PLANTAS DE SINTERIZACIÓN (COMBUSTIÓN)

ACTIVIDADES CUBIERTAS SEGÚN NOMENCLATURA					
NOMENCLATURA	CÓDIGO				
SNAP 97	03.03.01				
CRF	1A2a				
NFR	1A2a				

Descripción de los procesos generadores de emisiones

En esta ficha se describen las emisiones procedentes de la combustión en las plantas de sinterización.

El proceso de sinterización forma parte de la producción de hierro, siendo un paso previo a la carga del horno alto. En la actualidad, la mayor parte del hierro apto para empleo siderúrgico disponible en el mercado mundial tiene una granulometría comprendida entre 1 y 10 mm. Esta franja granulométrica es demasiado fina como para que este tipo de material sea cargado al horno alto directamente, ya que generaría dificultades importantes de permeabilidad a los gases en la cuba del horno. Por ello, el mineral, junto con fundentes y combustible, se procesa en las plantas de sinterización, obteniéndose un producto de alta concentración en hierro, con las características químicas y mecánicas adecuadas para servir de alimento al horno alto.

Para la obtención del sínter se parte de partículas finas de **mineral de hierro**, **coque** (también en forma de finos y polvo de coque), así como **fundentes** (caliza, cal viva, olivina o dolomita). Todas estas sustancias son mezcladas en una tolva, a la que se añade agua en la proporción correcta, y la mezcla resultante se dispone en una capa de espesor constante. A continuación, a través de una cinta móvil, se introduce esta capa en una campana de encendido, que, alimentada con gas de coquería y, en ocasiones, gas de horno alto o gas natural, prende la mezcla en bruto, calentando el material a la temperatura requerida (1.100 – 1.200°C). Esto hace que el combustible en la mezcla se encienda, pasando a ser la combustión entonces autosostenible, proporcionando el calor suficiente, 1.300-1.480°C, para provocar la fusión superficial y la aglomeración de la mezcla. Es importante mantener una presión y temperatura adecuadas durante el proceso, para lo que se incluyen sistemas de control que mantienen la presión de la campana constante y un valor calorífico de la mezcla apropiado.

Posteriormente, el sínter fundido se enfría al aire libre o con pulverizadores de agua o ventiladores, para ser finalmente triturado y tamizado, obteniendo un material con la granulometría deseada. Los materiales finos son reciclados y el producto final es enviado a los hornos altos, donde se añade a otros materiales para formar la carga de los mismos.

Cabe destacar que la elaboración del sínter permite reciclar los productos de desecho de otros procesos de la planta siderúrgica y utilizarlos como materia prima. De esta forma, se aprovechan finos de fundentes, finos de coque, finos de mineral, finos de sínter, polvo de botellón¹, laminillas o escoria procedente de la acería. Debe tenerse en cuenta además, que el sínter es un material muy deleznable, por lo que las instalaciones de sinterizado suelen situarse en las propias plantas de siderurgia integral², para evitar la degradación del producto durante el transporte.

La parte del proceso de sinterización que nos ocupa es la **combustión**, que se refiere al momento en que la capa de sínter se ha calcinado completamente en toda su sección, lo que se detecta mediante sondas de temperatura. Debe alcanzarse la combustión, si bien no debe ocurrir demasiado pronto tras su paso por la campana de encendido; lo ideal es que el punto de combustión se sitúe cerca del final de la capa. Esto se controla modificando la velocidad de la línea. Diversas variables afectan al punto de combustión, entre las que destacan la profundidad de la capa, su contenido en agua y la calidad del sínter.

¹ Material resultante de la depuración del gas de horno alto.

² Se conoce como siderurgia integral a la planta industrial dedicada al proceso completo de producir acero a partir del mineral de hierro (hornos altos), mientras que la siderurgia no integral (acería eléctrica) utiliza como materia prima fundamental la chatarra de acero

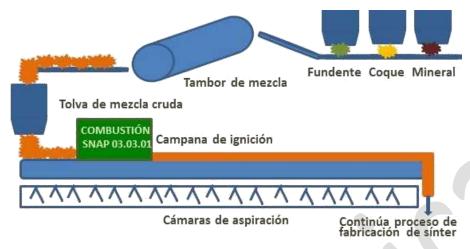


Figura 1. Esquema del proceso de fabricación de sínter (Fuente: Elaboración propia)

La Figura 2 ilustra el proceso de fabricación del sínter, así como su relación con otras actividades dentro de la siderurgia integral.

