

Índice

- Proyecto ARTeMISat
- Evolución de la cobertura de nieve en el P. N. del Teide
- Evolución de la cobertura vegetal en el P. N. del Teide
- Cartografía de especies vegetales de en el P. N. del Teide
- Plataforma web de anotación

Análisis de Recursos Terrestre y Marinos mediante el procesado de Imágenes de Satélites de alta resolución (ARTeMISat)

Objetivos:

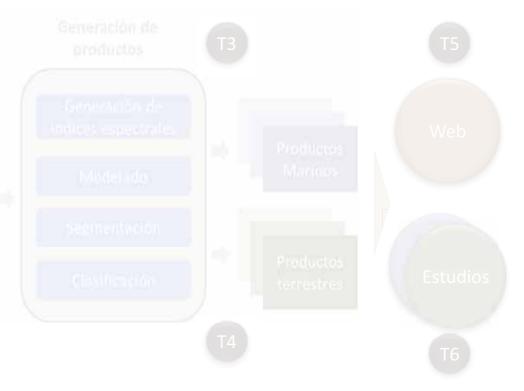
- Investigación: Desarrollo de <u>técnicas avanzadas de procesado de</u> <u>imágenes</u> usando <u>satélites de alta resolución</u> para la <u>conservación de</u> <u>zonas naturales marinos-costeras y terrestres</u>.
- Aplicación: Generación de <u>productos de alta y media resolución</u> que permitan <u>estudios sobre el estado de conservación</u> en cada zona.

Investigadores: ULPGC, UPM, UPC, US-UK, UC-Chile

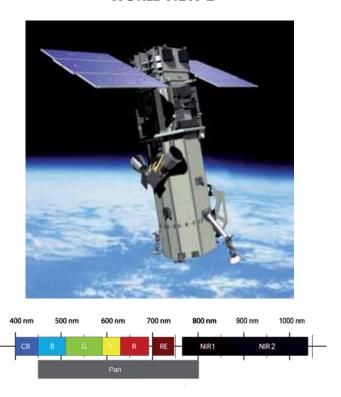
Colaboradores: Parque Nacional del Teide, INTA, Cabildo GC, IOCAG, IEO, etc.

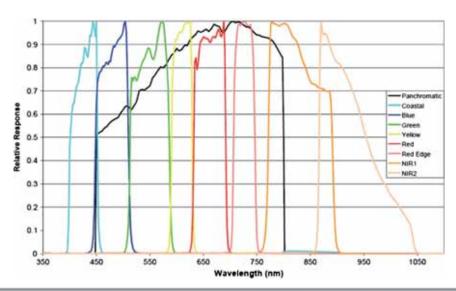
Duración: 2014 - 2016

Zonas de estudio



Tareas

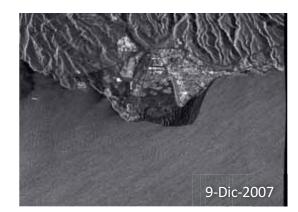




Satélites ópticos de alta resolución

WORLDVIEW-2

- 8 bandas multiespectrales y 1 Pan
- Resolución espacial: 0.5 m Pan, 2 m MS
- Resolución temporal: 1 4 días
- Ancho de exploración: 16,4 km
- Período orbital: 100 minutos
- Nuevas aplicaciones costeras de alta resolución



Satélites radar de alta resolución

TERRASAR-X

TerraSAR-X Image Products can be acquired in five main image modes with flexible resolutions (0.25m / 1m / 3m / 18.5m / 40m) and scene sizes. Thanks to different polarimetric combinations and processing levels the delivered imagery can be tailored specifically to meet the requirements of the application.

Staring SpotLight

High Resolution SpotLight

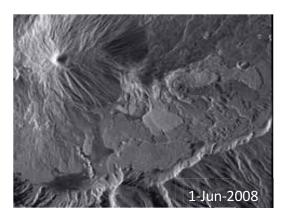
StripMap

ScanSAR

Wide ScanSAR

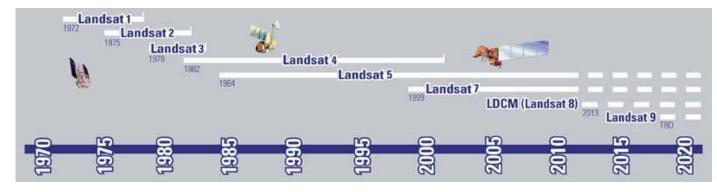
- · Up to 25cm resolution
- Scene size depending on incidence angle.

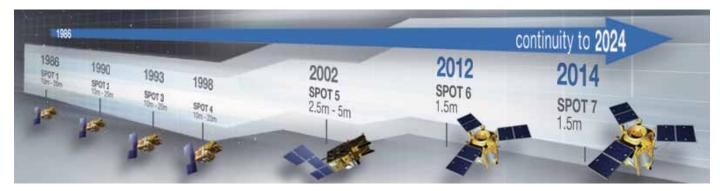
- Up to 1m resolution
- · Scene size 5 to 10km (width) x 5km (length)


- Up to 3m resolution
- Scene size 30km (width) x 50km (length*)

- Up to 18.5m resolution
- Scene size 100km (width) x 150km (length*)

- Up to 40m resolution
- · Scene size up to 270km (width) x 200km (length**)

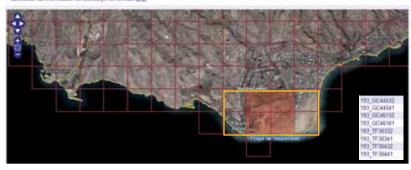




Satélites ópticos de media resolución

LANDSAT 5-7-8

SPOT



LIDAR

GRAFCAN - Gob. Canarias (2012 y 2014)

LIDAR (2012)

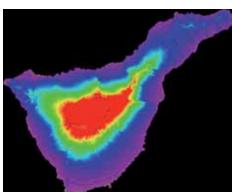
Voeto LICARI de Canarias con una densetad media planificade de 1,20 puntos por metro cuadrado y de 1,5 puntos por metro cuadrado en el tuedo. El syste cube voda la experticio de las silas. Las precisiones medias de los puntos registrados section emzono a 0,60 metros en planemetra y 1,20 metros en planemetra (a). Enfermocio es delitribujos en termos las (LE).

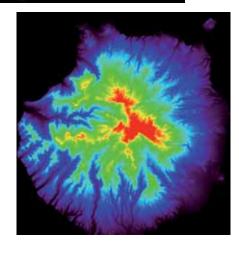
IGN - Min. Fomento

LIDAR. Modelo digital de superficies obtenido mediante sensores LIDAR

Densidad media de 0.5 ptos/m2, en una distribución de hojas de 2x2 km. Sistema geodésico de referencia ETRS89, en el Archipiélago Canario REGCAN95, compatible con ETRS89. Proyección UTM en el huso correspondiente. Las alturas son elipsoidales y los datos están sin clasificar.

