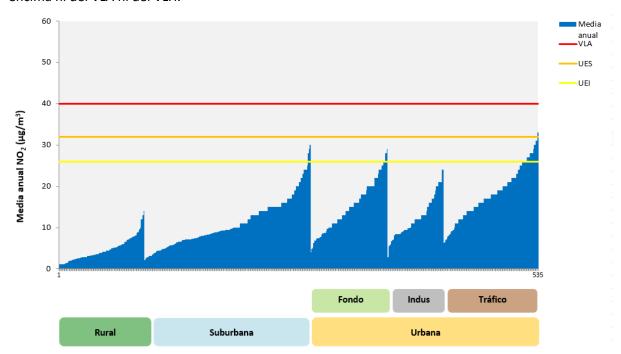


Figura 14. Distribución de la media anual de NO₂ (2024)

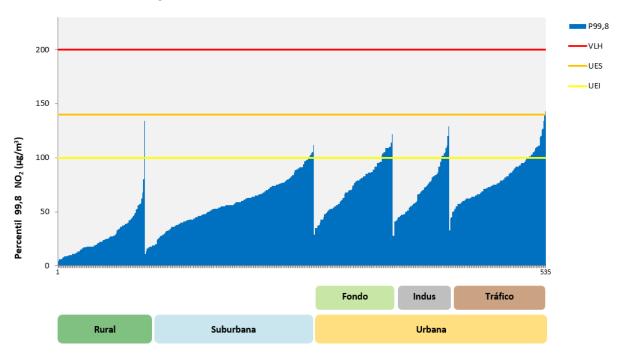


Figura 15. Distribución del Percentil 99,8 de NO₂ (2024)

Tendencias de la calidad del aire en España 2001-2024

En cuanto a la distribución regional, la Figura 16 muestra el promedio mensual de los valores medios diarios distribuidos por red de calidad del aire para NO_2 clasificadas por tipo de área, para el año 2024. En ella se aprecia la incidencia de niveles más bajos en los meses de primavera y verano. Por otro lado, la distribución territorial muestra que el patrón de distribución a lo largo de los meses del año es más acusado en unas zonas respecto a otras.

						Urbana	a - 2024	4											Su	burba	na - 202	4											Rural -	2024					
Red	1	2	3	4	5	6	7	8	9	1	10 :	11 :	12	Mes Red	1	2	3	4	5	6	7	8	9	10	11	12	Red Mes	1	2	3	4	5	6	7	8	9	10	11	12
AND	19	16	15	15	13	11	15	13	3 1	12	14	19	20	AND	13	10	9,8	9,9	8,8	7,5	11	9,7	8,2	9,	9 12	12	AND	5,3	5	4,7	4,5	3,7	4	5,7	5,4	4	4,6	5,6	5,9
ARAG	19	19	11	7,9	7,6	8,1	8,8	7,5	5 6,	,6	8,9	14	17	ARAG	20	18	17	14	14	11	12	11	10	1	4 19	14	ARAG	5,7	4,3	3,7	4	3,8	3	3,2	3,3	3,2	3,4	4,7	4,6
A.ZGZA	24	19	18	14	12	10	11	. 10) 1	12	18	20	18	A.ZGZA	20	18	19	14	12	11	13	13	16	2	4 22	17	A.ZGZA												
AST	23	17	13	12	10	8,4	8,1	. 8,:	1 1	10	14	19	20	AST	17	13	11	10	8,1	6,3	6,2	6	7,2	8,	9 11	13	AST	2,6	2,3	1,9	1,9	1,6	1,4	1,6	1,7	1,9	2,3	2,7	2,7
I.BAL	18	16	13	16	13	12	14	13	3 1	13	11	15	16	I.BAL	11	10	8,4	7,8	7,6	7,1	8,2	9,1	9,5	7,	4 7,9	8,6	I.BAL	6,6	6,3	5	5	4,9	4,6	5,6	5,8	5,3	5,2	5	8,6
I.CAN	16	14	9,1	14	7,9	7	8,7	8,2	2 8,	,6	11	18	14	I.CAN	9	8	7,7	9,2	6,8	7,7	7,7	7	6,6	7,	9 9,7	7,5	I.CAN	9,4	13	5,3	9,2	8,6	7,4	5,8	2,9	4,8	5,5	5	7
CANT	11	9,1	10	11	9,1	7,6	8,7	10) 1	11	13	16	15	CANT	17	8,4	5,3	3,7	3,1	1,5	8	10	10	1	3 15	15	CANT	0,3	0,2	0,1	1,1	1,3	1,5	1,7	1,7	1,4	1,3	1,4	1,2
CLM	24	18	12	13	12	13	16	16	5 1	17	16	22	26	CLM	15	12	9,1	7,7	7,6	7,9	9,3	9	9,8	1	0 14	21	CLM	1,4	1,3	1,3	1,2	0,81	1,2	0,76	1,2	1,3	1,2	1,4	1,4
CYL	17	17	14	12	10	8,3	9,4	9,8	3 1	11	11	17	20	CYL	9,3	8,3	6,1	5,5	4,2	3,9	5,2	5,8	6,2	6,	6 10	14	CYL	4,2	4	3	3,3	3	3,4	4,1	3,4	2,3	2,4	3,6	4,2
CAT	31	29	23	22	18	16	19	15	5 1	19	21	24	28	CAT	24	21	16	16	13	11	13	12	15	1	7 19	21	CAT	7,6	6,6	5,3	4,6	3,8	3,7	4,1	4,5	4,2	5,3	5,5	5,8
C.VAL	21	19	14	14	11	9,9	11	. 9,9	9 1	11	13	16	19	C.VAL	12	12	9,2	9,8	7,9	6,9	7,4	6,9	7,1	7,	9 11	. 11	C.VAL	5,3	4,4	4,8	3,7	4,5	4,6	4,5	5,1	4,6	5,5	5,3	5,2
EXT	11	8,4	6,5	7,2	7,2	7,2	7,7	7,:	1 9,	,3	8,5	13	16	EXT	4,5	3,9	3,2	3,2	3,3	5,1	4,3	4,1	4,4	4,	9 4,7	6,5	EXT	2,2	2,1	1,4	1,1	1,7	3,4	3,5	3,4	6,2	2,7	2,5	2,6
GAL	20	17	13	12	11	9,2	11	. 13	1 1	14	13	16	18	GAL	9,6	8,3	6,1	5,8	5,9	5,2	4,7	4,9	7,1	6,	3 8,7	9,5	GAL	5,8	5,3	4,7	4,9	4,8	4	4,1	4,1	5,2	4,6	5,8	5,8
C.MAD	32	26	20	19	14	14	16	16	5 1	18	19	30	35	C.MAD	24	20	16	14	11	10	11	11	14	1	4 21	28	C.MAD	6,8	4,8	3,6	2,9	2,7	3,2	3,6	3,9	3,7	3,7	5,5	6,1
A.MAD	37	31	23	21	16	16	18	16	5 1	18	22	33	40	A.MAD	25	19	14	13	10	10	12	12	13	1	4 20	25	A.MAD												
MUR	26	25	19	22	20	16	14	13	3 2	20	22	21	26	MUR	24	20	17	16	14	13	12	11	13	1	6 21	24	MUR	4,4	3,3	3,4	3,8	3,1	3,5	3,3	3,6	3,4	3,3	3,9	4,4
NAV	31	25	18	15	13	11	. 11	. 10) 1	14	21	24	23	NAV	14	10	7,6	5,7	5,4	4,8	4,4	4,6	5,3	7,	1 9,4	9,1	NAV	9,4	7,4	6	4,5	6,4	6,7	6	6,2	3,2	4,2	6,9	7,3
PV	21	17	15	14	13	11	11	. 10) 1	14	16	19	19	PV	14	12	10	10	9,3	8	8,5	7,6	9	1	1 13	12	PV	4,3	2,8	2,3	2,6	2,3	2,3	2,5	2,4	2,7	2,7	3,2	3,1
LR	26	23	17	14	11	8,7	8,3	7,2	2 9,	,5	13	18	20	LR													LR	9,1	7,5	6,6	5,9	5,4	5,2	4,9	5,2	5,1	5,7	7,1	6,7
CEU	20	19	21	22	27	26	32	29	9 2	28	23	18	21	CEU													CEU												
MEL	21	11	11	12	9,3	8,6	14	12	2	9	12	15	41	MEL	9,2	4,6	5,4	8,7	5,1	4,4	6,2	4,4	4,2		7 8,2	7,4	MEL												

Figura 16. Distribución por regiones y tipo de área de valores medios mensuales de NO_2 (µg/m³) (2024)

5. PARTÍCULAS PM₁₀

5.1. Evolución 2001-2024 de las partículas PM₁₀

Las concentraciones de partículas se determinan con independencia de su origen, por lo que las debidas a fuentes naturales se incluyen de forma indiferenciada junto con las ocasionadas por fuentes antropogénicas en la representación de los datos y gráficos que se muestran en este informe.

Existe una metodología para el descuento del aporte atribuido a las fuentes naturales, que se aplica en el caso de que se observe una superación de los valores legislados en el proceso de la evaluación anual de la calidad del aire, como marca la legislación vigente, y que establecerá la necesidad de desarrollar o no planes de calidad del aire si, tras los descuentos de las fuentes naturales, se mantiene la superación del valor límite (VL).

En la Figura 17 se observa cómo a pesar de la influencia de fuentes naturales, la tendencia de los niveles medios ha sido decreciente a lo largo del periodo considerado, aunque algunos años han sido especialmente intensos en lo que a eventos de calimas se refiere, como ocurrió en 2022⁶⁷. Los valores máximos también han disminuido con los años; destaca, como para otros contaminantes, una reducción importante a partir de 2008.

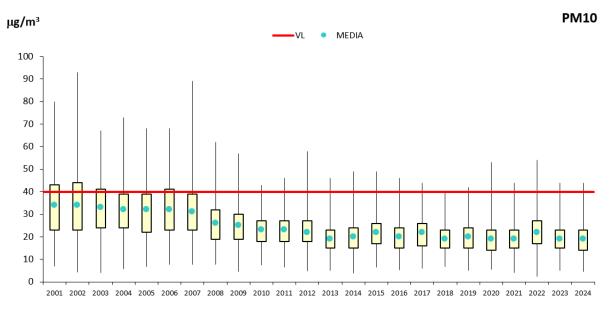


Figura 17 Diagrama de caja y bigotes de las medias anuales de PM₁₀ 2001-2024

⁶ https://www.miteco.gob.es/content/dam/miteco/es/calidad-y-evaluacion-ambiental/sgalsi/atm%C3%B3sfera-y-calidad-del-aire/sgalsi_intrusiones/sgalsi_intrusiones-2022/episodios%20naturales%202022.pdf

⁷ https://www.miteco.gob.es/content/dam/miteco/es/calidad-y-evaluacion-ambiental/sgalsi/atm%c3%b3sfera-y-calidad-del-aire/evaluaci%c3%b3n-2022/Informe%20evaluacion%20calidad%20aire%20Espa%c3%b1a%202022 02112023.pdf; Capítulo 9, "Situaciones excepcionales en calidad del aire 2022: Supercalimas de polvo desértico sahariano", pág. 267.

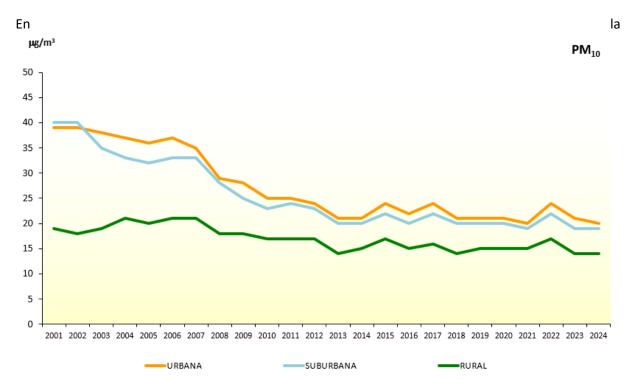


Figura 18 y en la Figura 19 se aprecia cómo la disminución ha sido especialmente notable en zonas urbanas y suburbanas y en las estaciones de tráfico, seguidas de las industriales, todo ello pese a que 2022 (año especialmente complicado en lo que a intrusiones de polvo africano se refiere) supuso un nuevo ascenso hasta alcanzar niveles similares a los de 2017. En 2023 se recuperó la tendencia a la baja para todas las tipologías de estaciones, aunque después estabilizada en 2024 en las estaciones suburbanas y rurales.

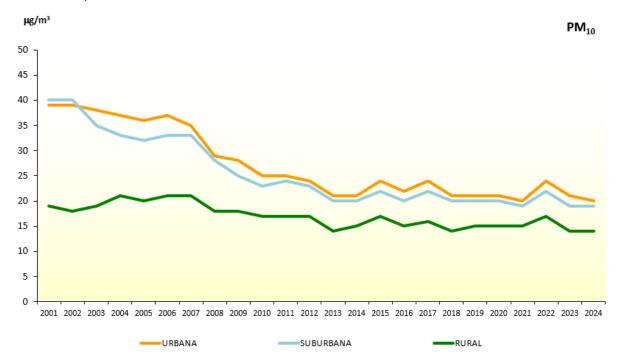


Figura 18 Evolución de las medias anuales de PM₁₀ (2001-2024) por tipo de área

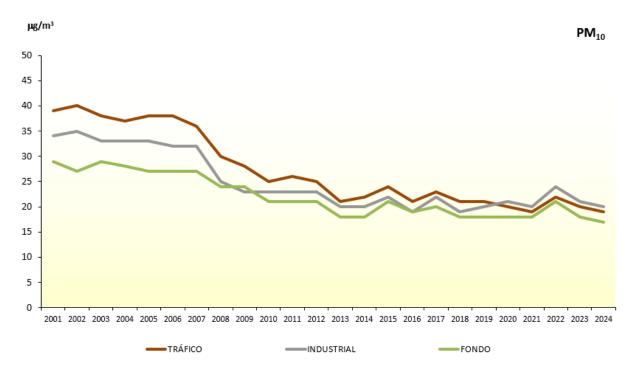


Figura 19 Evolución de las medias anuales de PM₁₀ (2001-2024) por tipo de estación

Todo ello se refleja también en la representación geográfica de las estaciones, tanto en la evolución de 2019 a 2024 de valores diarios (Figura 20) como en los valores medios anuales (Figura 21), en cuyos mapas se observa una reducción de las estaciones con mayores concentraciones hasta 2021, seguida de un incremento en 2022, especialmente evidente en el archipiélago canario, próximo al continente africano y por lo tanto muy influenciado por los episodios de intrusiones africanas, y una posterior mejora a partir de 2023.