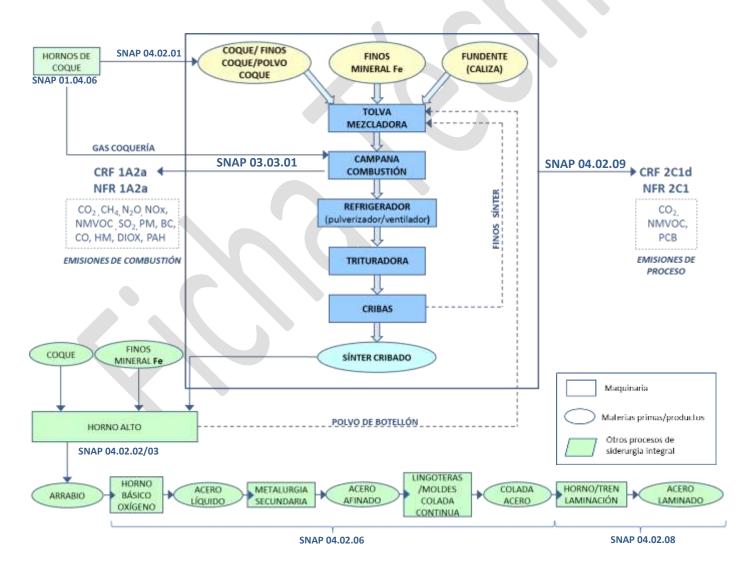


Figura 2. Esquema del proceso de fabricación de sínter y su relación con otras actividades de la siderurgia integral (Fuente: elaboración propia)

Contaminantes inventariados

Gases de efecto invernadero

CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	
✓	✓	✓	NA	NA	NA	
OBSERVACIONES:						

• Notation Keys correspondientes al último reporte a UNFCCC

Contaminantes atmosféricos

Cont	taminante	s princ	cipales	Material particulado Otros		Otros	Metales pesados prioritarios			Metales pesados adicionales				Contaminantes orgánicos persistentes							
NOx	NMVOC	SO ₂	NH ₃	PM _{2.5}	PM ₁₀	TSP	ВС	CO	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	PAH	HCB	PCB
✓	✓	✓	-	✓	✓	✓	-	✓	✓	✓	✓	✓	✓	✓	✓	V	V	✓/	\checkmark	-	-

OBSERVACIONES:

- Notation Keys correspondientes al último reporte de CLRTAP
- Las celdas que no incluyen Notation Key son casos en los que se reportan emisiones en la categoría NFR correspondiente, pero no son atribuibles a esta actividad

Sectores del Inventario vinculados

Las actividades del Inventario relacionadas con la presente ficha metodológica son las siguientes:

RELACIÓN CON OTRAS FICHAS METODOLÓGICAS						
ACTIVIDAD SNAP	ACTIVIDAD CRF	ACTIVIDAD NFR	DESCRIPCIÓN			
01.04.06	1A1ci	1A1c	Plantas de transformación de combustibles sólidos			
03.01.03	1A2a	1A2	Combustión estacionaria industrial no específica			
03.02.03	1A2a	1A2a	Cowpers de hornos altos			
03.03.02	1A2a	IAZd	Hornos de recalentamiento de hierro y acero (*)			
03.02.05	1A2a/1A2b	1A2a/1A2b	Combustión en otros hornos sin contacto			
04.02.01	1B1b	1B1b	Apertura y extinción de los hornos de coque			
04.02.02	2C1b		Carga de hornos altos y coladas de arrabio			
04.02.03	2010		salga de nomos altos y conduto de al lasto			
04.02.06	2C1a	2C1	Hornos de oxígeno básico de las acerías			
04.02.08	2C1f	201	Laminación de acero			
04.02.09	2C1d		Plantas de sinterización (emisiones de proceso)			
09.02.04	2C1f		Antorchas en siderurgia y coquerías			