PNOA 2009 Lette CAN-Ten 330-3124 ORT-CLA-COL	20/01/2013 19:24	LAZ Later Foint File:	44.115 RB
PNOA 2009 Liste CAN-Ten 130-3125 ORT-CLA-COL	20/01/2015 19:38	LAZ Laser Paint File	54,000 100
PNOA_2009_Lote_CAN-Ten_330-3128_ORT-CLA-COL	20/01/2015 1927	LAZ Later Point File	42,546.03
PNGA 2009 Lote CAN-Ten 336-3130_ORT-CLA-COL	20/01/2015 19:05	LAZ Laser Foort File	44-412 108
PNGA_2009_Lete_CAN-Ten_330-3132_ORT-CLA-COL	20/01/2015 19/09	LAZ Laver Print File	61.895 82
PNOA_2009_Lote_CANI-Ten_332-3130_ORT-CLA-COL	20/01/2015 19:40	LAZ Laver Point File	31.00EXX
PNOA_2009_Lute_CAN-Ten_332-3122_ORT-CLA-COL	20/01/2013 19/34	LAZ Laver Point File	45,403 103
FNOA 2009 Lote CAN-Ten 332-3134 ORT-CLA-COL	20/01/2015 19/25	LAZ Laser From File.	52.001.630
PNOA_2009_Lote_CAN-Ten_232-3125_ORT-CLA-COL	20/01/2015 19:36	LAZ Later Point File.	37 296 KB
PNOA_2009_Lote_CAN-Ten_332-3128_ORT-CLA-COL	26/01/2015 19:33	LAZ Laser Point File	23.301 KB
FINGA_2009_Liste_CAN-Ten_332-3130_ORT-CLA-COL	20/01/2015 19:14	LAZ Laves Point File	80 A46 KS
PNOA 2009 Lete_CAN-Ten_332-3132_ORT-CLA-COL	20/01/2015 19:57	LAZ Laser Point File	54.770 NB
PNOA 2009 Lote CAN-Ten 332-3134 ORT-CLA-COL	20/01/2015 18:56	LAZ Later Point File	41.71110
PNOA 2009 Little CAN-Ten 334-3120_ORT-CLA-COL	20/01/2015 19:26	LAZ Laser Point File	97,096 KB
FNOA_2009_Lote_CANS Ten_334-3122_ORT-CLA-COL	20/01/2015 19:39	LAZ Later Front File	46-011 100
PNOA_2009_Lote_CAN-Ten_234-3124_ORT-CLA-COL	20/01/2015 19.21	LAZ Leses Point File	12,375.92
FNOA 2000 Lute CAN-Ten 334-3125 ORT-CLA-COL	26/01/2015 19:33	LAZ Laser Front File	24301 KB
FNOA_2009_Lote_CAN-Ten_334-3129_ORT-CLA-COL	20/01/2015 19:34	LAZ Layer Frant File	30.74543
PNOA 2009 Lote CAN-Ten 334-3130 ORT-CLA-COL	20/01/2015 18:57	LAZ Laver Point File	40.421 (0)
PNOA_2009_Lote_CAN-Ton_334-3132_ORT-CLA-COL	20/01/2013 19:01	LAZ Level Point File	50,882 83
PNOA_2009_Liste_CAN-Ten_334-3134_ORT-CLA-COL	20/01/2015 19:10	LAZ Laser Front File.	34.679 83
PNOA_2009_Lote_CAN-Ten_334-3135_ORT-CLA-COL	20/01/2015 19:14	LAZ Laser Point File	41.525 (8)
PNOA_2009_Lote_CAN-Ten_336-3120_ORT-CLA-COL	26/01/2015 19:40	LAZ Laver Point File	74.130 KB
PNOA_2009_Lote_CANI-Ten_336-3122_ORT-CLA-COL	26/00/2015 19:27	LAZ Lever Point File	37,765 AB
₱ ₱900A_2009_Lote_CANS-Ten_236-3134_ORT-CLA-COL	20/01/2015 19:37	LAZ Laser Print File	35.111.10
PNOA_2009_Lote_CAN-Ten_336-3125_ORT-CLA-COL	20/01/2015 19:39	LAZ Lauer Prient Fife	40,295 KB
PNOA_2009_Liste_CAN-Ten_336-3128_ORT-CLA-COL	20/01/2013 19/21	LAZ Laser Foint File:	41.545 KB
PNOA_2009_Liste_CAN-Ten_336-3130_ORT-CLA-COL	20/01/2015 18:58	LAZ Later Print File	31.502.88
FNOA,2009, Lote, CAN-Ten, 336-3132, ORT-CLA-COL	20/01/2015 19:04	LAZ Laver Point File	36,412,103
PNOA_2009_Lote_CAN-Ten_336-3134_ORT-CLA-COL	20/01/2015 18:58	LAZ Later Point File	23,616.83
PNOA_2009_Lote_CAN-Ten_536-3136_ORT-CLA-COL	20/01/2015 19:00	LAZ Lines Froint File	39.123.63
PNOA_2009_Lote_CAN-Ten_338-3120_ORT-CLA-COL	20/01/2015 19:32	LAZ Laver Point File:	33.649.63
PNOA_2009_Lote_CAN4-Ten_338-3132_ORT-CLA-COL	20/01/2013 19:17	CAZ Later Fornt File	64,564 83
PNOA_2009_Late_CAN-Ten_336-3134_ORT-CLA-COL	20/01/2015 19/29	LAZ Lever Point File	27.055.88
W MANA MAN CAN THE SING OUT OF AN	20.00 (2005 10.00)	ARTS and Spine Str.	TO VILLER





Datos DEM

UTM en el huso correspondiente.

geodésico de referencia ETRS89, en el Archipiélago Canario REGCAN95, compatible con ETRS89. Proyección

Campaña de medida

Maspalomas (4 Junio 2015)

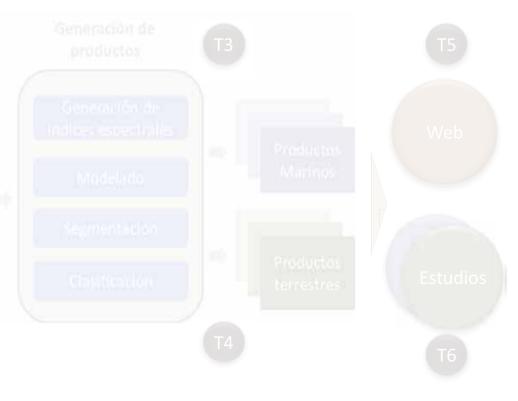
- Radiometría campo
- Calidad agua
- Batimetría
- Mapeo fondo marino



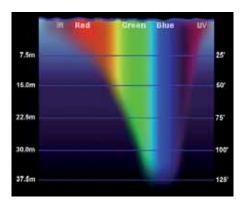
Teide (5 Junio 2015)