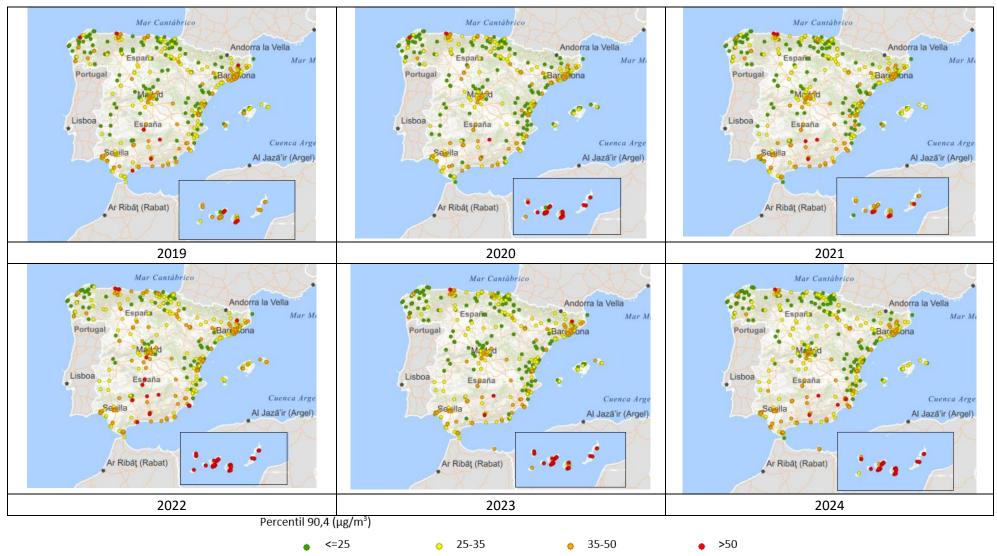


Figura 20 Evolución de los niveles de PM₁₀ respecto al VLD a lo largo del periodo 2019-2024

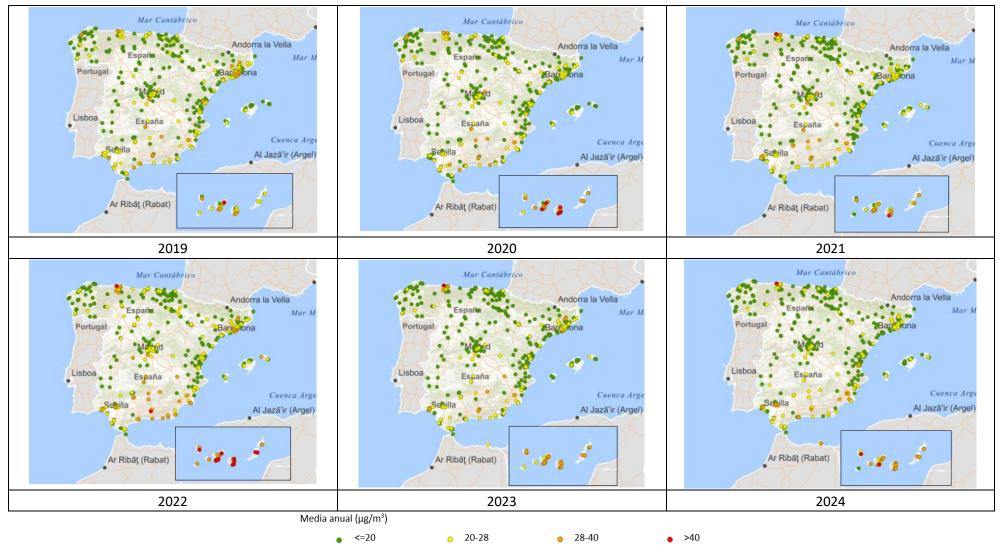


Figura 21 Evolución de los niveles de PM₁₀ respecto al VLA a lo largo del periodo 2019-2024

5.2. Niveles de PM₁₀ en 2024

Como consecuencia de la contribución de las fuentes naturales, resulta más difícil establecer patrones de evolución a lo largo del año para este contaminante.

Las figuras 22 y 23 muestran la distribución mensual a lo largo del año 2024. Se aprecia el mismo comportamiento independientemente de la tipología de área o de estación (lo que puede ser reflejo del efecto de los episodios de polvo del Sáhara; la Figura 27 muestra la distribución mensual del número de días con episodios africanos por regiones en 2024), salvo en las estaciones urbanas, que en diciembre mantuvieron sus niveles respecto a noviembre. A su vez, permite evidenciar cómo las estaciones suburbanas y urbanas registran aproximadamente de media a lo largo del año en torno a 5 μ g/m³ y 6 μ g/m³ de concentración de PM₁₀, respectivamente, más que las estaciones rurales, diferencia que puede atribuirse, en este caso, a una mayor influencia de las fuentes antrópicas en estas áreas. Por tipología de estación, los niveles más altos corresponden en general a las estaciones industriales.

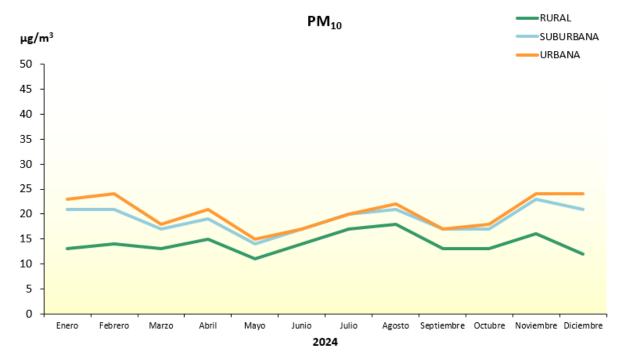


Figura 22 Evolución de las medias mensuales de PM₁₀ en 2024 por tipo de área

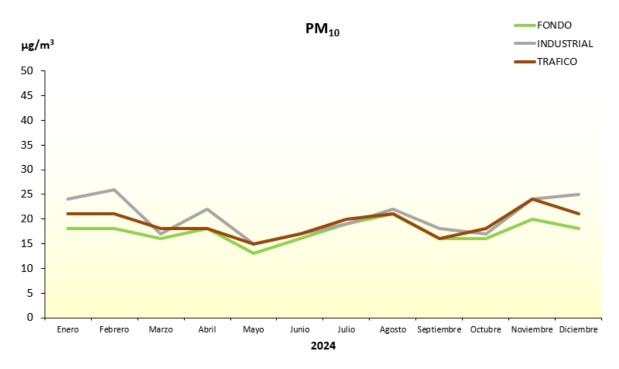


Figura 23 Evolución de las medias mensuales de PM₁₀ en 2024 por tipo de estación

En las figuras recogidas a continuación se muestra la distribución de las medias anuales y la distribución del Percentil 90,4 de PM_{10} de las estaciones que han participado en la evaluación, agrupadas por tipo de área. En ellas se observa que de las 489 estaciones que se emplearon en 2024 para evaluar PM_{10} , antes de descontar las fuentes naturales de PM_{10} , tan sólo tres superan el VLA (el 0,6 % del total), todas ellas de tipo industrial (dos suburbanas y una urbana). El VLD lo excedieron 41 estaciones (el 8,4 % del total), de las cuales 29 eran urbanas, 11 suburbanas y tan solo 1, rural.

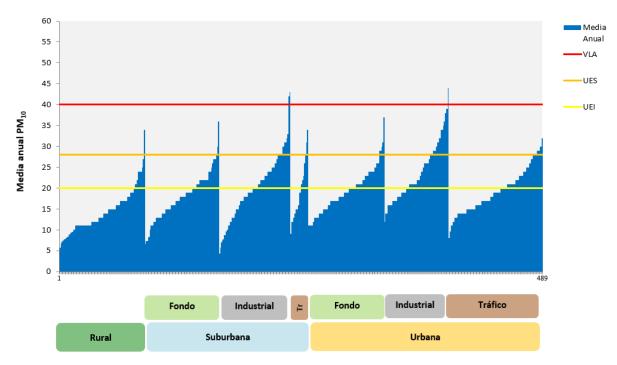


Figura 24 Distribución de la media anual de PM₁₀ (2024)

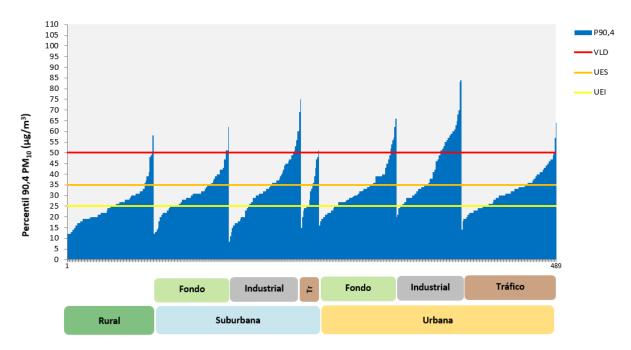


Figura 25 Distribución del Percentil 90,4 de PM₁₀ (2024)

En cuanto a la distribución regional, la Figura 26 muestra el promedio mensual de los valores medios diarios para PM₁₀ en 2024. En ella puede observarse como los valores más elevados se dieron, con carácter general, durante los meses invernales (enero-febrero y noviembre-diciembre), y afectaron especialmente a las Islas Canarias, Región de Murcia, Melilla y Andalucía.

						20	24					
Red Mes	1	2	3	4	5	6	7	8	9	10	11	12
AND	22	20	24	24	20	20	25	28	25	18	29	21
ARAG	15	15	13	19	13	17	22	21	13	14	16	12
A.ZGZA	20	18	16	18	14	16	22	24	15	18	23	14
AST	26	25	16	19	15	19	19	19	18	19	25	21
I.BAL	15	18	19	17	15	17	19	20	17	21	22	15
I.CAN	45	53	19	37	18	18	20	27	21	18	30	51
CANT	17	18	13	15	12	14	14	13	13	15	20	17
CLM	18	19	22	22	17	20	25	28	20	21	24	21
CYL	13	15	14	13	9,8	14	17	20	12	15	18	16
CAT	22	21	18	19	14	18	22	22	16	17	21	19
C.VAL	14	14	14	14	13	14	17	17	13	17	19	16
EXT	11	13	17	16	13	16	19	22	20	12	17	13
GAL	15	18	12	14	11	13	12	13	15	13	17	14
C.MAD	14	14	17	14	9,6	15	18	21	13	19	19	17
A.MAD	18	16	20	17	12	17	23	27	15	22	22	20
MUR	28	24	21	27	24	25	31	30	27	30	39	28
NAV	14	13	11	13	9,6	13	17	15	10	12	16	11
PV	15	16	12	13	11	14	16	14	13	14	18	15
LR	15	14	13	15	9,1	15	20	20	12	14	20	12
CEU	17	12	13	14	12	12	13	12	9,2	8,3	20	11
MEL	28	26	26	27	23	21	25	27	27	20	47	31

Figura 26. Distribución por regiones y tipo de área de valores medios mensuales de PM_{10} (µg/m³) (2024)

La Figura 27 muestra la distribución de días con intrusión africana durante 2024. En ella se observa que en la Península Ibérica y las islas Baleares la mayor frecuencia de episodios africanos se produjo entre los meses de marzo y agosto y durante el mes de noviembre, afectando más al sur, centro, levante y Baleares, mientras que en Canarias estuvieron distribuidos con mayor frecuencia entre los meses de enero y febrero y de octubre a diciembre.

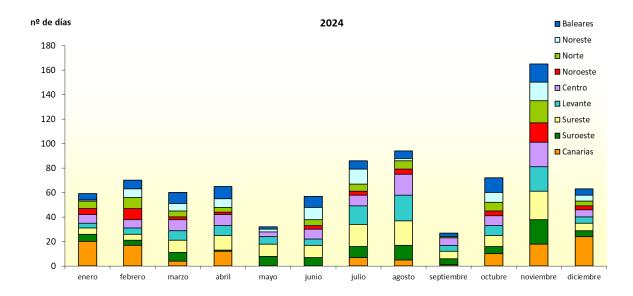


Figura 27. Distribución mensual del número de días con episodios africanos por regiones en 2024⁸ Las regiones mencionadas en la imagen anterior son las que se reflejan gráficamente en la Figura 28:

Figura 28 Regiones consideradas en relación con los episodios naturales de partículas 2024 Fuente: CSIC y MITECO (2025)8

La Figura 29 muestra que la contribución media anual de polvo africano a los niveles de PM_{10} en 2024 fue de 11,0 μ g/m³ en las islas Canarias, de 6,4 μ g/m³ en el sureste de la Península, entre 3,0 y 4,4 μ g/m³ en el suroeste, centro y este peninsular y las islas Baleares, y entre 1,2 y 2,1 μ g/m³ en el noroeste, norte y noreste de la Península. Puede concluirse que la contribución de las partículas de origen africano a los niveles de PM_{10} durante el año 2024 ha sido algo superior a los valores habituales en las islas Canarias (+10% superior, tomando como referencia registros de PM_{10} en estaciones desde el año 2006).

Comparando con registros de PM₁₀ durante el periodo 2001-2023, la contribución de partículas de origen africano ha sido superior en 2024 al promedio de años anteriores en todas las zonas consideradas de la Península y las islas Baleares (desde +8% superior en el noroeste a +67% superior en la zona de levante).

⁸ Fuente de los datos: "Episodios Naturales de Partículas 2024". Consejo Superior de Investigaciones Científicas (CSIC) / Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO), Subdirección General de Prevención de la Contaminación (Mayo 2025).

https://www.miteco.gob.es/content/dam/miteco/es/calidad-y-evaluacion-ambiental/sgalsi/atm%C3%B3sfera-y-calidad-del-aire/informes/Episodios%20Naturales%202024.pdf

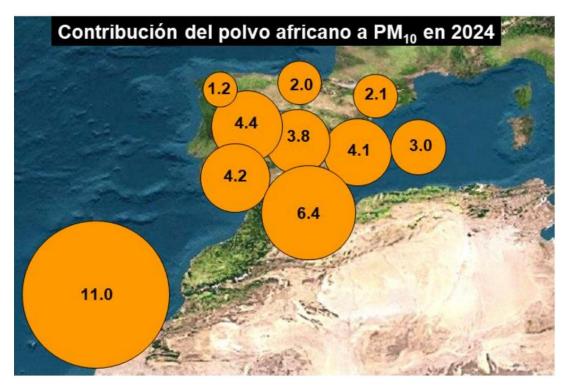


Figura 29 Contribución de polvo africano a PM_{10} ($\mu g/m^3$) en el año 2024 Fuente: CSIC y MITECO (2025) 8

6. PARTÍCULAS PM_{2,5}

6.1. Evolución 2008-2024 de las partículas PM2,5

De la Figura 30 se desprende que los niveles medios de $PM_{2,5}$ han disminuido desde 2008. En el periodo que comprende los 10 últimos años, el valor medio se sitúa en la horquilla de 8,8 y 11 μ g/m³, mientras que los percentiles 75, en 7 de los 12 últimos años, se corresponde con el valor de 12 μ g/m³. El percentil 75 más bajo de toda la serie (11 μ g/m³) corresponde con los años 2021, 2023 y 2024.