^{*:} En esta actividad se han computado las emisiones de ciertas instalaciones auxiliares en los procesos de las plantas siderúrgicas integrales (acería LD, hornos altos, etc.), al no disponer en la nomenclatura SNAP de una actividad específica para estas instalaciones

Descripción metodológica general

Contaminante	Tier	Fuente	Descripción			
CO ₂	T2	IQ	Balance de masas			
		IPCC 2006				
CH ₄	T1	Volumen 2, Capítulo 2. Tabla	FE por defecto			
		2.3				
		IPCC 2006				
N_2O	T1	Volumen 2, Capítulo 2. Tabla	FE por defecto			
		2.3				
NOx	T2	EMEP/EEA 2016	FE por defecto			
NOX	12	Capítulo 1A2. Tabla 3-7	TE por derecto			
NMVOC	T3/ T2	IQ	Emisiones medidas			
SO ₂	T3/T2	IQ	Emisiones medidas			
			Emisiones medidas			
TSP, PM ₁₀	T3/T2	IQ	Aplicación de un factor de emisión implícito basado en emisiones medidas			

Contaminante	Tier	Fuente	Descripción				
PM _{2,5}	T2	IQ	Las emisiones de $PM_{2,5}$ se han asumido iguales a las de PM_{10} de acuerdo con la información sobre factores de emisión propuestos por CEPMEIP para un nivel de emisión bajo (100 g/t de sinter para $PM_{2,5}$ y PM_{10} ; 200 g/t de sinter para TSP)				
СО	T1	EMEP/CORINAIR 2007	FE por defecto				
CO	11	Cap B331. Tabla 8.2a	re por derecto				
	T1	EMEP/CORINAIR 2007	FE por defecto				
Metales pesados		Cap B331. Tabla 8.3	1 E poi defecto				
ivietales pesauos	T3/T2	IQ	Emisiones medidas				
	13/12	ių	Aplicación de factor de emisión				
DIOX	T3/T2	IQ	Se ha derivado un factor de emisión implícito a partir de las medidas obtenidas un				
DIOX	13/12	ių	año en una de las plantas				
PAH	T3/T2	10	Se ha derivado un factor de emisión implícito a partir de las medidas obtenidas un				
РΑП	13/12	IQ	año en una de las plantas				

Variable de actividad

Variable	Descripción
Consumo de combustibles (GJ)	Hulla y antracita, coque de horno de coque (de hullas y antracita), fuelóleo, gas natural, GLP, gas de
Consumo de combustibles (G1)	coquería, gas de horno alto, gas de acería

Fuentes de información sobre la variable de actividad

Periodo	Fuente
1990-2016	Cuestionarios individualizados (IQ) facilitados por las plantas de siderurgia integran existentes en España

En la actualidad existen en España dos plantas de siderurgia integral y 26 de siderurgia no integral.

Las plantas siderúrgicas integrales consideradas en el periodo se resumen en la siguiente Figura. Cabe señalar que actualmente sólo está en funcionamiento la planta de sinterización de la factoría de Gijón.

Empresa	Nombre	Provincia	Observaciones
ARCELORMITTAL	Factoría de Avilés	Asturias	Cese actividad instalaciones de sínter en 1997
	Factoría de Gijón	Asturias	
Altos Hornos de Vi	zcaya	Vizcaya	Cierre de la planta en 1994

Figura 3. Distribución de las plantas siderúrgicas integrales en España (Fuente: elaboración propia)

Fuente de los factores de emisión

Contaminante	Tipo	Fuente	Descripción
	CS	IQ	Balance de masas
CO ₂	D	IPCC 2006 Volumen 2, Capítulo 2. Tabla 2.3	En el caso de no disponer de mediciones o de características de combustibles, se recurre a factores de emisión por defecto
CS		IQ	Se han obtenido mediciones en una de las plantas para un año y con ese dato se han estimado para el resto de los años, utilizando las concentraciones medidas y aplicándolas al caudal anual de salida de gases correspondiente a cada uno de los años
CH₄	D	IPCC 2006 Volumen 2, Capítulo 2. Tabla 2.3	FE por defecto
N ₂ O	D	IPCC 2006 Volumen 2, Capítulo 2. Tabla 2.3	FE por defecto