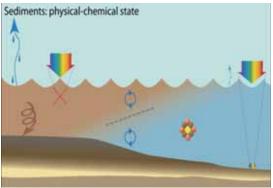
- Radiometría campo

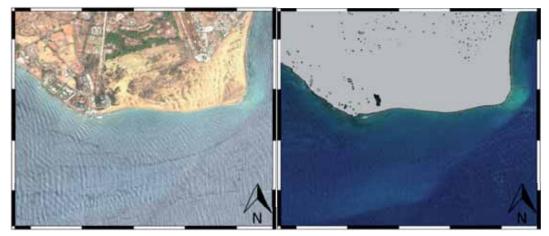
Campaña de medida



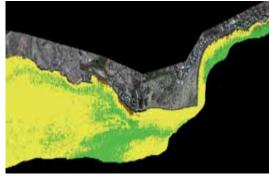
Tareas





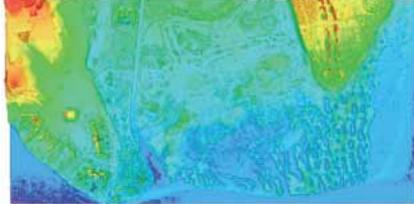


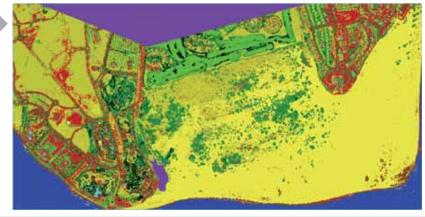
Productos Marinos



Clasificación béntica

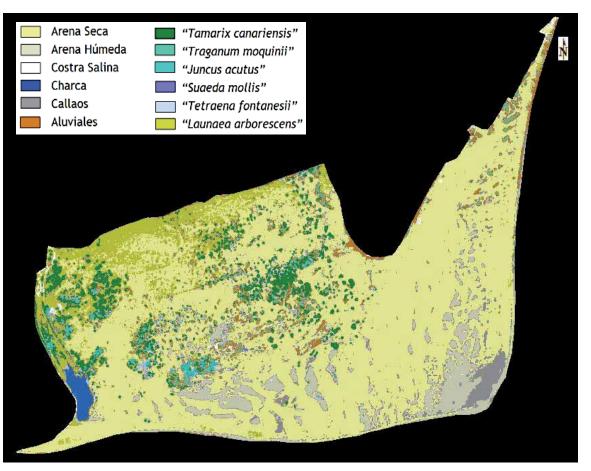
WORLDVIEW-2


Productos Terrestres


TERRASAR-X

LIDAR

Cartografía de Coberturas Terrestres

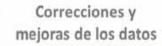


Productos Terrestres

fontanesii

Cyperus levigatus




Tareas

Generación de

Corrección radiométrica

Corrección atmosférica

Corrección topográfica

Corrección reflejo solar

Fusión (pansharpening)

Generación de índices espectrales

Modelado

Segmentación

Clasificación

T3

Productos
Marinos

Productos
terrestres

Estudios

Т6

Banda 1

Datos

auxiliares

http://www.artemisat.es/

ANÁLISIS DE RECURSOS TERRESTRE Y MARINOS MEDIANTE EL PROCESADO DE

DIFUSIÓN

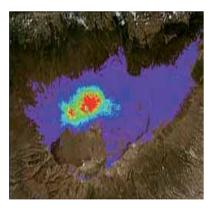
MULTIMEDIA

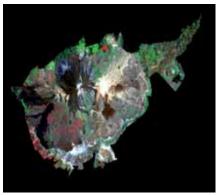
Hábitat dunar halófilo, de gran singularidad cuyo entorno se encuentra fuertemente antropizado, lo cual supone una seria amenaza para su supervivencia. Leer más »

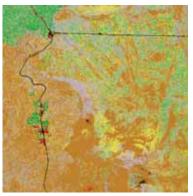
Ocupa la zona más alta de la isla de Tenerife, declarado en 1954 como Parque Nacional, es el mayor y más antiguo de los parques de Canarias y el tercero más antiguo de España.

Leer más »

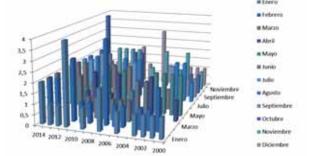
Pequeño islote situado en la isla de Fuerteventura. Alberga más de 130 especies vegetales. Sus fondos marinos son área de reserva submarina y contienen una gran riqueza Lear más »






Productos de teledetección para el Parque Nacional Teide

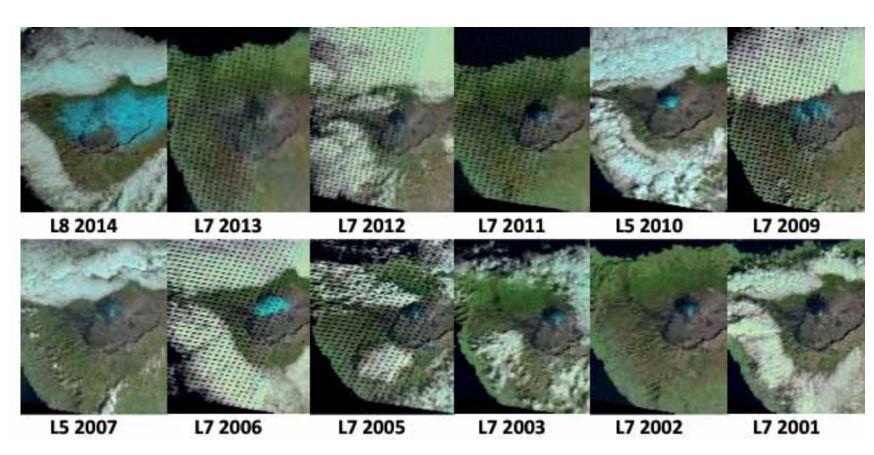
- Evolución de la cobertura de nieve (15 años, Landsat 30m)
- Evolución de la cobertura vegetal (30 años, Landsat 30m)
- Evolución de la cobertura vegetal zonas piloto (47 años, WV2 0.5 m)
- Cartografía de especies vegetales (año 2011, WV2 0.5m)



Análisis <u>cuantitativo</u> con datos Landsat

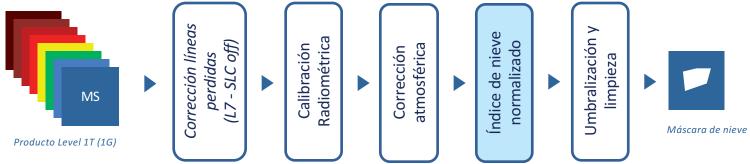
- Imágenes <u>Landsat (30 m)</u> disponibles donde la zona del Teide está despejada.
- Análisis final: <u>15 años</u> de imágenes (2000-2014)

	2014	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001	2000	1999	1984	Total
Enero	2	1	1	4		1		2		1		1	1	1	1			16
Febrero	2	2	1	3	1	1		4	1	1		1	1	2				20
Marzo	2	1		2	1	1	2	1	1	1	2	2						16
Abril	2			1	2		1	2		1		2	1		1			13
Mayo	2	1	1			2	1	2	1			2	2	2	2			18
Junio	2	2	1		2	2		2					1				1	13
Julio	2	2				1		2					2			1		10
Agosto	2	2	1			2		2					2	2	1			14
Septiembre	1	2	2	1		1							1	1	1			10
Octubre	2	4	1		1	2	2						1	1	1			15
Noviembre	1	1	2	2	2	2		1		2		1	2		1			17
Diciembre	1	1	1	1	1	2	1		3	1	1		1	1	1			16
Total	21	19	11	14	10	17	7	18	6	7	3	9	15	10	9	1	1	



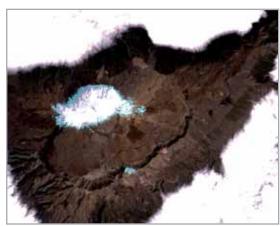
Análisis <u>cuantitativo</u> con datos Landsat

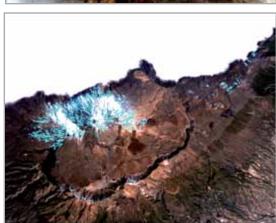
Landsat: Febrero 2001- 2014

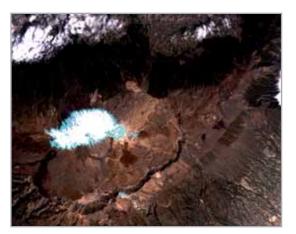


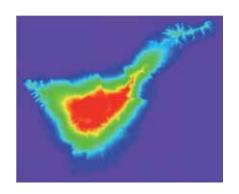
Análisis <u>cuantitativo</u> con datos Landsat

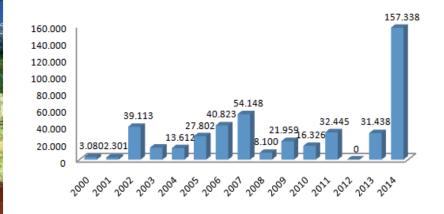
Protocolo de procesado de Nieve – Landsat