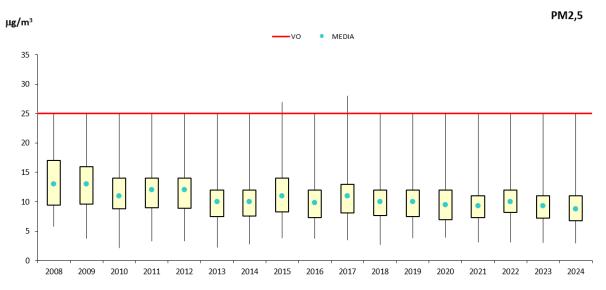


Figura 30 Diagrama de caja y bigotes de las medias anuales de PM_{2,5} 2008-2024

Por tipo de área, la Figura 31 muestra una mayor disminución en las urbanas, siendo la evolución de su perfil similar al de las suburbanas a lo largo del periodo considerado.

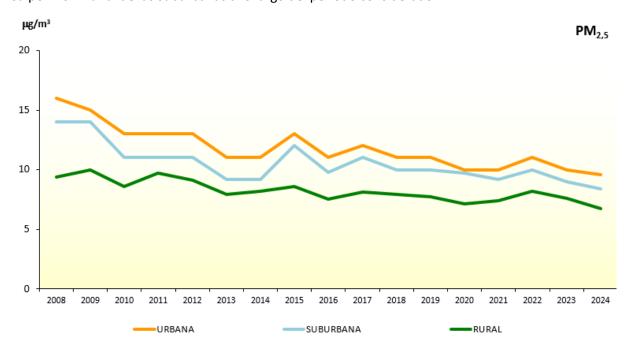


Figura 31 Evolución de las medias anuales de PM_{2,5} (2008-2024) por tipo de área

Si se atiende a la tipología de estación, en la Figura 32 se observa que las reducciones más evidentes se han registrado en las estaciones de tráfico, seguidas de las industriales; el comportamiento de las

de fondo es el más estable. En todas ellas se aprecia el incremento ya comentado de 2022, en el que se registró una fuerte influencia de las intrusiones de polvo africano, que se ha revertido a partir de 2023.

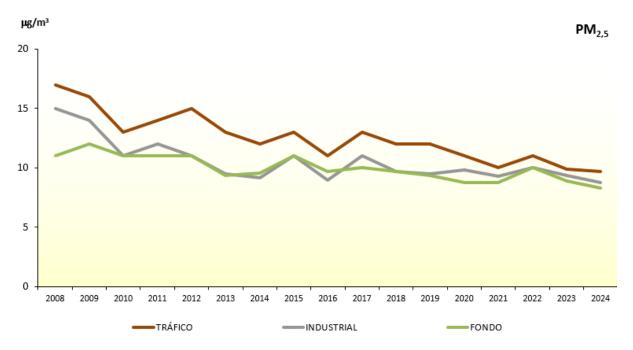


Figura 32 Evolución de las medias anuales de PM_{2,5} (2008-2024) por tipo de estación

Los mapas de representación geográfica de las estaciones para los valores medios anuales de 2019 a 2024 para las PM_{2,5} (Figura 33) muestran una reducción del número de estaciones con mayores concentraciones hasta 2021, un ligero aumento en 2022 y una nueva disminución a partir de 2023:

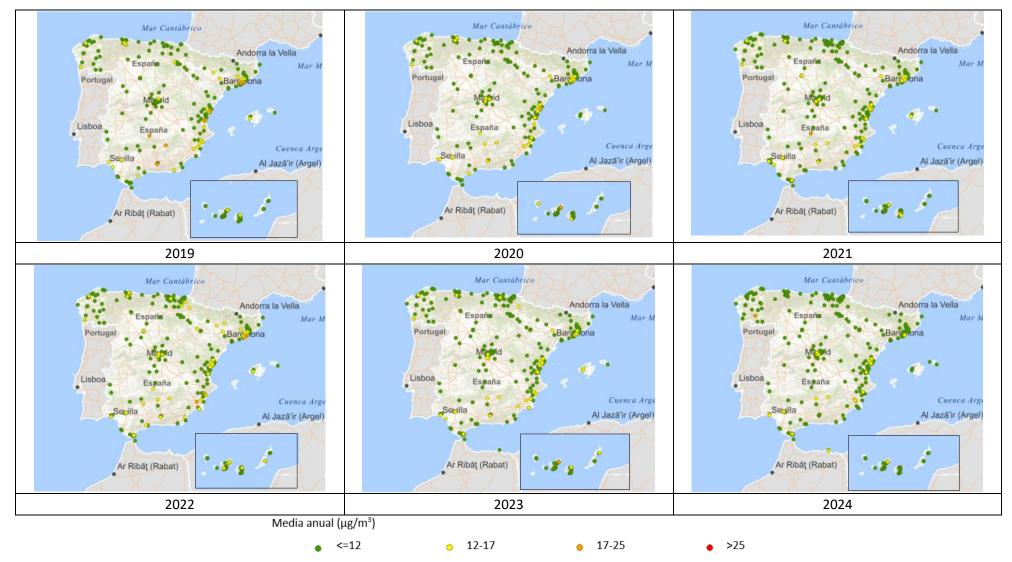


Figura 33 Evolución de los niveles de PM_{2,5} respecto al VLA a lo largo del periodo 2019-2024

6.2. Niveles de PM_{2,5} en 2024

Si se comparan las figuras a continuación con las de PM_{10} (Figura 22 y Figura 23), en 2024 por tipo de área se aprecia una cierta relación entre ambos contaminantes, con valores más altos en enero, febrero, agosto, noviembre y diciembre; y un comportamiento similar entre estaciones urbanas y suburbanas.

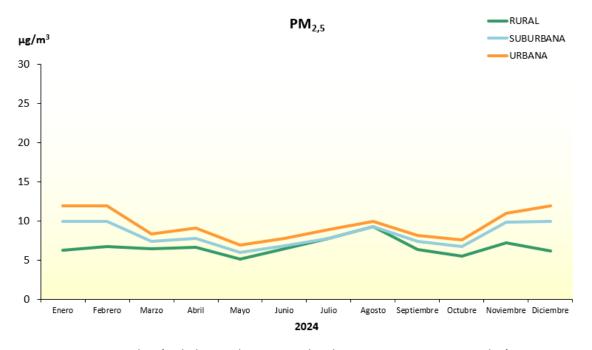


Figura 34 Evolución de las medias mensuales de PM_{2,5} en 2024 por tipo de área

A diferencia de los gráficos de PM_{10} , por tipología de estación las estaciones de tráfico son las que mantienen los registros más altos para $PM_{2,5}$, prácticamente todo el año (tan sólo en abril se ven superadas por las industriales), mientras que, para las PM_{10} , las estaciones industriales son las que muestran niveles más elevados en la mayoría de los meses, como ya se comentó anteriormente. Los máximos se registran sobre todo en los meses de enero, noviembre y diciembre:

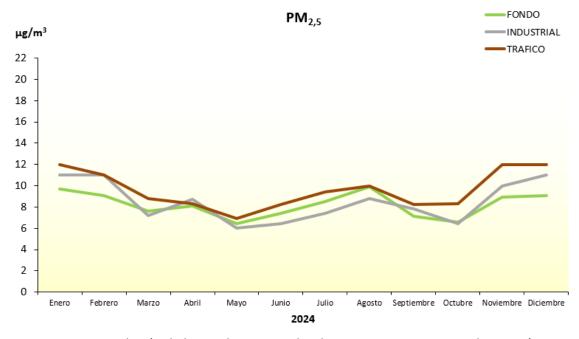


Figura 35 Evolución de las medias mensuales de PM_{2,5} en 2024 por tipo de estación

La Figura 36 recoge la distribución de las medias anuales de $PM_{2,5}$ de las estaciones que han participado en la evaluación de este contaminante en 2024, agrupadas por tipo de área. De las 330 estaciones que se emplearon para evaluar $PM_{2,5}$ en dicho año, ninguna supera el VL y únicamente una, urbana, se sitúa por encima del UES (si bien hay otra, suburbana, que lo iguala).

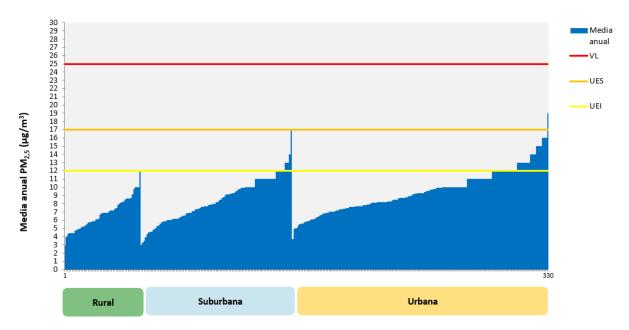


Figura 36 Distribución de las medias anuales PM_{2,5} (2024)

En cuanto a la distribución regional, el promedio mensual de valores medios diarios en 2024 de PM_{2,5} por redes de calidad del aire, recogido en la Figura 37, refleja máximos generalizados durante los meses invernales (de noviembre a febrero), en época de funcionamiento de las calefacciones, así como picos puntuales en otros meses, como julio o agosto, coincidiendo con los eventos de intrusión africana.

						20	24					
Mes Red	1	2	3	4	5	6	7	8	9	10	11	12
AND	11	9,8	10	9	7,5	7,6	9,7	12	9,5	7,3	12	11
ARAG	8,8	7,2	8	9,8	6,4	8,1	11	12	6,9	6,8	8,5	7,8
A.ZGZA	11	9,5	7,3	6,9	5,3	6,6	8,7	9,8	6,1	6,4	10	8,1
AST	13	12	7,3	7,6	6,3	7,6	8	8,3	7,4	7	11	11
I.BAL	6,3	7,7	8	6,6	7,8	7,7	8,1	12	7,1	8,8	9,6	6,4
I.CAN	14	16	7,1	12	6,3	6	6,4	9	7,5	5,8	9,9	14
CANT	19	8,8	6,6	5,5	5,7	6,1	3	6,8	8,2	5,1	8	4,1
CLM	9,5	8,7	8,5	7,5	5,6	7,4	9,1	10	6	6,5	8,7	9,8
CYL	8,1	7,8	6,1	5,6	4,8	6,3	6,5	8,9	5,5	5,9	8,8	9,2
CAT	12	11	8,6	8,3	6,6	7,6	9,1	11	7,2	7,5	9,6	11
C.VAL	8,6	7,7	7,5	7,1	6	6,7	8,6	9,2	6,3	6,8	9,5	8,6
EXT	5,9	6,9	8,2	8,8	9	9,7	13	16	12	4,9	8,2	5,3
GAL	9,2	10	6,6	6,9	5,9	6,7	5,5	5,7	8,2	5,9	8,5	8,7
C.MAD	10	8,4	9	7,7	6,1	8,2	10	15	8,8	9,4	11	11
A.MAD	11	8,2	9	7,4	6,1	8,3	9,9	12	7,8	9,3	11	11
MUR	15	11	9	10	9	9,8	11	14	11	11	16	15
NAV	13	8,9	6,8	7,7	8,4	7,2	8,6	7,9	5,5	5,9	9	9,4
PV	9,4	8,9	6,2	6,4	6,3	8	9,1	8	7,2	6,7	9,2	8,2
LR	9,2	7,9	6,8	6,1	4,6	6,3	7,4	8,7	5,3	6,6	10	9,1
CEU	7,8	7,7	8,3	7,8	7,5	7,4	9	9,1	7,1	6,2	9	6,7
MEL	11	9,6	10	11	9,5	10	10	11	11	9,7	20	14

Figura 37. Distribución por regiones y tipo de área de valores medios mensuales de $PM_{2,5}$ (µg/m³) (2024)

7. OZONO

7.1. Evolución 2004-2024 del O₃

En la Figura 38 se aprecian dos circunstancias a lo largo del periodo considerado: la presencia reiterada de máximos por encima del Valor Objetivo a Largo Plazo (VOLP) establecido para la salud y el estancamiento de las medias del percentil 93,2 (de los máximos diarios octohorarios) de O_3 entre los 100-110 μ g/m³. Si bien en los años 2020 y 2021 se produce una mejoría en ambos estadísticos, se observa un ligero ascenso en 2022, mantenido hasta 2024, en el que se ha registrado el máximo más alto (142 μ g/m³) desde 2015 (144 μ g/m³).

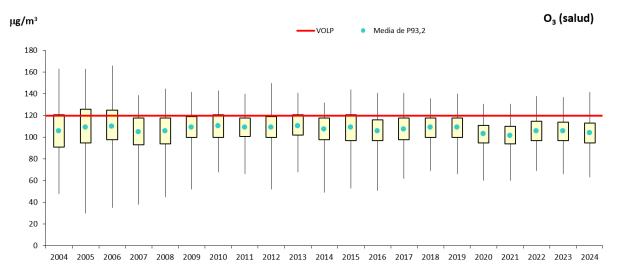


Figura 38 Diagrama de caja y bigotes del percentil 93,2 de máximos diarios octohorarios de O₃ 2004-2024

En la evolución de las medias anuales de los percentiles 93,2 de O_3 desde 2004 que se muestra en la Figura 39 (por tipo de área) y en la Figura 40 (por tipo de estación) se observa que las estaciones rurales y estaciones de fondo son las que presentan valores más elevados.

Además, para todas las tipologías de estación se produce una disminución muy acusada del año 2019 al 2020, que se mantiene en 2021 y que después se revierte en 2022, aunque sin llegar a alcanzar los valores de 2019.

Por tipo de zona, en 2023 se aprecia un nuevo descenso de los niveles registrados en las estaciones de áreas rurales, pero no así en las situadas en zonas urbanas y suburbanas, donde los niveles se mantienen o aumentan ligeramente. Ya para 2024 todas ellas disminuyen, aunque muy ligeramente.

Por tipología de estación, es también un hecho destacable que a partir de 2016 los niveles de las estaciones de tráfico tienden a aumentar respecto a los de las industriales a cuyos registros igualan e incluso superan puntualmente. En 2023 apenas se produce un leve decrecimiento de los niveles en las estaciones de tráfico y fondo, mientras que en las industriales dichos niveles se incrementan en la misma medida. También se aprecia el ligero descenso de 2024 en todos los tipos, tal y como ocurre por tipo de zona.

