AIRUSE LIFE+ project

Technical staff from ITC involved in AIRUSE:

Dr. Eliseo Monfort, Irina Celades, Tica Sanfelix, Salvador Gomar, Alberto Escrig

Valencia, 05/02/2016

B.5 Industrial sources contributions

Results from the receptor model

		and the second s			and the			Contract of the local division of the local		
Area	Values in % contributions to 2013 annual mean									
	TOTAL INDUSTRY*		DIRECT INDUSTRY		REG (OC+SO ₄ ²⁻)		nTR-NO ₃ -		Shipping	
	PM_{10}	PM _{2.5}	PM_{10}	PM _{2.5}	PM_{10}	PM _{2.5}	PM_{10}	PM _{2.5}	PM_{10}	PM _{2.5}
POR-TR	< 12	< 14	4	5	10	13	2	1	<1	<1
BCN-UB	< 36	< 39	11	12	26	37	8	3	4	5
FI-UB	< 23	< 26	5	6	21	29	6	4	<1	<1
MLN-UB	n.a.	< 22	n.a.	5	n.a.	19	n.a.	6	n.a.	<1

n.a.: not available

*Contributions for sources directly/indirectly and totally/partially related with industrial source

AIRUSE industrial activity inventory

Methodology. Required information

Channelled primary PM	Fugitive or diffuse primary PM				
Main industrial activity (IPPC or E-PRTR code)					
Annual production (kg, tonnes, m ² ,)					
Type of fuel					
Process stages: number of point sources	Activities that can generate diffuse emissions				
Implemented BATs	Quantity of material handled				
Emission duration (hours/year)	Distance travelled by trucks inside the company				
Emission temperature	Paving in the areas travelled (paved or unpaved)				
Emission volume flow rate (dry basis)	Storage park area and amount of stored material				
Emitted PM concentration	Implemented mitigation measures				
BATs maintenance operations	Maintenance operations of the mitigation measures				

Primary PM emissions quantification

Channelled emissions

•**Methodology 1**: Direct emission data for TSP and/or PM10 available from the industrial emissions inventory. **BCN and FI**.

•**Methodology 2**: Calculation of annual TSP emissions from C_{TSP} , flow rate and total hours of annual emission. **MLN**.

•**Methodology 3**: No detailed information was available. PM10 and PM2.5 emissions were calculated from production data, applying emission factors. **POR**.

PM10/TSP and PM2.5/PM10 ratios and emission factors were obtained from the following databases: EMEP/EEA, AP 42 (US-EPA), AUSTRALIA-EPA and IIASA

Primary PM emissions quantification

Diffuse emissions

Methodology: PM10 and PM2.5 emissions were calculated from **amount** of bulk material handled or production data, applying generic emission factors.

BCN-SEPA

	Study area	1	Industrial emission inventory				
Population (Minhab.)	Area Density (km ²) (inh./km ²)		Facilities	Methodology	ELV-BAT		
4.6	725	6345	>60	1	Medium-High		
		ANG	5				
	3						
	Catalonia				200		
			Garoel na		1.5		
					a nor		
Google earth	a an and		1 37				
Tarragon a Data Sio, NOAA, LS, Navy, NGA, Image Landsat © 2015 Google	GEBCO	1 .	1		N 50 km		

BCN-SEPA Barcelona Legend Air quality station. ELV Fully accomplished Air quality station: ELV Not fully accomplished Emissions below 1000 kg/y Emissions between 1000 to 5000 kg/y -Emissions between 5000 to 10000 kg/y Emissions between 10000 to 50000 kg/y Emissions upper to 50000 kg/y

Energy sector
Production and processing of metals
Mineral industry
Chemical industry
Waste
Paper and wood production processing
Animal and vegetable products
Other activities non IED
Port of Barcelona

26.6%

- Energy sector
- Production and processing of metals
- Mineral industry
- 🗖 Waste
- Paper and wood production processing
- Animal and vegetable products
- Other activities
- Port of Leixoes

- Energy sector
- Production and processing of metals
- Waste
- Paper and wood production processing
- Other activities non IED

Other activities: Concrete manufacturing, silver processing and biomass co-generation plant (<50Mw)

Production and processing of metals
 Mineral industry
 Chemical industry
 Waste

Precursors of secondary PM

	Total emissions (tonnes/year)							
Study area	PM em	nissions	Gaseous emissions*					
	PM10	PM2.5	NO _x	SO ₂	NH ₃	NMVOCs		
POR-MA	669.8	571.3	6068	399	355	1207		
BCN-SEPA	246.5	137.0	5733	221	10.7	4070		
FI-AGG	31.9	17.0	N/C	N/C	N/C	N/C		
MLN-AGG	16.3	14.3	993	410	N/C	N/C		