Análisis <u>cuantitativo</u> con datos Landsat


Protocolo de procesado Nieve – Landsat



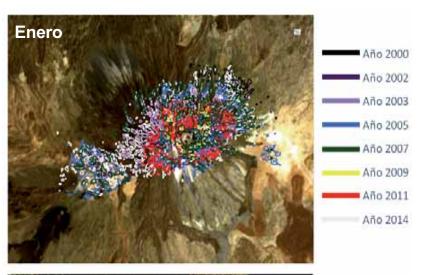


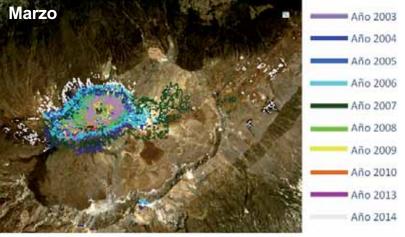
Análisis <u>cuantitativo</u> con datos Landsat

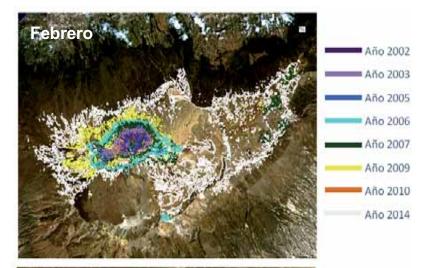
- Estimación de píxeles y superficie cubierta con nieve
- Cada pixel comprende 30x30 m sobre superficie plana.
- Estimar la superficie de nieve en una zona tan abrupta requiere de un Modelo Digital de Elevación del Terreno (MDT).

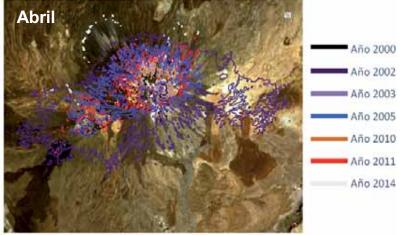
Sensor	Fecha	N° pixeles con nieve	Superficie con nieve en km²				
	05-Diciembre-2014	4.000	3,92				
	03-Noviembre-2014	0	0				
	27-Mayo-2014	0	0				
	11-Mayo-2014	0	0				
	25-Abril-2014	1.816	1,80				
	09-Abril-2014	982	0,98				
T 1 . 0	24-Marzo-2014	4.186	4,24				
Landsat 8	08-Marzo-2014	12.128	12,16				
	20-Febrero-2014	132.575	124,28				
	04-Febrero-2014	2.690	2,67				
	19-Enero-2014	2.994	2,96				
	03-Enero-2014	6.819	6,76				
	18-Diciembre-2013	24.676	24,37				
	24-Mayo-2013	0	0				

Superficie Total PNT: 189.9 km²

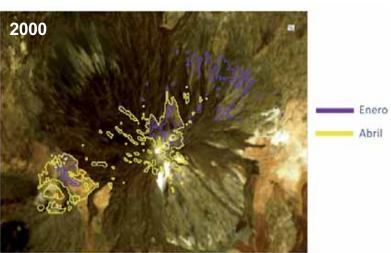


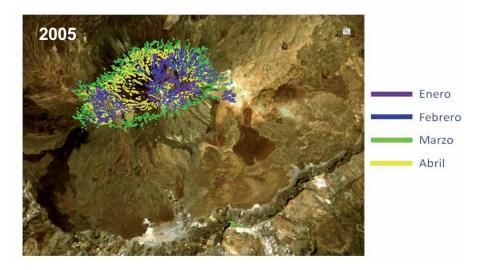


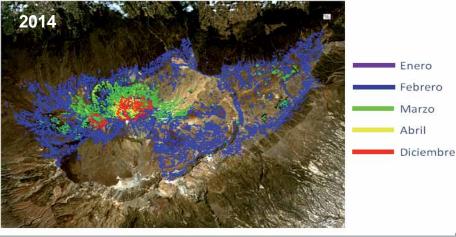




Análisis <u>cuantitativo</u> con datos Landsat







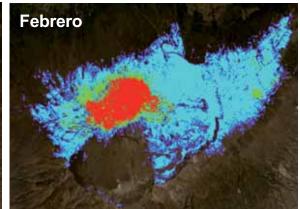
Análisis <u>cuantitativo</u> con datos Landsat

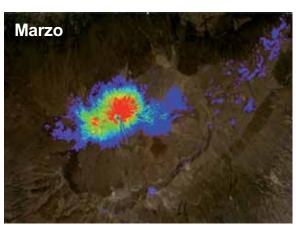
Febrero

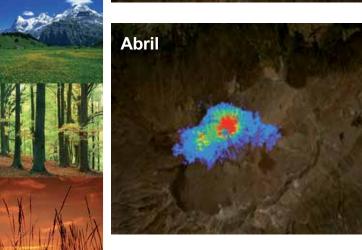
Marzo

Abril

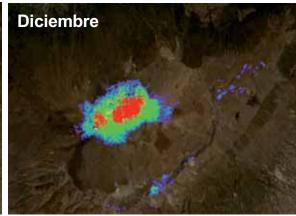
Diciembre

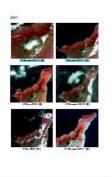


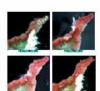


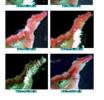

Análisis <u>cuantitativo</u> con datos Landsat

Mapas mensuales de persistencia espacial de nieve (2000-2014)

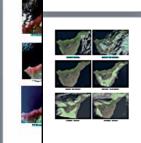


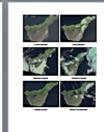


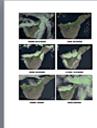


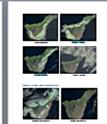


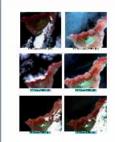
Análisis visual con datos Landsat y SPOT

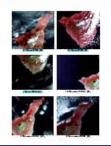

- Análisis visual de la cobertura nival de las imágenes (242 Landsat + 64 SPOT)
 - Landsat y SPOT
 - Incluye 2015 y 2016

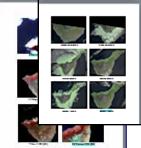


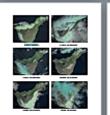


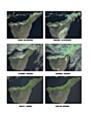


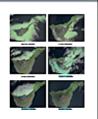





子分



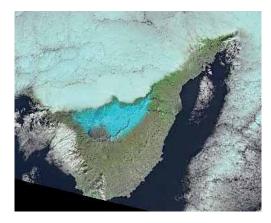




Análisis visual con datos Landsat y SPOT

Análisis visual de la cobertura nival de las imágenes (242 Landsat + 64 SPOT)

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1984												
1987												
1988												
1989												
1990												
1991												
1994												
1995												
1996												
1997												
1998												
2000												
2001												
2002												
2003												
2004												
2005												
2006												
2007												
2008												
2009												
2010												
2011												
2012												
2013												
2014												
2015												
2016												

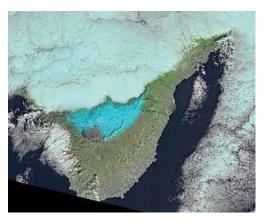

Compromiso resolución espacial-temporal

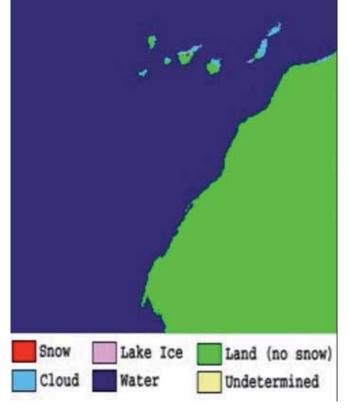
• Limitación Landsat/SPOT: resolución temporal mensual (bien en grandes nevadas)