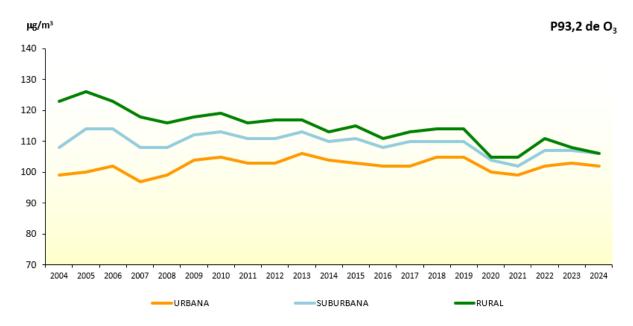


Figura 39 Evolución de las medias anuales de los percentiles 93,2 de O₃ (2004-2024) por tipo de área

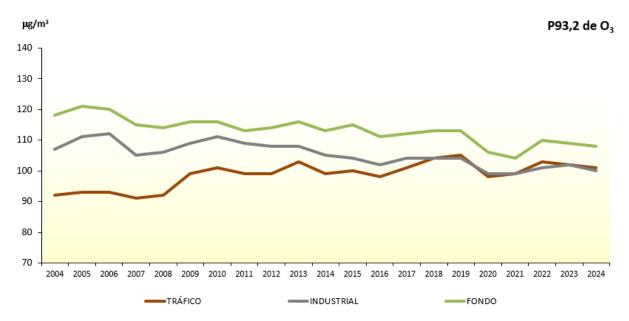


Figura 40 Evolución de las medias anuales de los percentiles 93,2 de O₃ (2004-2024) por tipo de estación

En la Figura 41 se observa la pauta estacional característica de este contaminante secundario para todas las tipologías de estaciones y áreas, con valores estivales altos, lo que resulta coherente dado que, como se indicó en el Capítulo 4, la radiación solar es determinante en la formación de este contaminante a partir de sus precursores.

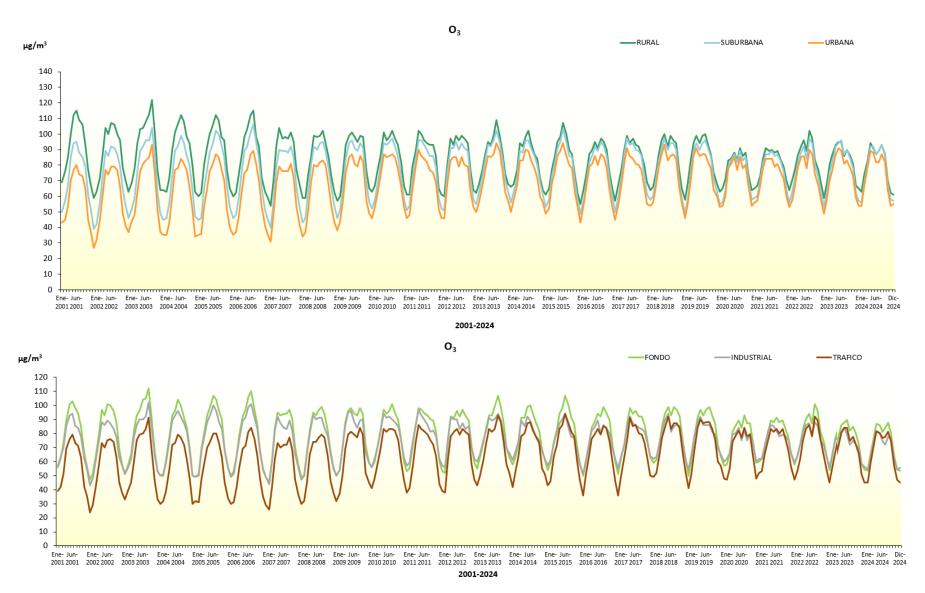


Figura 41 Evolución de las medias mensuales de máximos diarios octohorarios de O₃ de 2001 a 2024 por tipo de área (arriba) y estación (abajo)

Al representar geográficamente las estaciones que miden O_3 para el valor objetivo para la protección de la salud (VOS) de este contaminante entre 2019 y 2024 (Figura 42), se observa como en 2022 hay una mayor predominancia de punto verdes que en 2021, con un leve incremento posterior a partir de 2023. Hay que tener en cuenta que el VOS se define como el promedio trianual del número de superaciones del valor máximo diario octohorario de 120 μ g/m³ que no debe superarse en más de 25 ocasiones.

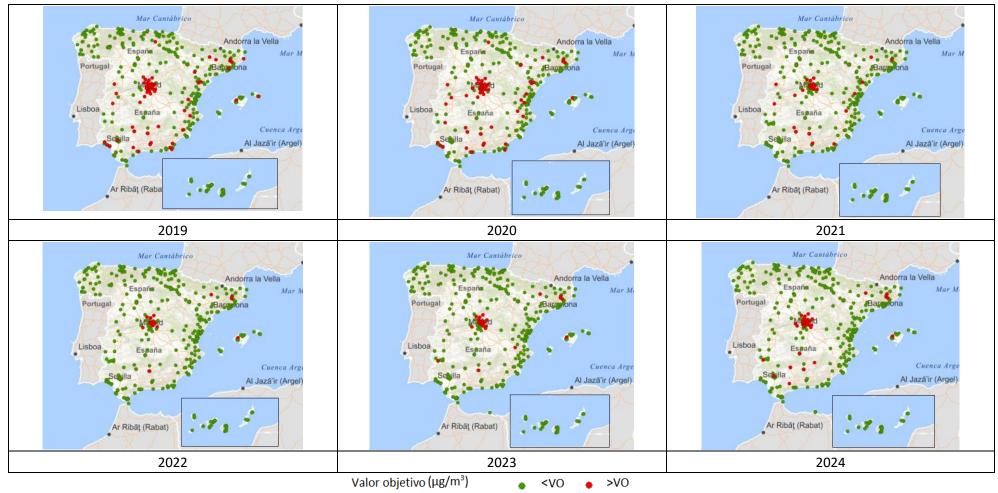


Figura 42. Evolución de los niveles de O₃ respecto al VOS a lo largo del periodo 2019-2024

7.2. Niveles del O₃ en 2024

En la Figura 43 se analiza la distribución de los percentiles 93,2 de las estaciones que han participado en la evaluación del O_3 en el año 2024, agrupadas por tipo de área. En ella se puede observar que la línea que marca el Objetivo a Largo Plazo (OLP) de 120 µg/m³ se supera en algunas estaciones, concretamente en 59 de las 433 estaciones utilizadas para evaluar (un 13,6%).

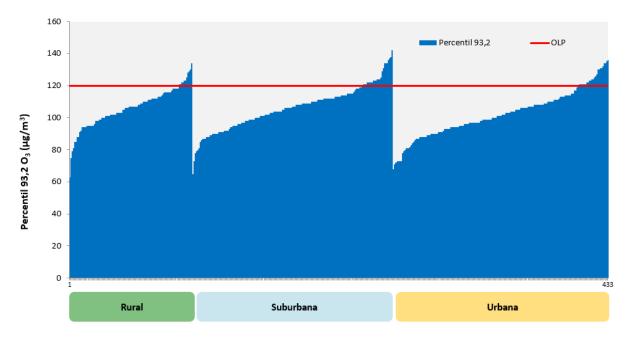


Figura 43 Distribución del Percentil 93,2 de O₃ (2024)

Finalmente, la Figura 44 muestra, para las diferentes redes de calidad del aire, el promedio mensual de los valores medios diarios registrados en 2024 para el O₃ por tipo de área. En ella se confirma cómo los valores son más elevados en las zonas rurales durante los meses de primavera-verano, con diferencias geográficas de unas regiones respecto a otras.

Rural -2024											Suburbana - 2024													Urbana - 2024																	
Mes Red	1	2	3	3	4	5	6	7	8	9	:	10	11	12	Mes Red	1	2	3	4	5	(6	7	8	9	10	11	12	Mes Red	1	2	3	4	5	6	7	8	9	10	11	12
AND	4	5	6 (67	74	77	74	74	75	5 7	74	57	51	49	AND	51	62	70	8	0 8	1	80	76	81	79	59	53	53	AND	40	53	65	72	76	75	70	76	72	51	42	41
ARAG	4	5 5	9 :	71	82	78	78	76	76	5 6	56	51	39	44	ARAG	29	45	56	7:	1 6	i9	69	65	63	54	38	27	33	ARAG	29	43	60	73	73	72	68	67	57	40	28	32
A.ZGZA															A.ZGZA	21	40	51	6	5 7	70	73	72	77	64	40	28	35	A.ZGZA	23	40	54	71	70	72	69	71	60	38	28	35
AST	7.	2 7	8 8	81	84	77	65	60	64	4 7	70	64	66	64	AST	26	40	49	5	1 5	0	45	40	44	43	29	25	26	AST	29	44	52	58	52	49	44	48	46	31	28	27
I.BAL	5	6	2	74	84	78	76	65	73	3 7	72	66	56	50	I.BAL	56	61	76	8	5 8	0	75	64	71	71	64	55	56	I.BAL	56	62	75	85	79	71	59	69	66	62	52	51
I.CAN	6	7 6	8	74	72	69	59	50	62	2 6	57	56	54	64	I.CAN	60	69	73	7) 7	70	60	49	59	63	56	54	68	I.CAN	53	62	74	68	71	60	49	60	66	57	48	64
CANT	7	7	2	72	84	74	62	58	65	5 6	59	63	63	65	CANT	31	51	61	7	0 6	9	58	50	49	54	45	40	38	CANT	33	45	56	71	69	60	52	53	57	44	38	41
CLM	6	3 7	3	79	84	85	82	93	95	5 8	30	65	63	67	CLM	35	46	58	6	5 7	76	74	80	82	70	49	39	33	CLM	33	43	50	59	64	61	84	88	67	47	34	32
CYL	4	5 5	7 (67	71	67	63	66	7:	1 6	57	52	47	45	CYL	38	49	63	6	7 6	6	67	70	74	64	48	39	32	CYL	37	48	61	69	68	68	68	71	63	47	37	34
CAT	5	6	0 :	71	84	75	75	76	78	3 6	59	56	45	46	CAT	31	44	61	7	3 6	8	67	63	68	56	45	32	29	CAT	31	42	59	72	67	67	60	70	58	46	33	29
C.VAL	5	5	9 (68	79	78	74	70	74	4 6	57	56	45	50	C.VAL	44	54	66	74	1 7	76	72	67	69	64	55	40	44	C.VAL	41	50	66	74	76	73	68	72	66	54	40	38
EXT	4	5	5 .	54	62	68	66	74	73	3 6	57	49	46	40	EXT	53	59	68	7	3 8	2	77	84	86	77	54	54	53	EXT	32	45	54	59	73	70	80	88	79	52	39	32
GAL	5	2 5	9 (65	69	61	53	50	56	5 5	59	50	49	46	GAL	44	54	64	7.	2 6	i5	55	48	50	55	47	43	40	GAL	33	45	57	64	56	48	40	40	45	37	33	32
C.MAD	5	6	4	73	83	86	82	94	97	7 7	78	56	50	51	C.MAD	29	44	56	6	7 7	75	76	85	89	68	48	34	30	C.MAD	28	44	57	68	77	74	82	83	66	45	31	26
A.MAD															A.MAD	28	45	55	6	7 7	8	79	90	92	70	49	33	28	A.MAD	26	41	54	66	76	75	84	88	66	43	28	23
MUR	5	7	4	75	78	79	77	77	8:	1 6	59	59	51	57	MUR	44	53	62	69	9 7	2	71	66	68	64	49	38	36	MUR	36	48	60	67	62	62	60	57	53	47	33	35
NAV	4	6:	2	72	85	78	75	73	76	5 7	70	59	53	45	NAV	34	51	59	6	9 6	1	58	57	58	56	42	34	41	NAV	24	40	50	65	55	56	54	57	52	34	26	31
PV	6	1 7	0	78	88	79	69	63	70	0 7	72	60	57	60	PV	44	55	65	7	3 6	5	57	53	56	58	46	43	44	PV	40	53	63	69	60	53	46	48	50	43	38	39
LR	3	4	9 !	55	65	61	59	61	62	2 5	58	43	36	37	LR														LR	22	35	46	57	47	41	39	39	36	22	19	21
CEU															CEU														CEU	68	63	73	83	68	64	55	67	66	52	63	69
MEL															MEL	63	72	77	8	3 7	8	73	69	86	88	70	66	70	MEL	62	77	80	86	83	79	71	83	86	67	62	58

Figura 44. Distribución por regiones y tipo de área de valores medios mensuales de O_3 ($\mu g/m^3$) (2024)

8. MONÓXIDO DE CARBONO

8.1. Evolución 2003-2024 del monóxido de carbono (CO)

Históricamente los niveles de calidad del aire de CO han sido bajos. De hecho, en la Figura 45 se observa cómo los valores medios registrados desde 2003 se encuentran muy lejos del incumplimiento del valor límite establecido para la protección de la salud.⁹

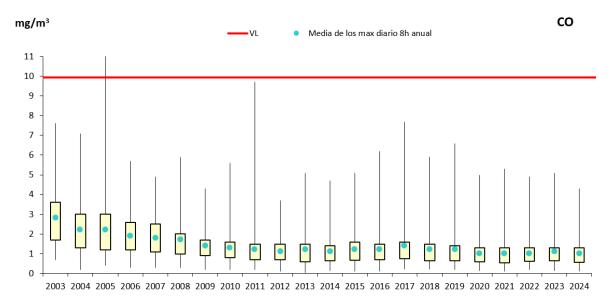


Figura 45. Diagrama de caja y bigotes de la media anual del valor máximo de los máximos diarios octohorarios de CO 2003-2024

En la Figura 46 y en la Figura 47 se refuerza esta observación y, en líneas generales, desde 2003 hasta 2014 los perfiles de todas las estaciones siguen una tendencia a la baja, especialmente en el caso de las urbanas y de tráfico, para luego subir ligeramente y mantenerse más o menos estables desde 2020, con pequeñas oscilaciones anuales poco relevantes hasta llegar a 2024, año en el que únicamente siguen descendiendo los niveles en las rurales (por tipo de área) y en las industriales y de fondo (por tipo de estación).

-

⁹ "Es importante el efecto de los estándares EURO 4 y 5 en la disminución de las emisiones de PM y CO de los vehículos, ya que se requiere del uso de filtros para los nuevos coches diésel desde el 2005" Fuente: Medidas para Mejorar la calidad del Aire Urbano (AIRUSE), CSIC, 2018.

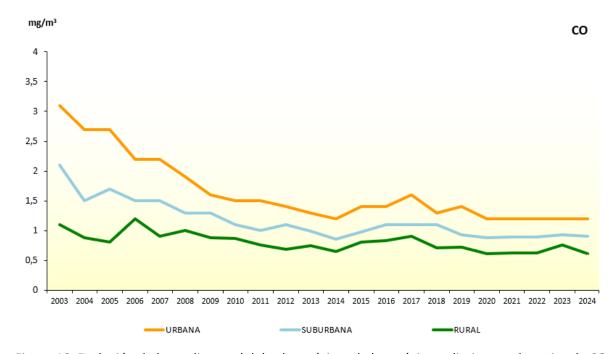


Figura 46. Evolución de la media anual del valor máximo de los máximos diarios octohorarios de CO (2003-2024) por tipo de área

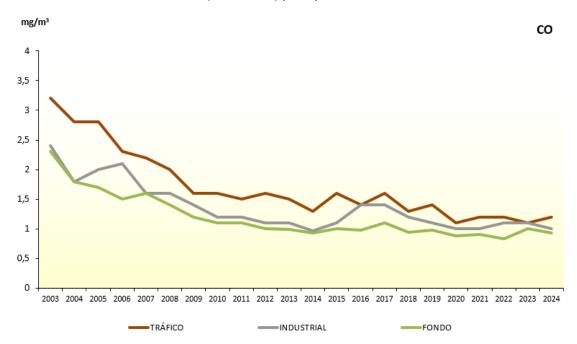


Figura 47. Evolución de la media anual del valor máximo de los máximos diarios octohorarios de CO (2003-2024) por tipo de estación

Como se puede observar en la Figura 48, los valores mensuales de valores máximos diarios octohorarios de CO siguen una pauta estacional a lo largo del año, más marcada en estaciones ubicadas en áreas urbanas y suburbanas y para cualquiera que sea su fuente de emisión, de forma que presenta valores más altos en invierno (enero, diciembre) respecto al verano.