N/C: Unquantified

*Data from E-PRTR 2012

Recommendations

Addressed to EU regulatory and technical bodies (EMEP, IPTS, R&D managers)

- Emission inventories:
 - Encouraging efforts to standardise and coordinate baseline information
 - Extending information in public inventories (e.g. E-PRTR) to improve transparency
 - Harmonising key parameters: air quality (PM₁₀, PM_{2.5}), ELVs (PST), E-PRTR(PM₁₀)
- Diffuse sources:
 - Developing and compiling specific PM diffuse emission factors and efficiencies
- Channelled emissions:
 - Developing and compiling specific PM10/TSP and PM2.5/PM10 ratios
 - Regulating maximum temperatures in exhaust gases and/or abatement systems
 - Fostering control of secondary PM precursors and heavy metal emissions

ilibe:

Recommendations

Addressed to National and/or Regional environmental bodies

- Primary PM emissions:
- Updating the ELVs adopted in the BREF documents
- Increasing emission control frequency to ensure proper BATs operation
- Including real control and quantification of diffuse emissions

Gaseous emissions (secondary PM precursors) and heavy metals:

- Quantifying these emissions in greater detail
- Selecting the cleanest available fuels and/or using controlled combustion systems
- Fostering implementation of cleaning systems in hot emissions

Recommendations

Addressed to Regional environmental bodies:

- Regional inventories of PM industrial emissions
 - Periodically updating the list of industrial activities
 - Using a bottom-up approach, including non-IED activities and diffuse emissions
 - Controlling and quantifying shipping, harbour, and public works emissions

Addressed to stakeholders

- Awareness-raising activities
 - Organising specific campaigns (workshops, info-days...) for industrial associations, harbour managers, local authorities, health groups, etc
 - Involvement of stakeholders can greatly increase emission inventories accuracy

B7. Developing & testing costeffective PM measures & strategies

Road dust - AIRUSE tests

At typical urban road:

•Street cleaning •CMA •MgCl₂

At industrial paved road: •Street cleaning •CMA

At industrial unpaved road: •Water flushing •CMA

Soil dust At urban park we tested nano-polymer

Industrial (ceramic) paved road (l'Alcora)

- 250 companies (tiles, spray-dried granules, pigments..)
- 17% of the worldwide supply
- consumes 12 Mt/year of clay

Industrial (ceramic) paved road (l'Alcora)

Industrial paved road (l'Alcora)

Industrial paved road (l'Alcora)

Industrial paved road (l'Alcora)

Industrial (ceramic) paved road (l'Alcora)

CMA application

Industrial paved road

Conclusions

Source	Location	Dust	Measure	Dosage	PM10	Notes on
		loading			reduction	measurement
Road dust	Urban paved road	3-6 mg/m ²	Street washing	1 L/m ²	7-10% on a daily mean	kerbside
			СМА	15-20 g/m ²	Negligible	kerbside
			MgCl ₂	15-20 g/m ²	Negligible	kerbside
	Industrial paved road	20-40 mg/m ²	Street washing	27 L/m ²	18% on a daily mean	kerbside
			СМА	30-60 g/m ²	8% on a daily mean	kerbside
	Industrial unpaved road	infinite	Street washing	3.5 L/m ²	>90% up to 1 h	downwind
			СМА	$\frac{100}{\text{g/m}^2}$	Not observed	downwind
Soil dust	Public park	infinite	Nano- polymer	$\frac{3}{L/m^2}$	-2.9 μg/m ³	Inside the park

- Street washing revealed the highest efficiency in reducing mobility of particles.
- ✓ The effect is short lived (<8hours), and should be performed before rush hours</p>
- ✓ Sweeping using CMA does not offer evidence of improved efficiency in Mediterranean climate

ACKNOWLEDGEMENTS

EC-LIFE+PROGRAM

Spain	MAGRAMA, GenCat, Barcelona, l'Alcora and Madrid City Councils, URBASER, Cantera La Torreta
Italy	ARPA-Lombardia, Regione Lombardia, Regional Government of Tuscany, ARPA Toscana
Portugal Greece	Porto City Council, North Regional Coord. & DeveloP. Comm. (CCDR-N) Ministry of Environment, Energy and Climate Change

Gracias por su atención

CIENTÍFICAS

Types of trucks

Dump truck

Minimise fugitive emissions