10 Febrero 2016

26 Febrero 2016

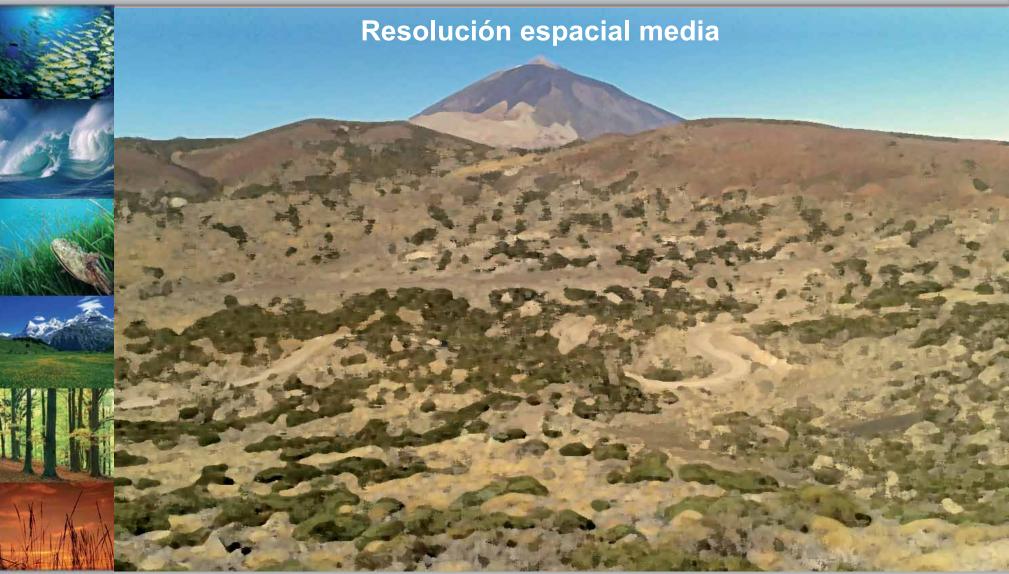
13 marzo 2016

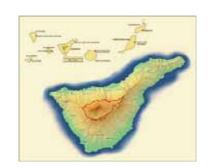


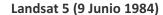

Compromiso resolución espacial-temporal

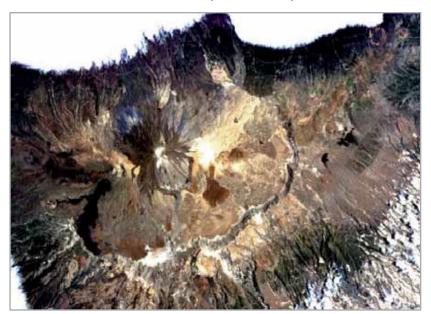
• MODIS: buena resolución temporal pero mala espacial (500 m)

26 Febrero 2016

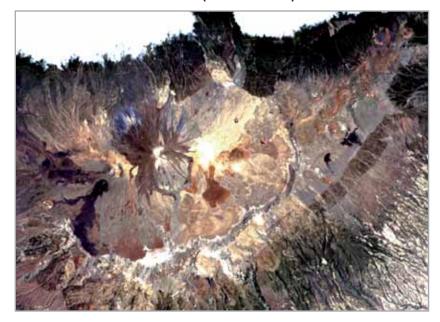






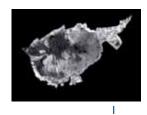


Análisis con datos Landsat


- Evolución vegetal tras **30 años** a media resolución (Landsat 30 m).
- 2 imágenes Landsat del mismo mes.
- <u>Limitaciones</u>: resolución espacial, tamaño y distribución vegetal PNT.

Landsat 8 (12 Junio 2014)

Análisis con datos Landsat


• Metodología de procesado

9 Junio 1984

12 Junio 2014

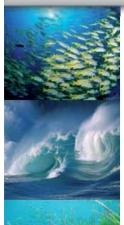
Corrección atmosférica

Calibración Radiométrica

enmascaramiento

Recorte +

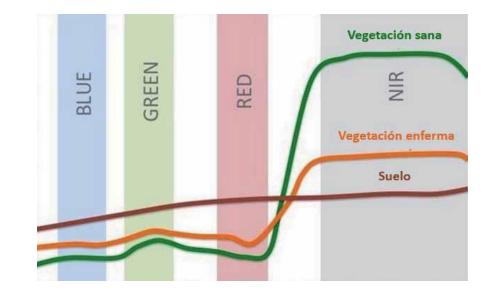
Generación del índice de vegetación



Análisis con datos Worldview-2

• Índices de vegetación analizados

NDVI


$$NDVI = \frac{NIR - RED}{NIR + RED}$$

-1 < NDVI < 1

ARVI

$$ARVI = \frac{NIR - 2*(RED) - BLUE}{NIR + 2*(RED) - BLUE}$$

-1 < ARVI < 1

EVI

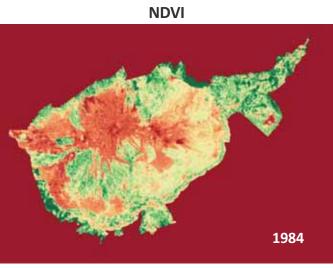
$$EVI = 2.5 * \frac{NIR - RED}{NIR + 6 * RED - 7.5 * BLUE + 1}$$