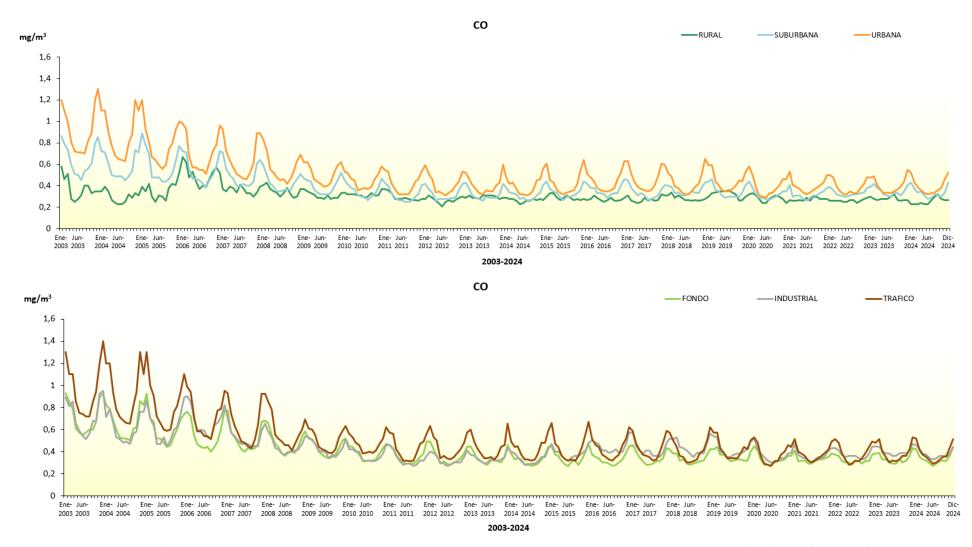


Figura 48. Evolución de las medidas mensuales de máximos diarios octohorarios de CO de 2003 a 2024 por tipo de área (arriba) y estación (abajo)

8.2. Niveles de CO en 2024

La Figura 49 muestra para las estaciones que participan en la evaluación del CO en 2024 la distancia con el valor legislado, y refleja que, en dicho año, de las 224 estaciones utilizadas para evaluar en dicho año ninguna se sitúa por encima del UEI.

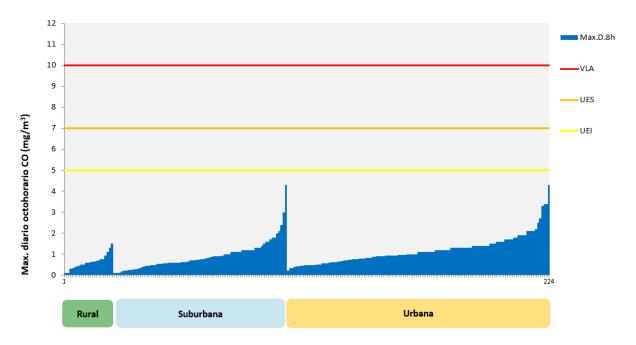


Figura 49. Distribución de los máximos diarios octohorarios de CO (2024)

9. BENCENO

9.1. Evolución 2003-2024 del benceno (C₆H₆)

En la Figura 50 se observa cómo las medias anuales se mantienen muy por debajo del límite legislado año tras año a lo largo del periodo considerado, y cómo han seguido una tendencia descendente hasta apreciarse una caída del valor en 2009, momento a partir del cual las medias se encuentran más estabilizadas. En cuanto a los valores máximos, se observan fluctuaciones interanuales con menor variación desde 2019.

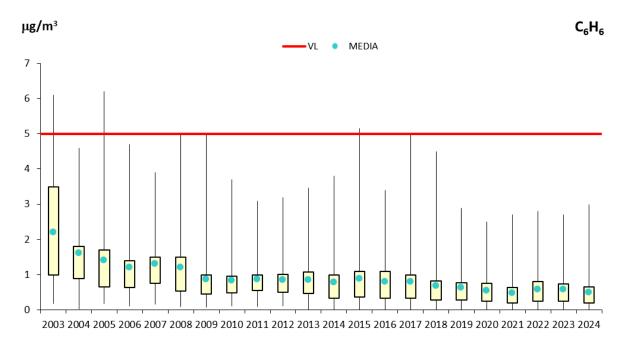


Figura 50. Diagrama de caja y bigotes de las medias anuales de C₆H₆ 2003-2024

Si se atiende a la clasificación de las estaciones según el tipo de área donde se ubica (Figura 51) y según la tipología de la principal fuente de emisión influyente (Figura 52), la tendencia global muestra una clara reducción de los niveles en las estaciones urbanas y de tráfico. A partir de 2014, se registran en ellas valores inferiores a los de las estaciones suburbanas y estaciones industriales, respectivamente, para, a partir de 2020, equipararse a los niveles registrados en estaciones rurales y de fondo. Además, se observa un leve repunte en 2022 en todas las tipologías, seguido de un nuevo descenso, a pesar de que en 2023 hayan subido (escasamente) los niveles de las estaciones rurales y de tráfico.

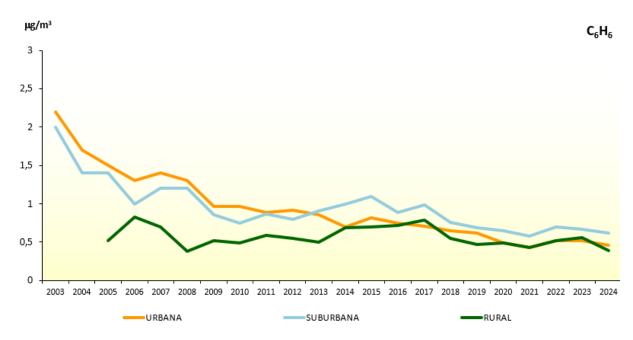


Figura 51. Evolución de las medias anuales de C₆H₆ (2003-2024) por tipo de área

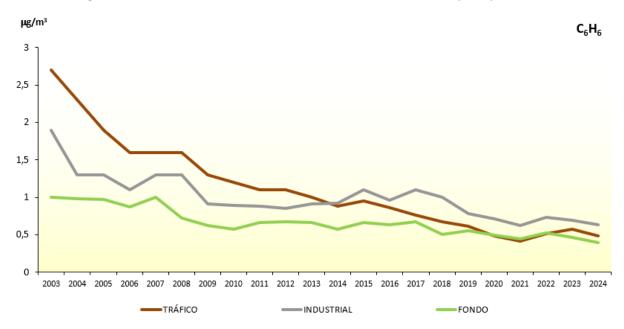


Figura 52. Evolución de las medias anuales de C₆H₆ (2003-2024) por tipo de estación

Como se puede observar en la Figura 53, los valores mensuales de valores medios diarios de benceno siguen una pauta estacional a lo largo del año, con valores más altos en invierno que en verano. Esta pauta es atribuible a las condiciones de peor dispersión de contaminantes durante los meses de invierno, y al efecto durante los meses más cálidos de dilución del benceno por reacción con el ozono, que da lugar a la formación de partículas secundarias.

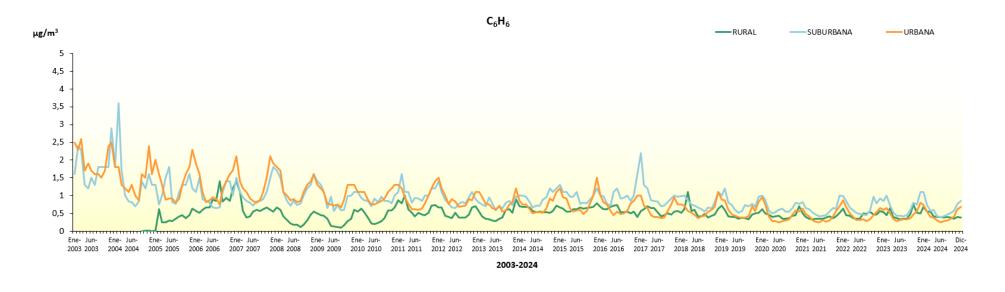


Figura 53. Evolución de las medidas mensuales de C₆H₆ de 2003 a 2024 por tipo de área (arriba) y estación (abajo)

9.2. Niveles de C₆H₆ en 2024

Al representar la distribución de esas mismas estaciones respecto a los umbrales establecidos legalmente, agrupadas según el tipo de área (Figura 54), se observa, una vez más, que la mayor parte de ellas se sitúan por debajo del UEI, excepto dos (de un total de 127; un 1,6 %), ambas de tipo industrial, cuyos niveles alcanzan la franja entre el UEI y el UES.

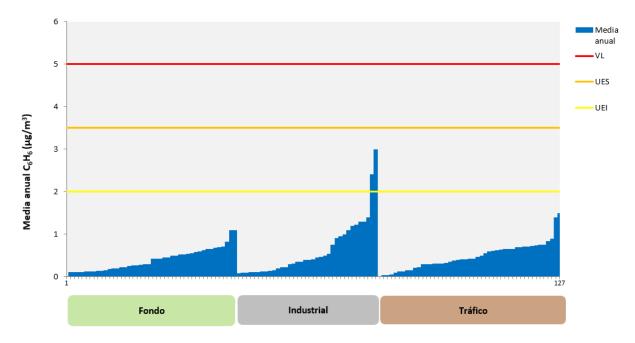


Figura 54. Distribución de las medias anuales de C₆H₆ (2024)

10. BENZO(A)PIRENO

10.1. Evolución 2008-2024 del benzo(a)pireno (BaP)

La Figura 55 muestra que el promedio de las medias anuales de B(a)P a lo largo del periodo considerado se sitúa muy por debajo del valor legislado. El valor máximo de la serie se registró en 2013, año de la única superación del valor objetivo (VO) de este contaminante. Las líneas del percentil 75 indican que, en la mayoría de las estaciones, los valores están muy próximos a los valores medios y lejos de incumplimientos.

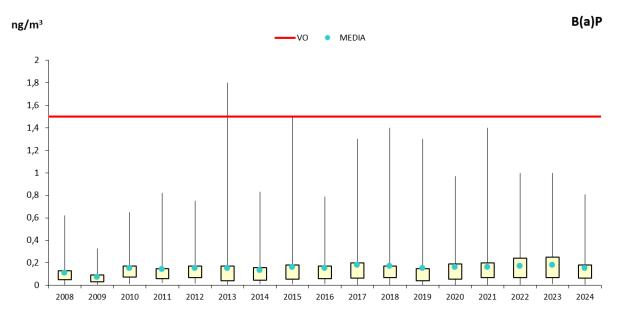


Figura 55. Diagrama de caja y bigotes de las medias anuales de B(a)P 2008-2024

Por tipo de estación según área (Figura 56), las concentraciones más altas, en general, corresponden a las de tipo suburbano. Sin embargo, las diferencias interanuales y entre tipos de estación rondaría 0,1 ng/m³, siendo difícil sacar conclusiones.

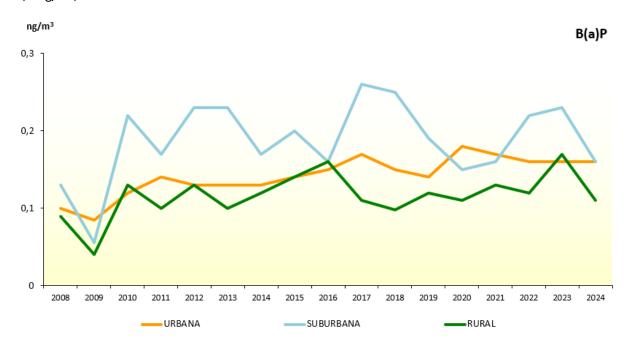


Figura 56. Evolución de las medias anuales de B(a)P (2008-2024) por tipo de área

Algo similar ocurre por tipología de estación (Figura 57), donde aparentemente se aprecia una ligera tendencia ascendente en las industriales, que entre 2021 y 2023 llegan a superar a las de tráfico (estaciones que habitualmente presentaban niveles más altos), teniendo en cuenta en todo caso las bajas concentraciones que se representan. En 2024 se produce un nuevo descenso, y sólo las de tráfico se incrementan, pero, de nuevo, las diferencias son mínimas.

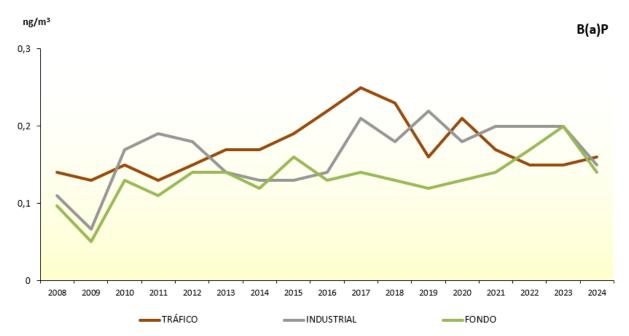


Figura 57. Evolución de las medias anuales de B(a)P (2008-2024) por tipo de estación

Como se puede observar en la Figura 58, los valores mensuales de valores medios diarios de Benzo(a)pireno siguen una pauta estacional a lo largo del año con los valores más elevados principalmente centrados en los meses de diciembre y enero para todas las tipologías de estaciones. Esta pauta es atribuible al comportamiento de un contaminante cuya influencia principal proviene de la combustión de biomasa.

