Finding a regional balance between land pressures:

Timber/food versus bioenergy versus sequestration

Annette Freibauer, Hannes Böttcher, Yvonne Scholz, Vincent Gitz, Philippe Ciais, Detlef Schulze

Opportunities and boundaries

Outline

- Bioenergy
- Thuringian Case study
 - Agriculture (cropland)
 - Forestry
- · Generalisation

Which option is most climate-friendly?

- Sequestration
 - Mean residence time
 - Risks
 - Leakage (timber/energy)
 - Biodiversity, amenity
- Production
 - C stocks in forest and products
 - Mean residence time
 - By-products
 - Recycling
- Bioenergy
 - Substitution effectiveness

Climate effects of energy substitution

- Theory of "climate neutrality" of renewable energy
- Assumptions
 - Sustainable production
 - C stocks constant at large scales
 - Small GHG emissions and fossil fuel consumption during production

TRUE?

- Byproducts irrelevant or useful TRUE.

Bioenergy

- Substitution effectiveness = t fossil-C saved per t bioenergy-C
- Regional substitution effectiveness = proportional substitution of current fossil energy mix with modern technology
- Life cycle assessment
 - Reference unit: useable energy
 - Typical combinations of fossil energy carriers and energy conversion technology

Case study: Thuringia

Agriculture

- Plains
- Rich soils
- Forest
 - Low mountain ranges
 - Poor soils
- Afforestation of agricultural land is possible, but not cultivation of forests

Annette Freibauer

C stocks and fluxes

- C stocks
 - Biomass
 - Soil + Litter
 - Products
- C fluxes
 - C stock changes in biomass, soil + litter, products
 - Net CO₂ substitution effect of bioenergy

Boundary conditions

- Forest: high average C stocks = moderate C sink potential
- Cropland: low average C stocks = high C sink potential
- · Land management criteria
 - Do not deplete average (time/space) C stocks
 - Continued management without intensification
 - Systems with low risk of non-management disturbance

Cropland: Imagine a hectare of cereals...

- · Food only
- Food + straw
- Set-aside
 - Annuals
 - Poplar
 - Afforestation

Cropland management alternatives in Thuringia

System	Main product	Rotatio (years)
Triticum cropland, food	Food grains, straw remains on site	1
<i>Triticum</i> cropland, food + straw energy	Food grains, straw for energy	1
Populus set-aside, energy	100% wood for energy	3x5
Quercus afforestation of set-aside cropland	Timber (sawnwood, pulp, energy; 80% of sawnwood and pulp recycled for energy)	200

Annette Freibauer

Thuringia, 2000: Substitution effectiveness

t fossil-C saved per t bioenergy-C

Heat plant. natural gas	Combined heat and power plant. natural gas	Heat plant. light heating oil	Power plant. lignite	Regional substitution effectiveness in Thuringia
Winter wheat, whole crop	0.36	0.54	0.75	0.49
Winter wheat, straw	0.45	0.67	0.92	0.61
Scaling fraction	0.27	0.11	0.17	

Forestry: Imagine 1 hectare of land ...

- · Poor soil or slope
- Previously forest
- Unsuitable for crops

Land holder's decisions

- Continue timber production
- Switch to bioenergy
- Sequester carbon on-site
- What will pay off most?

Forest management alternatives in Thuringia

Annette Freibauer

Thuringia, 2000: Substitution effectiveness

t fossil-C saved per t bioenergy-C

ana sala Canada	Combined heat and power plant with natural gas	Heat plant with light heating oil	Power plant with lignite	Regional substitution effectiveness in Thuringia
Spruce wood for energy	0.44	0.63	0.87	0.57
Spruce, slash	0.45	0.65	0.89	0.61
Scaling fraction	0.27	0.11	0.17	

Does it pay off?

· Spruce forest

Services from a hectare of forest land

Conclusions of Thuringian Case Study

What if...

- · Climate is dry?
 - Fire risk: Use residues
 - Need for irrigation: High-value products
- · Land pressure is high?
 - Long product chains
- C sequestration produces leakage due to intensified production elsewhere at constant demand?

Conclusions

- Land and ecosystem productivity are more limited than human creativity to make effective use and recycle products
- Mitigation in the LULUCF sector cannot work effectively without considering indirect climate effects by substitution and leakage
- Effective product recycling can free land for new services, e.g. sequestration, without increasing land use intensity