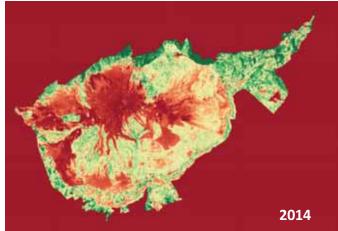
-1 < EVI < 1

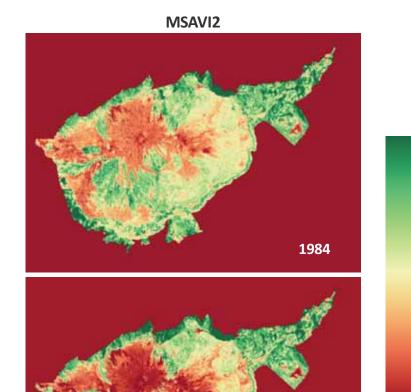
MSAVI-2

$$MSAVI - 2 = \frac{(2*NIR + 1 - \sqrt{(2*NIR + 1)^2 - 8*(NIR - RED)})}{2}$$

-1 < MSAVI-2 < 1

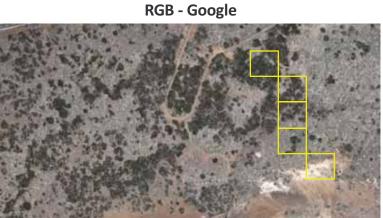


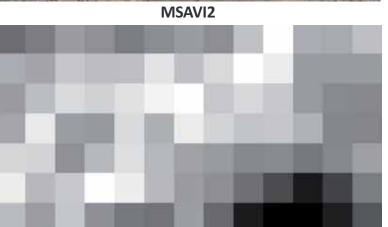

max

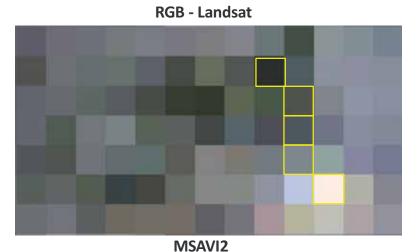

min

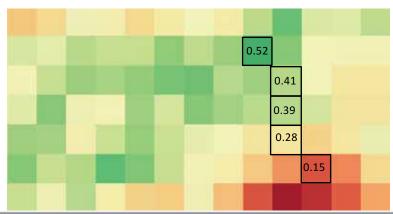
Análisis con datos Landsat

2014

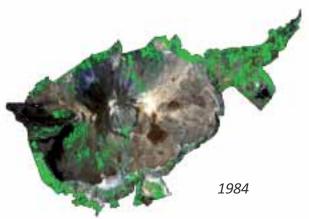


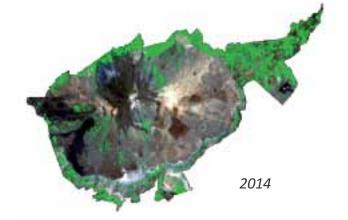





Análisis con datos Landsat

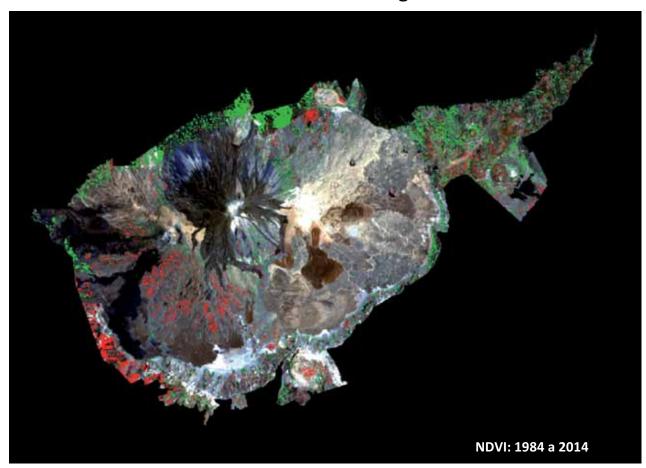
• <u>Problema resolución</u>: Selección del umbral (veg/no veg) → variación de la superficie vegetal (aunque la diferencia entre las 2 fechas correcta)





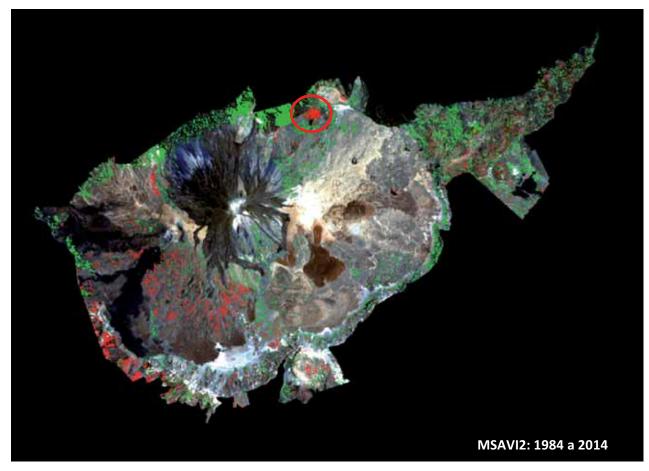
Análisis con datos Landsat

MSAVI2



Análisis con datos Landsat

• Mapa de cambios en 30 años: diferencia entre vegetación tras umbralizar IV 1984 y 2014



Análisis con datos Landsat

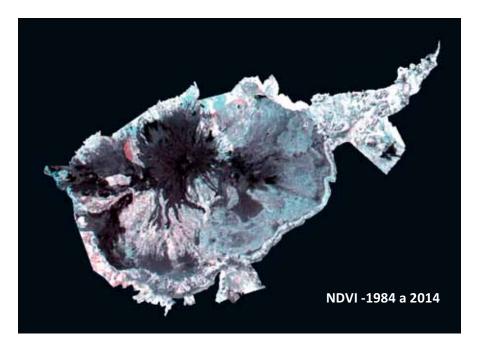
• Mapa de cambios en 30 años: diferencia entre vegetación tras umbralizar IV 1984 y 2014

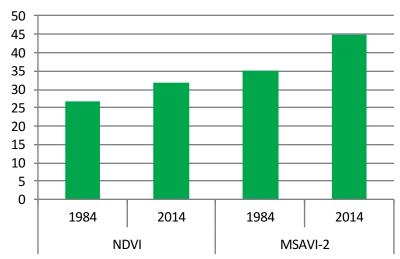
Análisis con datos Landsat

Incendio 2007

Ortofoto - 1998

Ortofoto - 2015





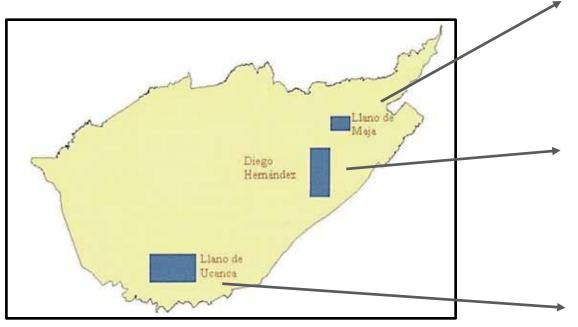
Análisis con datos Landsat

• Mapa de cambios en 30 años: diferencia entre índices de vegetación 1984 y 2014

Superficie vegetal (km²)

R: NDVI 1984 G: NDVI 2014 B: NDVI 2014

Aumento neto de la vegetación tras 30 años. Promediando ambos índices se obtiene un aumento de 7.5 km² entre 1984 y 2014.



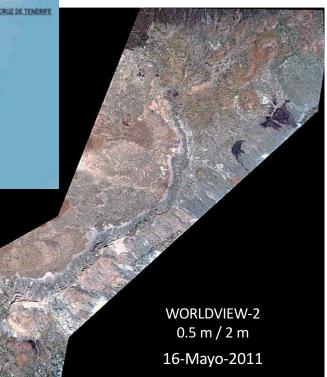
Análisis con datos Worldview-2

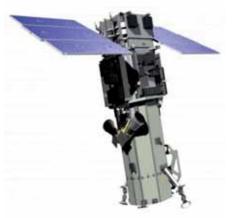
- 3 zonas de estudio en el P. N. del Teide
- Ortofotos aéreas de 1964 1985 1996

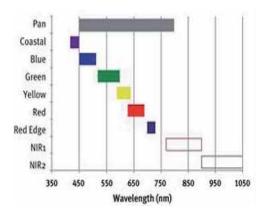
Llano de Maja

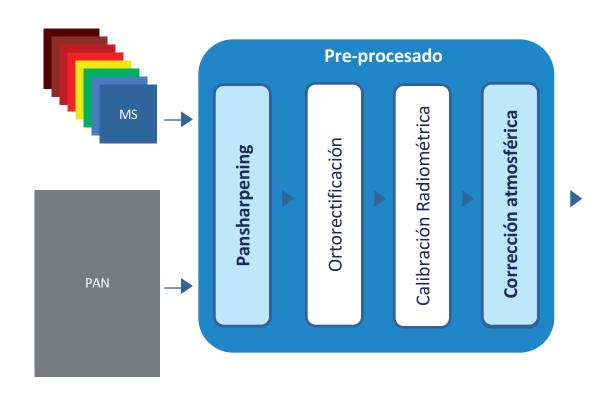
Diego Hernández

Llano de Ucanca



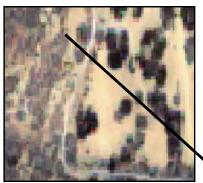


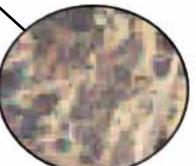




Análisis con datos Worldview-2

Metodología de procesado




Análisis con datos Worldview-2

Pansharpening

- Mejorar la calidad espacial sin degradar la calidad espectral a partir de la información de la banda PAN.
- Método de fusión → Gram-Schmidt.