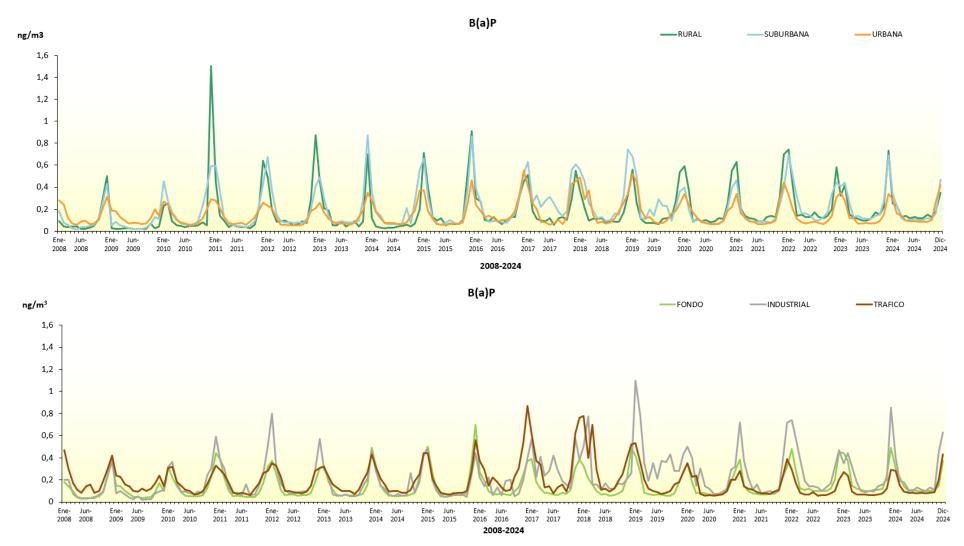


Figura 58. Evolución de las medidas mensuales de B(a)P de 2008 a 2024 por tipo de área (arriba) y estación (abajo)

10.2. Niveles del B(a)P en 2024

La Figura 59 representa la distribución de las medias anuales de las estaciones que han participado en la evaluación de B(a)P en 2024 respecto a los umbrales establecidos, agrupadas por tipo de área y desagregadas las áreas suburbanas y urbanas por tipo de estación. Se observa que los niveles de la mayoría de éstas se sitúan mayoritariamente por debajo del UEI. De las 108 estaciones utilizadas para evaluar este contaminante en 2024, entre el UEI y el UES se encuentran 4 estaciones (un 3,7 %), y por encima del UES, aunque sin llegar a superar el VO, otras 4 (un 3,7 % adicional), todas ellas de variada tipología.

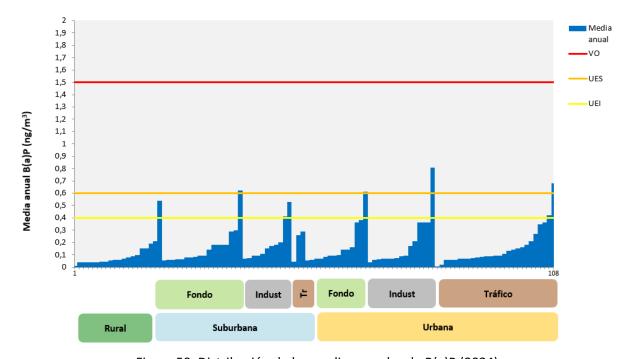


Figura 59. Distribución de las medias anuales de B(a)P (2024)

11. PLOMO

11.1. Evolución 2001-2024 del plomo (Pb)

En la Figura 60 queda patente el descenso producido por las restricciones del plomo en los carburantes desde mediados de 2001¹⁰, si bien de forma excepcional se aprecian máximos discordantes, en 2013 y 2016. Los valores medios de toda la serie, en cualquier caso, están muy alejados del valor límite.

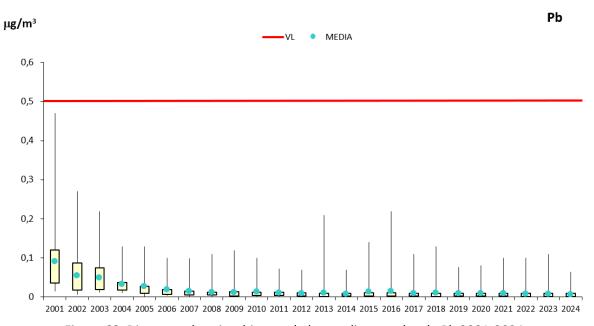
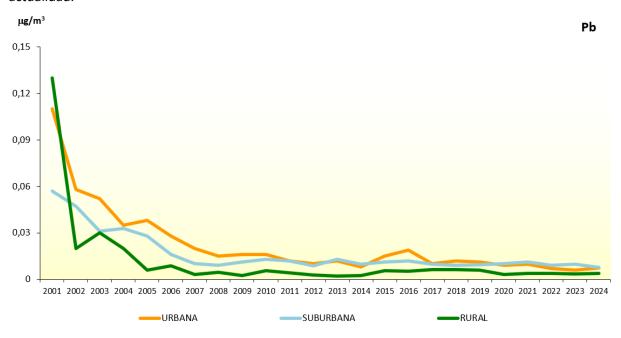



Figura 60. Diagrama de caja y bigotes de las medias anuales de Pb 2001-2024

Los niveles desde 2005 son tan bajos que se pueden considerar estables desde entonces hasta la actualidad.

¹⁰ Real Decreto 785/2001, de 6 de julio, por el que se adelanta la prohibición de comercialización de las gasolinas con plomo y se establecen las especificaciones de las gasolinas que sustituirán a aquellas.

54

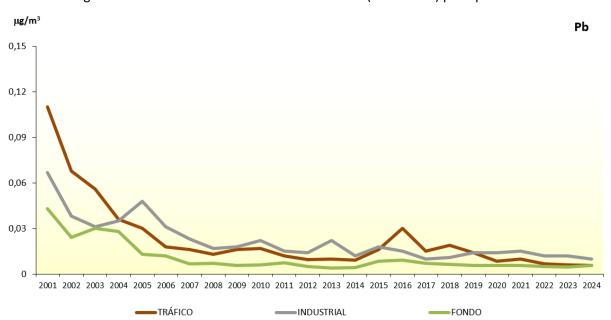


Figura 61. Evolución de las medias anuales de Pb (2001-2024) por tipo de área

Figura 62. Evolución de las medias anuales de Pb (2001-2024) por tipo de estación

11.2. Niveles del Pb en 2024

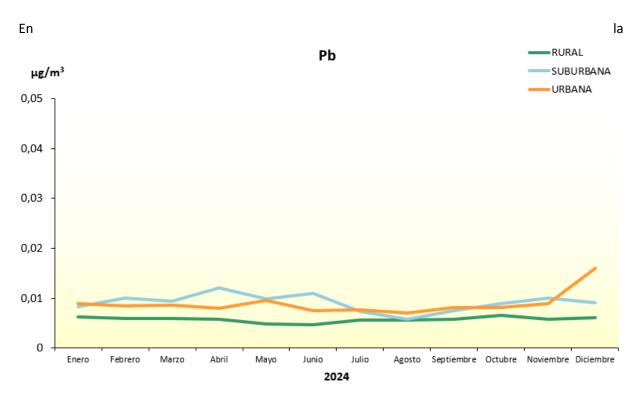


Figura 63, dado el nivel de detalle de la escala y los niveles tan bajos registrados para plomo en 2022, se observa que la distribución es bastante homogénea para todo el año.

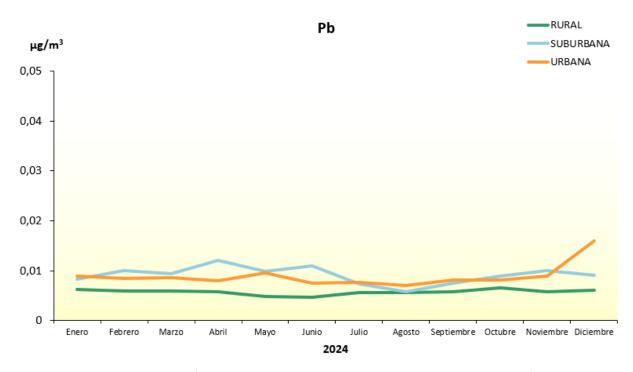


Figura 63. Evolución de las medidas mensuales de Pb en 2024 por tipo de área

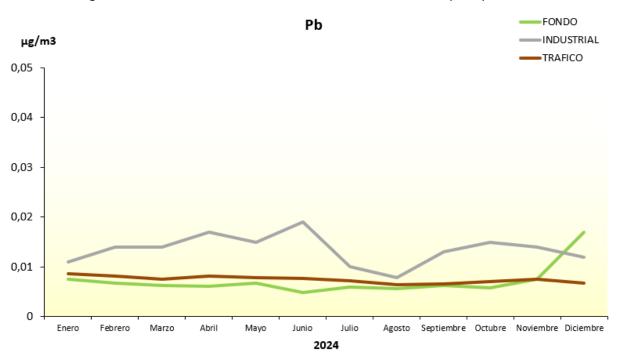


Figura 64. Evolución de las medidas mensuales de Pb en 2024 por tipo de estación

Al representar la distribución de las medias anuales de las estaciones que han participado en la evaluación del Pb en 2024 (Figura 65), agrupadas en esta ocasión según el tipo de fuente de emisión más influyente en la estación, resultan muy evidentes los bajos niveles registrados para este contaminante en las 139 estaciones utilizadas para evaluar este contaminante en 2024, al encontrarse los valores alejados no ya del valor límite, sino incluso del UEI.

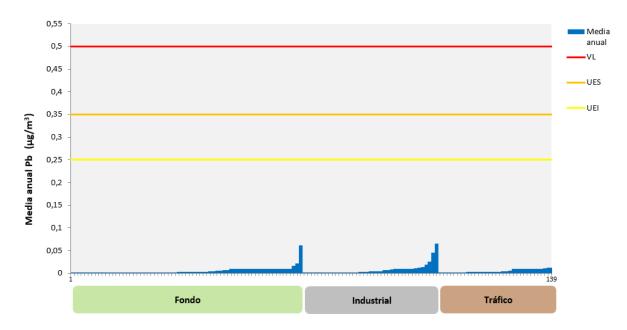


Figura 65. Distribución de las medias anuales de Pb (2024)

12. ARSÉNICO

12.1. Evolución 2008-2024 del arsénico (As)

La Figura 66 muestra que el promedio de las medias anuales de arsénico a lo largo del periodo considerado se sitúa muy por debajo del valor legislado. El valor máximo de la serie se registró en 2008, si bien también en 2009, 2023 y 2024 se ha superado el valor objetivo de este contaminante en una estación. Las líneas de las cajas correspondientes con el percentil 75 indican que, en la mayoría de las estaciones, los valores están muy próximos a los valores medios y lejos del valor objetivo.

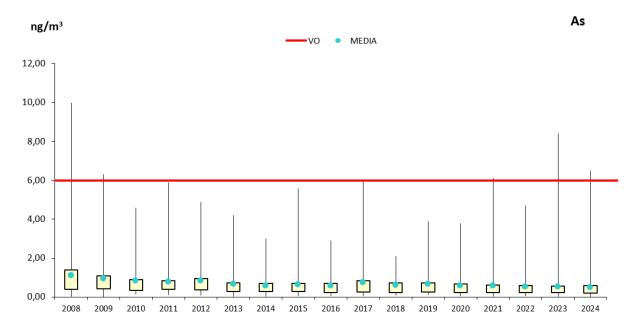


Figura 66. Diagrama de caja y bigotes de las medias anuales de As 2008-2024

En la Figura 67 y en la Figura 68 se apunta a un descenso de las medias anuales para todas las tipologías de estación desde 2008. En todo caso, cabe destacar que los niveles son en general muy bajos y las variaciones interanuales, pequeñas.

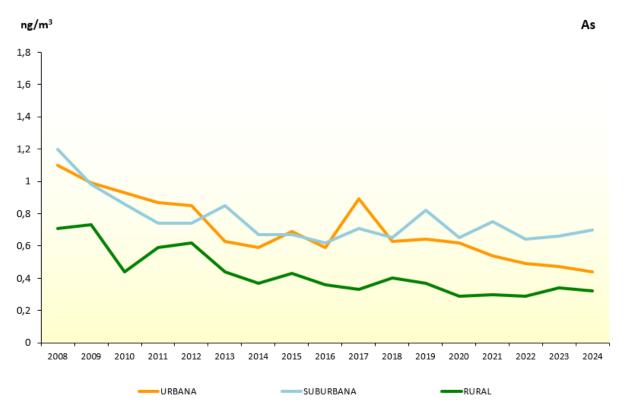


Figura 67. Evolución de las medias anuales de As (2008-2024) por tipo de área

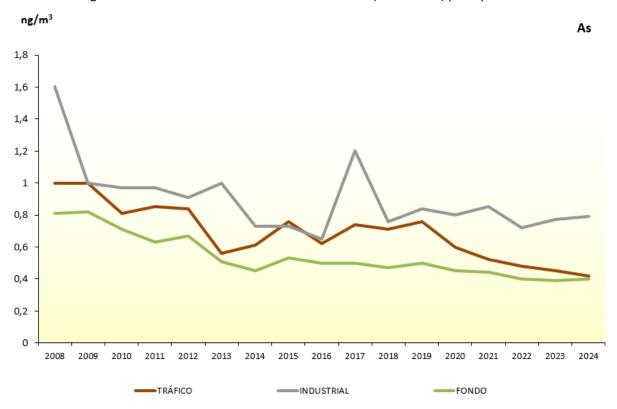


Figura 68. Evolución de las medias anuales de As (2008-2024) por tipo de estación

12.2. Niveles del As en 2024

En la Figura 69 se observa la distribución anual en 2024 del arsénico por tipo de área; se trata de una distribución bastante homogénea para todo el año, aunque con un máximo en julio, correspondiente a la estación que registró la superación (suburbana).

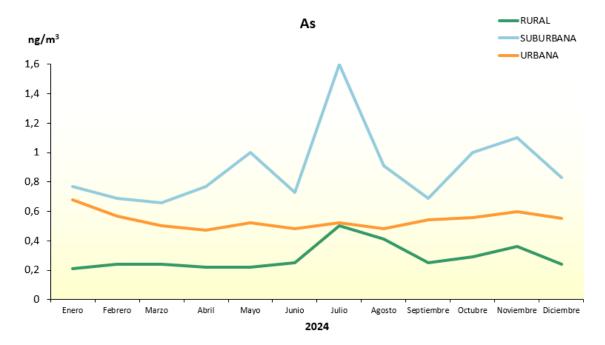


Figura 69. Evolución de las medidas mensuales de As en 2024 por tipo de área

Si lo que se considera es el tipo de estación (Figura 70) se observa que los niveles de las de tipo industrial se encuentran por encima de los de las demás tipologías a lo largo del año, sus valores además presentan una mayor fluctuación. Como en el caso anterior, se aprecia el máximo de julio correspondiente a la superación del valor objetivo de una estación industrial.

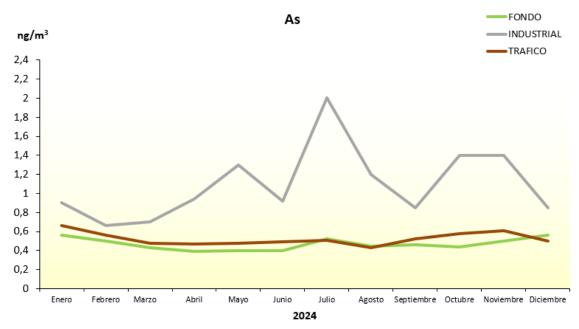


Figura 70. Evolución de las medidas mensuales de As en 2024 por tipo de estación

La Figura 71 recoge la distribución de las medias anuales del As en 2024 agrupadas por tipología de estación. En ella se observa que, de las 137 estaciones utilizadas para evaluar este contaminante en

el año considerado, tan solo una, como ya se ha avanzado antes de tipo industrial, supera el VO. Otra, también industrial, supera el UEI, y una tercera estación (industrial igualmente) lo iguala. Todas las demás quedan bajo éste.