Contaminante	Tipo	Fuente	Descripción
NOx	CS	IQ	Se han obtenido mediciones en una de las plantas para un año y con ese dato se har estimado para el resto de los años, utilizando las concentraciones medidas y aplicándolas a caudal anual de salida de gases correspondiente a cada uno de los años
	D	EMEP/EEA 2016 Capítulo 1A2. Tabla 3-8	FE por defecto
NMVOC	CS	IQ	Se han obtenido mediciones en una de las plantas para un año y con ese dato se har estimado para el resto de los años, utilizando las concentraciones medidas y aplicándolas a caudal anual de salida de gases correspondiente a cada uno de los años
SO ₂	CS	IQ	Emisiones medidas Balance de masas
PM _{2,5}	cs	СЕРМЕІР	Se han asumido iguales a las de PM_{10} , de acuerdo con la información sobre FE propuestos por CEPMEIP, para un nivel de emisión bajo
PM ₁₀	CS	IQ	Se han obtenido mediciones en una de las plantas para un año y con ese dato se har estimado para el resto de los años, utilizando las concentraciones medidas y aplicándolas a caudal anual de salida de gases correspondiente a cada uno de los años
TSP	CS	IQ	Se han obtenido mediciones en una de las plantas para tres años y con el dato del último se han estimado para el resto de los años, utilizando las concentraciones medidas y aplicándolas al caudal anual de salida de gases correspondiente a cada uno de los años
СО	cs	IQ	Se han obtenido mediciones para una de las plantas en un año y para el resto de los años, se calcula a partir del factor de emisión implícito obtenido para ese año
CO	D	EMEP/CORINAIR 2007 Capítulo B331. Tabla 8.2a	FE por defecto
Metales pesados	CS	IQ	En una de las plantas se ha dispuesto de emisiones medidas para un año (excepto para e Se), habiéndose deducido factores de emisión para los demás años
ivietales pesados	D	EMEP/CORINAIR 2007 Capítulo B331. Tabla 8.2c	FE por defecto
DIOX ³	CS	IQ	Se han obtenido mediciones para una de las plantas en un año y para el resto de los años, se calcula a partir del factor de emisión implícito obtenido para ese año
	D	PARCOM – ARMOS (1992)	FE por defecto
РАН	CS	IQ	Se han obtenido mediciones para una de las plantas en un año y para el resto de los años, se calcula a partir del factor de emisión implícito obtenido para ese año

Observaciones: D: por defecto (del ingles "Default"); CS: específico del país (del ingles "Country Specific"); OTH: otros (del ingles "Other"); M: modelo (del inglés "Model"); IQ: Cuestionario individualizado de las plantas

Incertidumbres

La incertidumbre de esta actividad se calcula a nivel de CRF 1A2 y es la recogida en la siguiente tabla.

Contaminante	Tipo de	Inc. VA	Inc. FE	Descripción
Contaminante	combustible	(%)	(%)	Descripcion
CH ₄		5	233	Variable de actividad: Se asume la incertidumbre propuesta en la guía IPCC 2006, Volumen 2: Energía, Capítulo 2 Combustión estacionaria, tabla 2.15 Factor de emisión: Se calcula con los intervalos de confianza de los factores de emisión de todos los combustibles que intervienen según la Guía IPCC 2006, Volumen 2: Energía, Capítulo 2 Combustión estacionaria, tabla 2.3 y se toma el valor mayor
CO ₂	G	5	1,5	Variable de actividad: Se asume la incertidumbre propuesta en la guía IPCC 2006, Volumen 2: Energía, Capítulo 2 Combustión estacionaria, tabla 2.15 Factor de emisión: Se asume la incertidumbre por el contenido de carbono a partir de la composición molar anual facilitada por la empresa transportista del gas
CO ₂	L	10	3,2	Variable de actividad: Se calcula la incertidumbre propuesta en la guía IPCC 2006, Volumen 2: Energía, Capítulo 2 Combustión estacionaria, tabla 2.15 Factor de emisión: Incorpora la incertidumbre del contenido de carbono de acuerdo a la variabilidad de las características de los combustibles
CO ₂	0	17,5	5	Variable de actividad: Se asume la incertidumbre propuesta en la guía IPCC 2006, Volumen 2: Energía, Capítulo 2 Combustión estacionaria, tabla 2.15 Factor de emisión: Se deriva de la Guía IPCC 2006, Volumen 2, Capítulo 2 Combustión estacionaria, Tabla 2.15 por la heterogenidad de combustibles en este grupo
CO ₂	S	5	15,1	<u>Variable de actividad</u> : Se asume la incertidumbre propuesta en la guía IPCC 2006, Volumen 2: Energía, Capítulo 2 Combustión estacionaria, tabla 2.15