MS 2 m

MS fusionada 0.5 m

Análisis con datos Worldview-2

Corrección atmosférica

• Algoritmos basados en la imagen.

Utilización de datos propios de la escena

Analizados: DOS y QUAC.

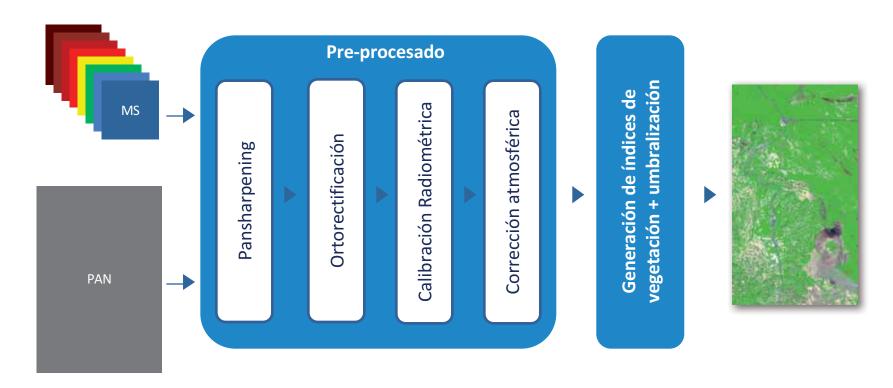
Definen o modelan:

- Ángulos cenitales y acimutales solares y de sensor.
- Componentes atmosféricos .
- Parten de ecuación:

Analizados: FLAASH, ATCOR y 6S.

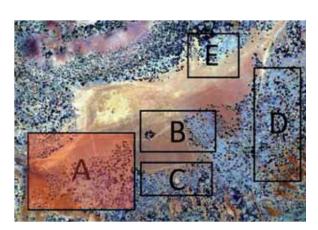
$$_{TOA} = _{O} + \frac{_{i} \left(_{o_{dir}} _{o_{dir}} + _{o_{dir}} _{e} \right)}{(1 - _{o}S)}$$

$$\sup_{\text{sup}} = \frac{d^2 \frac{L_{TOA} L_0}{C}}{E_{TOA} \cos_{i} + E_d}; \quad = e^{\frac{k_{oz} k_a k_r}{\cos_i}} \text{ y } \quad = e^{\frac{k_{oz} k_a k_r}{\cos_o}}$$



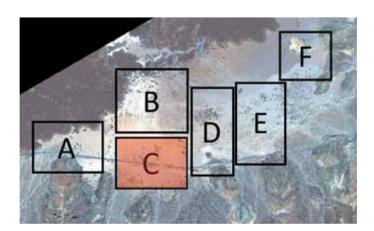
Análisis con datos Worldview-2

• Metodología de procesado



Análisis con datos Worldview-2

Estudio de la dinámica vegetal en un periodo de 47 años:


- Imágenes aéreas tomadas en tres años diferentes: 1964, 1985 y 1996.
- Imagen de satélite 2011 (Worldview-2) MSAVI 2

Llano de Maja

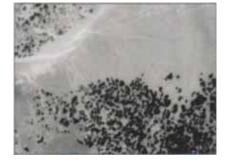
Diego Hernández

Llano de Ucanca

Análisis con datos Worldview-2

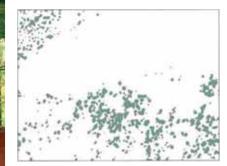
Llano de Maja – Muestra territorial A

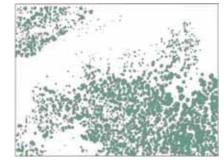
1964


1985

1996

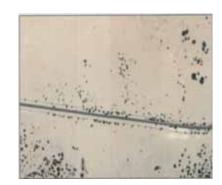
2011



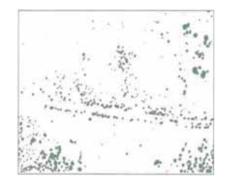


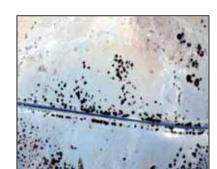
Análisis con datos Worldview-2

Llano de Ucanca – Muestra territorial C



1964

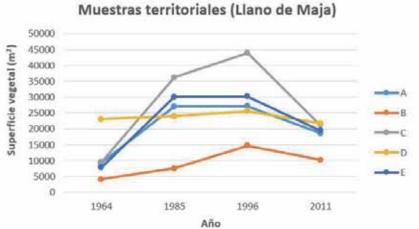


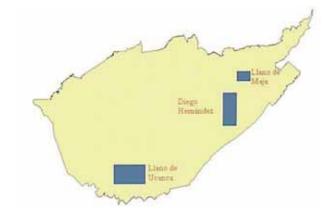

1985



1996

2011







Análisis con datos Worldview-2

Clasificación de especies vegetales

Objetivo

Obtener la cartografía más precisa posible de las especies vegetales presentes en el área de estudio

Evaluación de los resultados

- Numérica
- Visual
- Validación gestores del PNT

Clasificación de especies vegetales

Clases del Parque Nacional Teide

• Arbustos: - Retama

- Rosalillo de cumbre

- Hierba pajonera

• Árboles: - Pinos

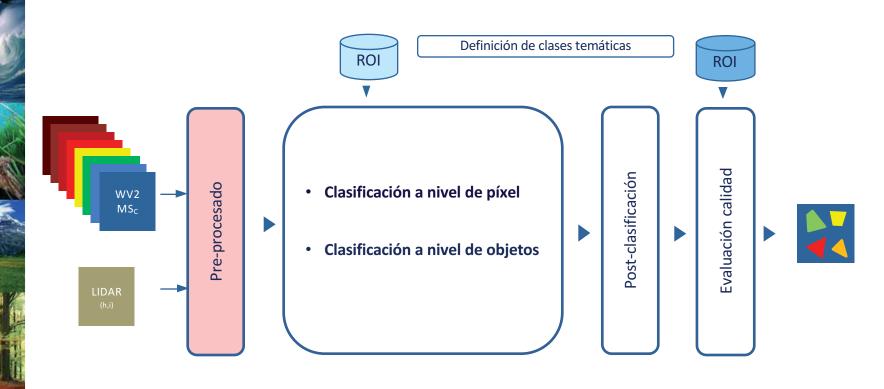
• Otros: - Suelo desnudo

- Carreteras

- Construcciones

- Nubes

- Sombras, bordes, etc.

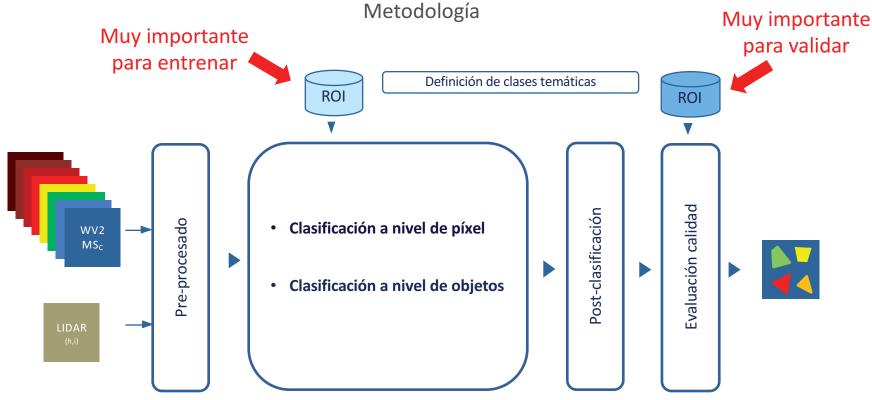


Clasificación de especies vegetales

Metodología

Clasificación de especies vegetales

Fusión



Clasificación de especies vegetales

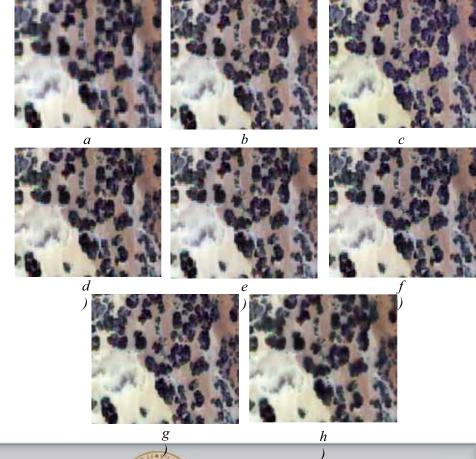
Clasificación de especies vegetales

Muchas soluciones posibles

ALGORITMOS DE PANSHARPENING

Gram – Schmidt.