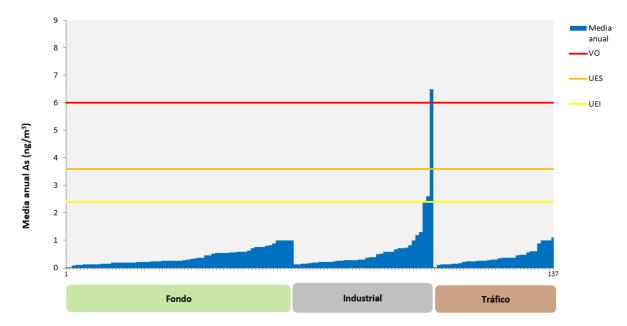


Figura 71. Distribución de las medias anuales de As (2024)

13. CADMIO

13.1. Evolución 2008-2024 del cadmio (Cd)

La Figura 72 muestra que el promedio de las medias anuales de cadmio a lo largo del periodo considerado se sitúa muy por debajo del valor legislado. Respecto al valor máximo, la gráfica recoge que en los años 2010 y 2015 se superó el valor objetivo en una estación. Las líneas de las cajas correspondientes con el percentil 75 indican que, en la mayoría de las estaciones, los valores están muy próximos a los valores medios y lejos del valor objetivo.

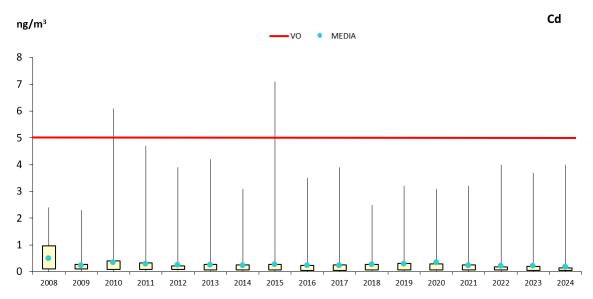


Figura 72. Diagrama de caja y bigotes de las medias anuales de Cd 2008-2024

Atendiendo a la tipología de área (Figura 73), las zonas suburbanas registran en general los mayores niveles; tan solo en 2009 y 2019 fueron superadas por los valores de las estaciones urbanas.

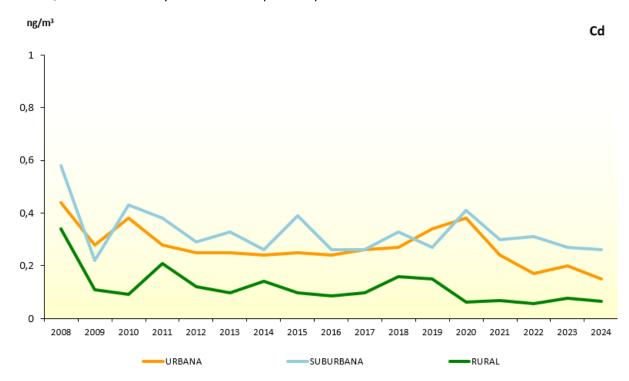


Figura 73. Evolución de las medias anuales de Cd (2008-2024) por tipo de área

La Figura 74 indica para cada tipo de estación que las estaciones industriales registran, por lo general, los valores más altos en el periodo estudiado, excepto en el año 2017, en que fueron ligeramente superados por las estaciones de tráfico (con un margen poco concluyente).

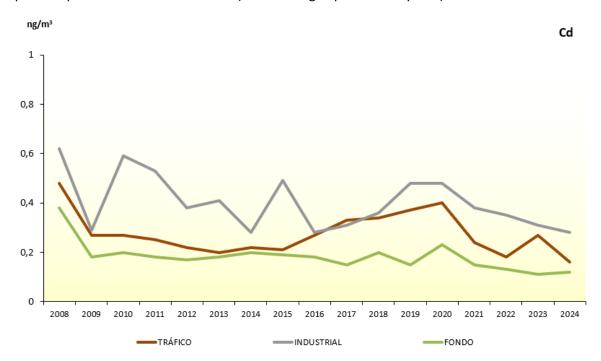


Figura 74. Evolución de las medias anuales de Cd (2008-2024) por tipo de estación

13.2. Niveles del Cd en 2024

En la Figura 75 no se observa una distribución del cadmio estacional en las áreas rurales ni urbanas, en las que el comportamiento es homogéneo para todo el año. En las zonas suburbanas se aprecia un perfil más acusado, pero las diferencias estacionales son pequeñas y poco concluyentes (la diferencia entre el valor medio mensual más alto y el más bajo es de 0,62 ng/m³), al igual que para el resto de metales.

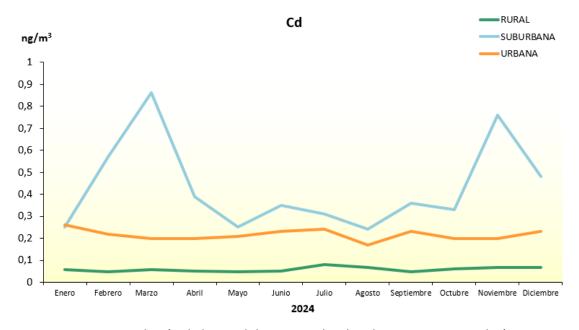


Figura 75. Evolución de las medidas mensuales de Cd en 2024 por tipo de área

Atendiendo a la fuente principal que influye en la estación (Figura 76), los registros más altos corresponden a las industriales, que muestran picos más acusados. Las estaciones de tráfico y de fondo se comportan más homogéneamente a lo largo del año.

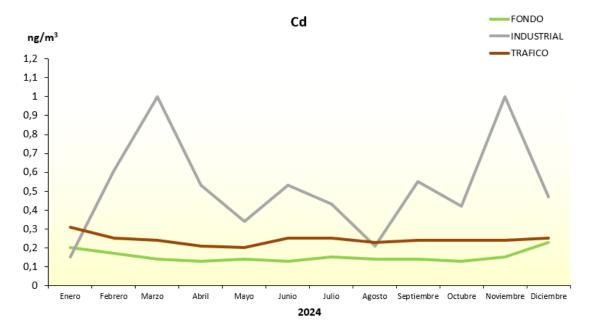


Figura 76. Evolución de las medidas mensuales de Cd en 2024 por tipo de estación

La Figura 77 resulta coherente con todo lo expresado con anterioridad para este contaminante. En ella se aprecia que la distribución de las medias anuales de las 137 estaciones que participan en la evaluación del Cd en 2024 evidencia bajos niveles registrados, dado que la práctica totalidad de las mismas se sitúa por debajo del UEI (tan solo lo supera una estación, industrial, que también supera el UES y que supone el 0,73 %, del total). Además, se manifiesta que, en general, los mayores valores corresponden a las estaciones de tipo industrial, seguidas por las de tráfico.

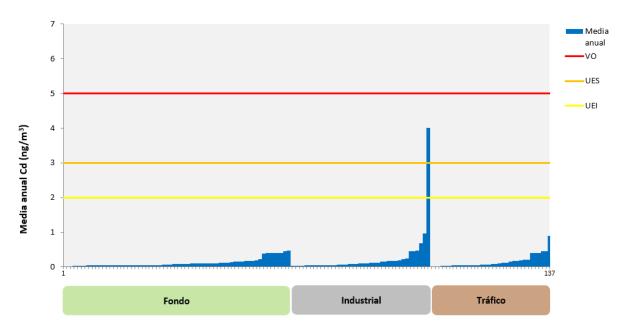


Figura 77. Distribución de las medias anuales de Cd (2024)

14. NÍQUEL

14.1. Evolución 2008-2024 del níquel (Ni)

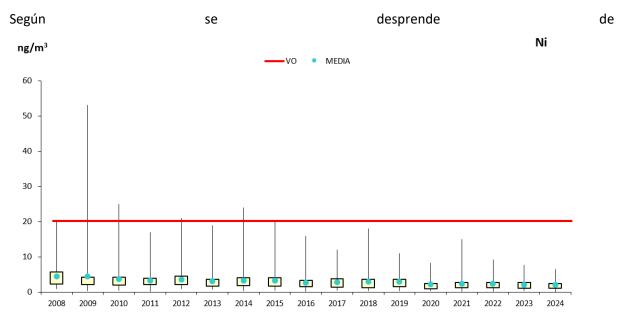


Figura 78, desde 2014 no se han producido superaciones del valor objetivo de níquel y los niveles registrados son, como en el caso de otros metales, muy inferiores respecto a los valores legislados, puesto que las medias y los valores del percentil 75 se mantienen muy alejados del valor objetivo anual. En 2024 se ha registrado el máximo más bajo de toda la serie (6,5 ng/m³).

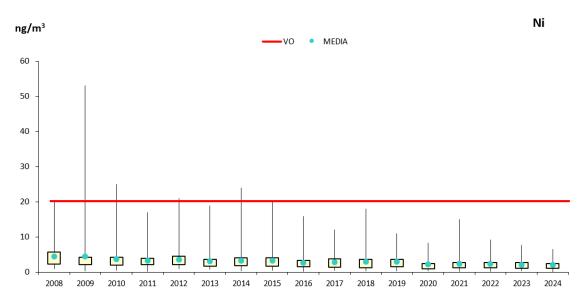


Figura 78. Diagrama de caja y bigotes de las medias anuales de Ni 2008-2024

Si se atiende a la clasificación en función del área (Figura 79), en este caso los niveles más elevados corresponden a las estaciones situadas en zonas urbanas, salvo en 2020, año en el que la media correspondiente a las estaciones suburbanas superó por apenas 0,1 ng/m³ a la de las estaciones urbanas, y en 2022, cuando lo hizo por 0,2 ng/m³ (en 2023, ambas medias se igualaron).



Figura 79. Evolución de las medias anuales de Ni (2008-2024) por tipo de área

La representación por tipo de estación (Figura 80) muestra, de igual forma que para el resto de los metales, que los niveles más altos corresponden a las estaciones de tipo industrial, de forma evidente hasta 2015. A partir de dicho año, fueron superados puntualmente (años 2016 y 2017) por los registrados en las estaciones de tráfico, por diferencias inferiores a 1 ng/m³. En 2023 y 2024, ambas medias (estaciones de tráfico e industriales) se igualaron.

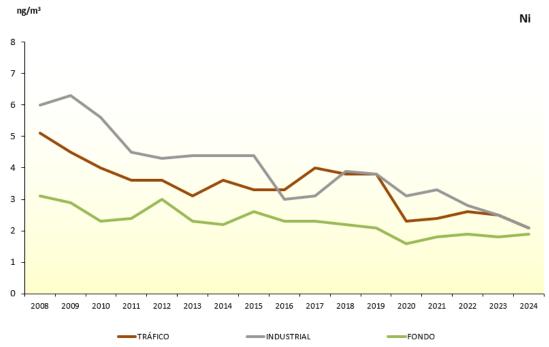


Figura 80. Evolución de las medias anuales de Ni (2008-2024) por tipo de estación

14.2. Niveles del Ni en 2024

En la Figura 81 se observa que, por lo general, las concentraciones más altas se aprecian en las áreas urbanas, con leves altibajos a lo largo del año. En todo caso, las diferencias estacionales son

pequeñas y las variaciones poco determinantes, llegando puntualmente incluso a anularse, como ha ocurrido en agosto (la media mensual de las suburbanas se iguala con la de las urbanas, y la de las rurales se quedan tan solo 0,1 ng/m³ por debajo).

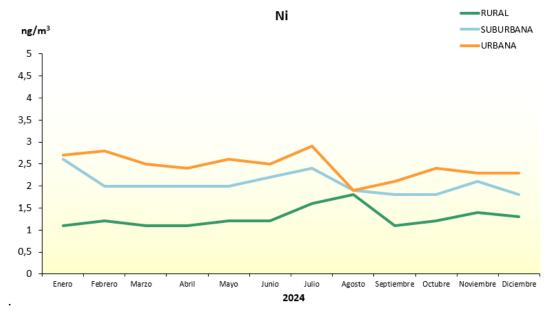


Figura 81. Evolución de las medidas mensuales de Ni en 2024 por tipo de área

Si la agrupación se realiza por tipo de estación (Figura 82), se aprecian variaciones mensuales y picos máximos que rondan los 3 ng/m^3 en estaciones industriales y de tráfico.

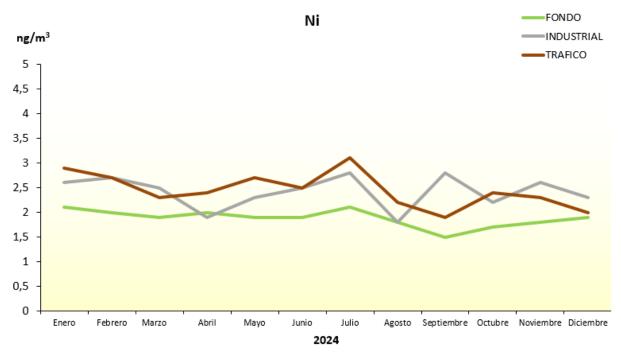


Figura 82. Evolución de las medidas mensuales de Ni en 2024 por tipo de estación

Al analizar la distribución de las medias anuales de las estaciones que participan en la evaluación del Ni, agrupadas por tipo de estación (Figura 83), se observa que en 2024 las 137 estaciones utilizadas para evaluar sitúan sus valores por debajo del UEI, indicativo de los bajos niveles de este contaminante. Los registros más altos corresponden a estaciones de tipo industrial.