³ Para este contaminante, los factores dependen de las técnicas de reducción aplicadas al proceso, dato sobre el que no se dispone de información precisa. Se ha tomado un valor medio del rango de variación indicado (4.000-6.000 ng/t de sinter)

Contaminante	Tipo de	Inc. VA	Inc. FE	Descripción
	combustible	(%)	(%)	Descripcion
				<u>Factor de emisión</u> : Se calcula como promedio de las incertidumbres asociadas a las características para este tipo de combustible en fuentes puntuales, para las que se dispone de información directa de planta, como las propias de las fuentes de área, que son menos precisas
N₂O	-	5	275	Variable de actividad: Se asume la incertidumbre propuesta en la Guía IPCC 2006, Volumen 2: Energía, Capítulo 2 Combustión estacionaria, tabla 2.15 Factor de emisión: Se calcula con los intervalos de confianza de los factores de emisión de todos los combustibles que intervienen intervienen según la Guía IPCC 2006, Volumen 2: Energía, Capítulo 2 Combustión estacionaria, tabla 2.3 y se toma el valor mayor

G: gaseosos; L: líquidos; S: sólidos; O: otros combustibles

La incertidumbre de esta actividad se calcula a nivel de NFR 1A2a y es la recogida en la siguiente tabla.

Contaminante	Inc. VA Inc. FE		Decaringión						
	(%)	(%)	Descripción						
NOx	3,48	41	<u>Variable de actividad</u> : Dado que la información procede de IQ se considera que la incertidumbre tiene un valor bajo <u>Factor de emisión</u> : Se calcula con las incertidumbres agregadas de los factores de emisión propuestos en la Guía EMEP/EEA 2016						
SOx	35,7	36,8	Variable de actividad: Dado que la información procede de IQ se considera que la incertidumbre tiene un valor bajo Factor de emisión: Se calcula con las incertidumbres agregadas de los factores de emisión propuestos en la Guía EMEP/EEA 2016						
NMVOC, CO, Metales pesados	-	-	No estimada. El Inventario contempla en su estimación de incertidumbre total, aquellos sectores que más emiten hasta completar el 97% de las emisiones totales, quedando esta actividad y						
PM _{2,5} , PM ₁₀ , TSP	-	-	contaminante fuera del cómputo. Para más información consultar la metodología para el cálculo de incertidumbres de los reportes a UNFCCC y CRLTAP.						
HM, DIOX, PAH	-	-							

Coherencia temporal de la series

En general se considera que las series de variables de actividad (consumo de combustible) presentan un alto grado de coherencia temporal por provenir la información de las propias plantas siderúrgicas. La serie de los factores de emisión presenta un grado aceptable de homogeneidad temporal.

Observaciones

No procede.

Criterio para la distribución espacial de las emisiones

El nivel de desagregación para el cálculo de las emisiones es a nivel provincial, basado en la ubicación de cada planta, constituyendo un modelo "bottom-up".

Juicio de experto asociado

No procede.

Fecha de actualización

Julio 2018.

ANEXO I

Datos de la variable de actividad

Los datos de variable de actividad correspondientes no se muestran por razones de confidencialidad.

ANEXO II

Datos de factores de emisión

Los datos de factores de emisión correspondientes no se muestran por razones de confidencialidad.

ANEXO III

Cálculo de emisiones

No procede.