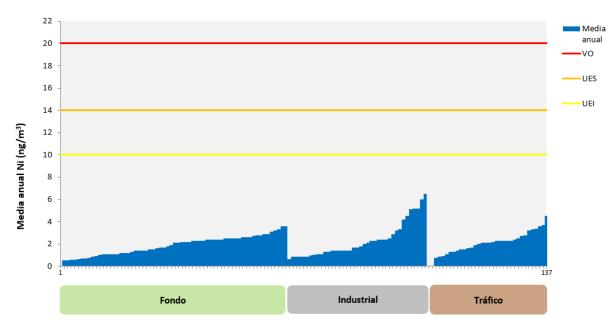


Figura 83. Distribución de las medias anuales de Ni (2024)

15. CONCLUSIONES

- Dióxido de Azufre (SO₂): La evolución de sus niveles entre 2001 y 2024 indica una tendencia descendente de los valores medios, siendo muy significativa la reducción que se produjo en 2008, a raíz de la entrada en vigor de directivas europeas que regularon el contenido en azufre de los combustibles. Desde 2018 se viene observando cierta estabilización en los niveles, si bien en 2024 se ha registrado el máximo más bajo de toda la serie. Este contaminante muestra una pauta estacional en las estaciones de tráfico, con mínimos en el periodo vacacional estival, muy marcado del 2001 al 2008. Esta pauta continúa hasta el año 2019 aunque de forma mucho menos acusada. También se aprecia la bajada drástica en marzo de 2020 debido a las medidas adoptadas por la pandemia del COVID-19. Los niveles más altos se registran en las estaciones de tipo industrial, ya que actualmente este contaminante está fuertemente vinculado a las emisiones ligadas a procesos de combustión y a emisiones fugitivas, y en menor medida, a las relacionadas con determinados procesos de producción (refinerías, productos químicos...), la generación eléctrica y la navegación.
- Dióxido de Nitrógeno (NO₂): La disminución de sus niveles desde 2001 se manifiesta sobre todo en estaciones urbanas y de tráfico, posiblemente asociada a los cambios en el modelo de movilidad, la aplicación de las medidas de diversos planes de mejora de calidad del aire, así como la creación de las Zonas de Bajas Emisiones (ZBE). En 2023 se produce un ligero descenso generalizado en los niveles, independientemente del tipo de estación que se considere, que se mantiene en 2024. La evolución de las medias mensuales muestra una pauta estacional para todas las tipologías de estaciones, con valores más elevados en otoño-invierno que en primavera-verano, siendo está tendencia más acusada en las zonas urbanas y en estaciones de tráfico.
- Partículas inferiores a 10 micras (PM₁₀): Este contaminante se encuentra altamente influenciado por fuentes de origen natural, como los episodios de polvo del Sáhara y aerosoles marinos, además de por fuentes antrópicas. A pesar de la influencia de fuentes naturales, y de los resultados del año 2022 (especialmente intenso en dichos episodios), la tendencia general de los niveles ha sido decreciente a lo largo del periodo considerado. Destaca, como para otros contaminantes, una reducción significativa desde 2008 que resulta especialmente notable en zonas urbanas y suburbanas y en las estaciones de tráfico, seguidas de las industriales.
- Partículas inferiores a 2,5 micras (PM_{2,5}): Constituyen una fracción inferior de partículas, y por tanto también se encuentran influenciadas, aunque en menor medida, por las fuentes naturales, además de por las emisiones antrópicas; e igualmente, bajo determinadas condiciones, pueden favorecer la formación de otras partículas de tipo secundario. Los datos de este informe muestran que sus niveles medios han disminuido desde 2008. Los doce últimos años (2013-2024) presentan valores medios bastante estables, con diferencias mínimas entre ellos (por lo general, de menos de 2 μg/m³). Las reducciones más evidentes se registran en las estaciones urbanas, si bien dicha reducción también es apreciable en las suburbanas, y por tipología de estación en las de tráfico, seguidas por las industriales. A partir de 2023 se revierte el incremento registrado en 2022 debido a la fuerte influencia de las intrusiones de polvo africano, ya mencionado en las PM₁₀.
- Ozono (O₃): En los niveles de este contaminante se observó una mejoría en los años 2020 y 2021, mientras que en 2022 se aprecia un ligero ascenso, mantenido hasta 2024. Globalmente, a lo largo del periodo 2004-2024 se aprecia un decrecimiento en los niveles de las estaciones rurales y de fondo y un incremento en los de tráfico. De ello se infiere una tendencia global a la baja en los niveles en las zonas rurales y un ascenso en las urbanas. La representación de las medias mensuales de los máximos diarios octohorarios muestra la pauta estacional característica de este contaminante secundario para todas las tipologías de estaciones y tipos de área, con valores estivales altos debido una mayor insolación.

- Monóxido de Carbono (CO): Históricamente, sus niveles han sido bajos y se han mantenido lejos de incumplir el objetivo de calidad legal establecido para la protección de la salud. Los perfiles de todas las estaciones siguen una tendencia a la baja, especialmente en el caso de las urbanas y de tráfico. El CO muestra una pauta estacional con valores más elevados en invierno, más marcada en estaciones ubicadas en áreas urbanas y suburbanas y para cualquiera que sea su tipología de fuente de emisión.
- Benceno (C₆H₆): Sus medias anuales se mantienen muy por debajo del límite legislado desde 2003. La tendencia ha sido descendente, y especialmente visible hasta el año 2009, a partir del cual las medias se estabilizan. Se observa un leve repunte poco concluyente en 2022 en todas las tipologías, seguido de un nuevo descenso, a pesar de que este no fue tal en las estaciones rurales y de tráfico. La representación de valores mensuales muestra una pauta estacional de este contaminante a lo largo del año, presentando valores más altos en invierno que en verano.
- Benzo(a)pireno (B(a)P): el promedio de las medias anuales de B(a)P a lo largo del periodo considerado se sitúa muy por debajo del valor legislado, también en 2013, año de la única superación para este contaminante. La evolución observada muestra que las concentraciones más altas, por tipo de área, en general corresponden a las estaciones suburbanas; mientras que, por tipología de estación, se intuye una leve tendencia ascendente en las estaciones industriales poco relevante en términos absolutos, sucedida por un nuevo descenso en 2024. Los valores mensuales correspondientes a los valores medios diarios muestran una pauta estacional de este contaminante con los valores más elevados principalmente centrados en los meses de diciembre y enero.
- Plomo (Pb): Desde el año 2001 queda patente el descenso de sus concentraciones, vinculado a la eliminación de este metal en los carburantes. De forma excepcional, se aprecian repuntes de poca entidad en 2013 y 2016. Los valores medios de toda serie anual, en cualquier caso, están muy alejados del valor límite.
- Arsénico (As): el promedio de las medias anuales de arsénico a lo largo del periodo considerado se sitúa muy por debajo del valor legislado. El valor máximo de la serie se registró en 2008, si bien también en 2009, 2023 y 2024 se ha superado el valor objetivo de este contaminante en una estación. En general, los niveles son muy bajos y las variaciones interanuales pequeñas.
- Cadmio (Cd): el promedio de las medias anuales de cadmio a lo largo del periodo considerado se sitúa muy por debajo del valor legislado; el valor objetivo tan sólo se superó en los años 2010 y 2015 en una estación. Por tipología de área, las zonas suburbanas son las que registran en general los mayores niveles de este contaminante en el periodo estudiado, mientras que por tipología de estación los mayores niveles corresponden a las estaciones industriales.
- Níquel (Ni): Desde 2014 no se registran superaciones del valor objetivo de este contaminante y
 los niveles registrados son, como en el caso de otros metales, muy bajos. Si se atiende a la
 clasificación en función del área, los niveles más elevados corresponden por lo general a las
 estaciones situadas en zonas urbanas; por tipo de estación los niveles más altos atendiendo a
 valores medios anuales se registran en las estaciones de tipo industrial, de forma evidente hasta
 2015.

ANEXO I: LISTADO DE FIGURAS

Figura 1. Diagrama de caja y bigotes de las medias anuales de SO₂ 2001-2023	7
Figura 2. Evolución de las medias anuales de SO $_2$ (2001-2023) por tipo de área	8
Figura 3. Evolución de las medias anuales de SO_2 (2001-2023) por tipo de estación	8
Figura 4. Evolución de las medias mensuales de SO_2 de 2001 a 2023 por tipo de área	9
Figura 5. Evolución de las medidas mensuales de SO_2 de 2001 a 2023 por tipo de estación	10
Figura 6. Distribución del P99,2 de SO_2 por tipología de estación en 2023	11
Figura 7. Distribución por regiones de valores medios mensuales de SO ₂ (μg/m³) 2023	11
Figura 8. Diagrama de caja y bigotes de las medias anuales de NO_2 2001-2023	12
Figura 9. Evolución de las medias anuales de NO_2 (2001-2023) por tipo de área	13
Figura 10. Evolución de las medias anuales de NO_2 (2001-2023) por tipo de estación	13
Figura 11. Evolución de las medias mensuales NO₂ de 2001 a 2023 por tipo de área (arriba) y esta (abajo)	
Figura 12 Evolución de los niveles de NO₂ respecto al VLH a lo largo del periodo 2018-2023	16
Figura 13 Evolución de los niveles de NO₂ respecto al VLA a lo largo del periodo 2018-2023	17
Figura 14. Distribución de la media anual de NO₂ (2023)	18
Figura 15. Distribución del Percentil 99,8 de NO₂ (2023)	18
Figura 16. Distribución por regiones y tipo de área de valores medios mensuales de NO ₂ (μg/m³) (2023)	
Figura 17 Diagrama de caja y bigotes de las medias anuales de PM $_{ m 10}$ 2001-2023	21
Figura 18 Evolución de las medias anuales de PM $_{ m 10}$ (2001-2023) por tipo de área	22
Figura 19 Evolución de las medias anuales de PM $_{ m 10}$ (2001-2023) por tipo de estación	23
Figura 20 Evolución de los niveles de PM $_{ m 10}$ respecto al VLD a lo largo del periodo 2018-2023	24
Figura 21 Evolución de los niveles de PM $_{ m 10}$ respecto al VLA a lo largo del periodo 2018-2023	25
Figura 22 Evolución de las medias mensuales de PM $_{ m 10}$ en 2023 por tipo de área	26
Figura 23 Evolución de las medias mensuales de PM $_{ m 10}$ en 2023 por tipo de estación	27
Figura 24 Distribución de la media anual de PM $_{ m 10}$ (2023)	27
Figura 25 Distribución del Percentil 90,4 de PM ₁₀ (2023)	28
Figura 26. Distribución por regiones y tipo de área de valores medios mensuales de PM ₁₀ (μg/m³ (2023)	•
Figura 27 Distribución mensual del número de días con episodios africanos por regiones en 2023	3 29
Figura 28 Regiones consideradas en relación con los episodios naturales de partículas 2023	29
Figura 29 Contribución de polvo africano a PM $_{10}$ (µg/m 3) en el año 2023	30
Figura 30 Diagrama de caja y bigotes de las medias anuales de PM _{2,5} 2008-2023	31
Figura 31 Evolución de las medias anuales de PM _{2,5} (2008-2023) por tipo de área	31
Figura 32 Evolución de las medias anuales de PM _{2.5} (2008-2023) por tipo de estación	32

Figura 33 Evolución de los niveles de PM _{2,5} respecto al VLA a lo largo del periodo 2018-2023 33
Figura 34 Evolución de las medias mensuales de PM _{2,5} en 2023 por tipo de área 34
Figura 35 Evolución de las medias mensuales de PM _{2,5} en 2023 por tipo de estación
Figura 36 Distribución de las medias anuales PM _{2,5} (2023)
Figura 37. Distribución por regiones y tipo de área de valores medios mensuales de $PM_{2,5}$ ($\mu g/m^3$) (2023)
Figura 38 Diagrama de caja y bigotes del percentil 93,2 de máximos diarios octohorarios de O_3 2004-2023
Figura 39 Evolución de las medias anuales de los percentiles 93,2 de O₃ (2004-2023) por tipo de área
Figura 40 Evolución de las medias anuales de los percentiles 93,2 de O_3 (2004-2023) por tipo de estación
Figura 41 Evolución de las medias mensuales de máximos diarios octohorarios de O_3 de 2001 a 2023 por tipo de área (arriba) y estación (abajo)
Figura 42 . Evolución de los niveles de O_3 respecto al VOS a lo largo del periodo 2018-2023 39
Figura 43 Distribución del Percentil 93.2 de O_3 (2023)
Figura 44. Distribución por regiones y tipo de área de valores medios mensuales de O_3 ($\mu g/m^3$) (2023)
Figura 45. Diagrama de caja y bigotes de la media anual del valor máximo de los máximos diarios octohorarios de CO 2003-2023
Figura 46. Evolución de la media anual del valor máximo de los máximos diarios octohorarios de CO (2003-2023) por tipo de área
Figura 47. Evolución de la media anual del valor máximo de los máximos diarios octohorarios de CO (2003-2023) por tipo de estación
Figura 48. Evolución de las medidas mensuales de máximos diarios octohorarios de CO de 2003 a 2023 por tipo de área (arriba) y estación (abajo)
Figura 49. Distribución de los máximos diarios octohorarios de CO (2023)
Figura 50. Diagrama de caja y bigotes de las medias anuales de C_6H_6 2003-2023 46
Figura 51. Evolución de las medias anuales de C_6H_6 (2003-2023) por tipo de área 47
Figura 52. Evolución de las medias anuales de C_6H_6 (2003-2023) por tipo de estación
Figura 53. Evolución de las medidas mensuales de C_6H_6 de 2003 a 2023 por tipo de área (arriba) y estación (abajo)
Figura 54. Distribución de las medias anuales de C_6H_6 (2023)
Figura 55. Diagrama de caja y bigotes de las medias anuales de B(a)P 2008-2023 50
Figura 56. Evolución de las medias anuales de B(a)P (2008-2023) por tipo de área 50
Figura 57. Evolución de las medias anuales de B(a)P (2008-2023) por tipo de estación 51
Figura 58. Evolución de las medidas mensuales de B(a)P de 2008 a 2023 por tipo de área (arriba) y estación (abajo)
Figura 59. Distribución de las medias anuales de B(a)P (2023)
Figura 60. Diagrama de caja y bigotes de las medias anuales de Pb 2001-2023 54

Figura 61. Evolución de las medias anuales de Pb (2001-2023) por tipo de área	55
Figura 62. Evolución de las medias anuales de Pb (2001-2023) por tipo de estación	55
Figura 63. Evolución de las medidas mensuales de Pb en 2023 por tipo de área	56
Figura 64. Evolución de las medidas mensuales de Pb en 2023 por tipo de estación	56
Figura 65. Distribución de las medias anuales de Pb (2023)	57
Figura 66. Diagrama de caja y bigotes de las medias anuales de As 2008-2023	58
Figura 67. Evolución de las medias anuales de As (2008-2023) por tipo de área	59
Figura 68. Evolución de las medias anuales de As (2008-2023) por tipo de estación	59
Figura 69. Evolución de las medidas mensuales de As en 2023 por tipo de área	60
Figura 70. Evolución de las medidas mensuales de As en 2023 por tipo de estación	. 60
Figura 71. Distribución de las medias anuales de As (2023)	61
Figura 72. Diagrama de caja y bigotes de las medias anuales de Cd 2008-2023	62
Figura 73. Evolución de las medias anuales de Cd (2008-2023) por tipo de área	62
Figura 74. Evolución de las medias anuales de Cd (2008-2023) por tipo de estación	63
Figura 75. Evolución de las medidas mensuales de Cd en 2023 por tipo de área	63
Figura 76. Evolución de las medidas mensuales de Cd en 2023 por tipo de estación	. 64
Figura 77. Distribución de las medias anuales de Cd (2023)	. 64
Figura 78. Diagrama de caja y bigotes de las medias anuales de Ni 2008-2023	65
Figura 79. Evolución de las medias anuales de Ni (2008-2023) por tipo de área	. 66
Figura 80. Evolución de las medias anuales de Ni (2008-2023) por tipo de estación	. 66
Figura 81. Evolución de las medidas mensuales de Ni en 2023 por tipo de área	. 67
Figura 82. Evolución de las medidas mensuales de Ni en 2023 por tipo de estación	67
Figura 83. Distribución de las medias anuales de Ni (2023)	68