ANEXO IV

Emisiones

AÑO	CO ₂	CH₄	N ₂ O	NO _x	NMVOC	SO ₂	PM _{2,5}	PM ₁₀	TSP	со
ANO	(kt)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
1990	741	66	10	3.976	227	7.924	-	-	-	95.233
1991	735	65	10	4.085	225	7.918	-			96.018
1992	653	59	9	3.693	202	6.340	-	-	-	80.839
1993	639	58	9	3.785	199	6.844	-	-	-	80.629
1994	641	58	9	3.782	200	4.984	-	-	-	79.613
1995	670	61	9	2.649	205	4.360	-	-	-	79.306
1996	616	56	8	2.407	189	4.516	-	-	-	74.155
1997	400	36	5	1.692	124	1.179	-	-	-	49.329
1998	302	27	4	1.419	94	1.010	-	-	-	38.335
1999	584	53	8	2.320	180	2.622	-	-	-	70.122
2000	705	65	10	3.052	217	3.012	636	636	1.373	83.419
2001	719	66	10	3.041	221	3.478	384	384	828	85.499
2002	746	68	10	3.004	228	3.705	519	519	1.121	87.637
2003	669	778	10	3.606	214	3.431	662	662	1.429	85.667
2004	798	851	11	3.050	246	3.609	721	721	1.531	93.672
2005	787	857	11	3.073	246	3.491	676	676	1.435	94.365
2006	820	820	12	2.942	254	3.460	677	677	1.430	90.339
2007	918	865	13	3.102	285	3.379	734	734	1.532	95.257
2008	862	836	12	2.997	268	6.013	711	711	1.494	92.035
2009	678	635	9	2.277	192	3.102	530	530	1.147	69.930
2010	808	783	11	2.810	253	4.018	684	684	1.424	86.293
2011	949	767	14	2.750	296	3.796	685	685	1.443	84.462
2012	913	645	13	2.314	283	3.901	622	622	1.295	71.047
2013	805	732	11	2.633	244	3.916	700	700	1.458	60.417
2014	921	842	13	3.054	274	5.285	796	796	1.657	65.865
2015	1.027	863	14	3.128	305	4.637	958	958	1.994	73.612
2016	897	816	13	2.926	277	4.929	843	843	1.755	96.333

AÑO	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	PAH
	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(g)	(kg)
1990	44.583	980	269	222	1.371	2.512	1.101	143	5.385	35	181
1991	46.204	1.021	279	233	1.410	2.592	1.141	146	5.588	36	185
1992	41.976	931	254	213	1.275	2.349	1.037	132	5.081	32	168
1993	43.850	984	266	227	1.311	2.430	1.085	136	5.324	33	172
1994	44.068	992	267	229	1.311	2.435	1.090	136	5.355	33	172
1995	27.483	573	163	124	903	1.613	675	95	3.276	23	120
1996	27.109	598	163	136	830	1.524	669	86	3.276	21	109
1997	14.514	257	83	47	564	948	352	61	1.667	15	77
1998	9.035	103	47	5	459	710	213	51	958	12	64
1999	14.774	169	78	9	751	1.160	349	83	1.566	20	106
2000	19.429	222	102	11	988	1.526	458	109	2.060	26	138
2001	19.363	221	101	11	984	1.521	457	109	2.053	26	138
2002	19.124	219	100	11	972	1.502	451	108	2.028	25	136
2003	17.761	203	93	10	903	1.395	419	100	1.883	23	127
2004	18.844	211	95	11	924	1.465	423	109	1.994	25	124
2005	18.218	204	91	10	871	1.413	403	110	1.920	24	119
2006	18.573	207	92	10	861	1.436	401	105	1.950	25	119
2007	19.757	217	95	11	890	1.519	411	111	2.069	26	119
2008	19.407	215	94	11	884	1.496	410	107	2.034	26	120
2009	15.428	177	80	9	742	1.205	353	82	1.624	20	110
2010	18.728	205	89	10	823	1.435	380	101	1.953	25	110
2011	18.916	210	93	10	865	1.458	401	99	1.979	25	119
2012	17.389	190	82	9	752	1.331	350	83	1.809	23	102
2013	19.575	214	92	11	847	1.499	395	71	2.036	26	115
2014	22.249	243	105	12	963	1.703	448	77	2.315	29	131
2015	26.778	293	126	14	1.159	2.050	540	86	2.786	35	158
2016	23.578	258	111	13	1.020	1.805	475	100	2.453	31	139