Fast Intensity Hue Saturation.


Hyperspherical Color Sharpening.

Modulation Transfer Function - Generalized Laplacian Pyramid.

Modulation Transfer Function -Generalized Laplacian Pyramid - High Pass Modulation non-matching within PAN and MS bands.

Wavelet 'à trous'.

Weighted Wavelet 'à trous' through Fractal Dimension Maps

Clasificación de especies vegetales

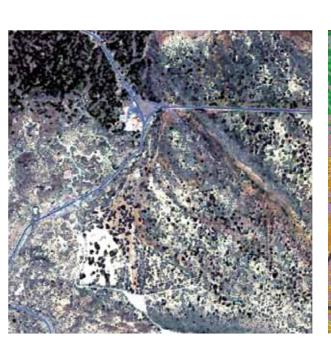
Muchas soluciones posibles

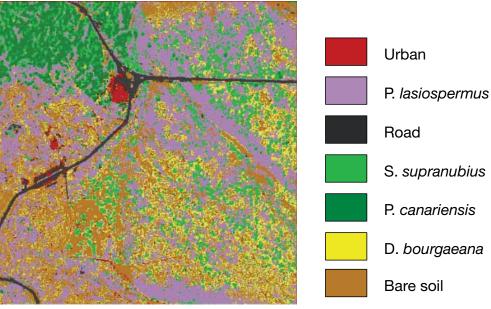
PARADIGMAS DE PROCESADO DE IMÁGENES		ALGORITMOS DE CLASIFICACIÓN	ENVI Get the reference or visa Name from Singers				
	Basado en píxeles	Maximum Likelihood	≥ ENVI				
		Mahalanobis distance					
		K-nearest neighbourhood	eCognition	SOFTWARE			
		Support Vector Machine					
	Basado en objetos	Bayes	eCognition®	REBLE			
		Nearest neighbourhood	-				
		K-nearest neighbourhood					
		Support Vector Machine	Desarrollos propios				
		Deep Learning	FF				

Clasificación de especies vegetales

Resultados de la clasificación basada en píxeles

Classification techniques	Maximum L	ikelihood	Mahalanobis	Distance	Support Vector Machine		
Pansharpening Algorithms	Overall Accuracy	Kappa	Overall Accuracy	Kappa	Overall Accuracy	Kappa	
MS	85.06%	0.79	72.89%	0.64	89.60%	0.85	
GS	82.73%	0.76	74.28%	0.65	88.45%	0.85	
FIHS	83.71%	0.77	76.14%	0.67	88.83%	0.84	
HCS	82.99%	0.76	74.33%	0.65	88.90%	0.84	
MTF_GLP	85.36%	0.8	74.87%	0.66	88.51%	0.83	
MTF_GLP_HPM	82.78%	0.76	73.68%	0.64	88.64%	0.83	
WAVE_ATROUS	88.74%	0.84	80.79%	0.73	92.15%	0.89	
WAT⊗FRAC	89.12%	0.85	80.41%	0.73	92.75%	0.89	

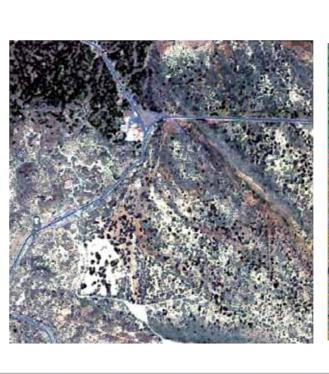


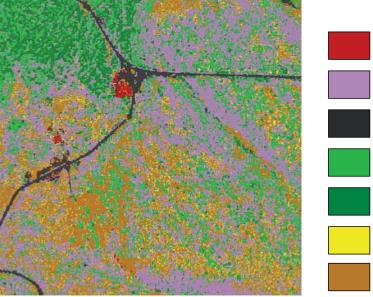

Clasificación de especies vegetales

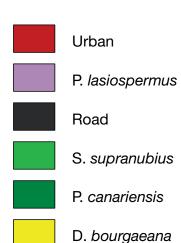
Resultados de la clasificación basada en píxeles

Pansharpening: WAT ⊗ FRAC

Clasificación: Maximum Likelihood \rightarrow OA=89.12% K=0.85




Clasificación de especies vegetales

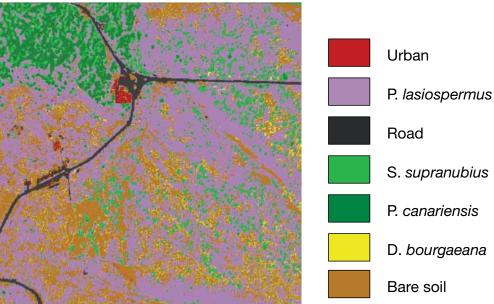

Resultados de la clasificación basada en píxeles

Pansharpening: WAVE_ATROUS

Clasificación: Mahalanobis distance → OA=80.79% K=0.83

Bare soil




Clasificación de especies vegetales

Resultados de la clasificación basada en píxeles

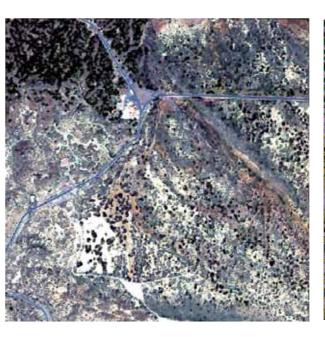
Pansharpening: WAT ⊗FRAC

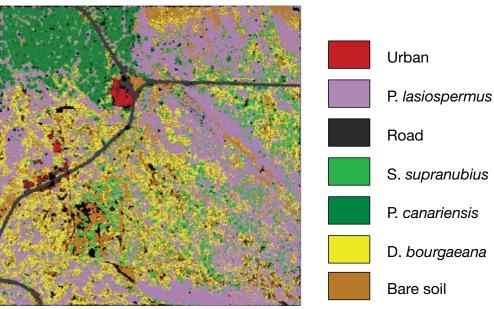
Clasificación: SVM \rightarrow OA=92.75% K=0.89

Clasificación de especies vegetales

Resultados de la clasificación basada en objetos

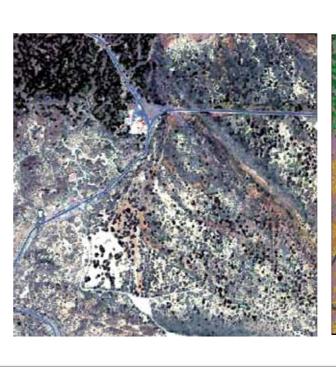
Classification techniques	Example Based		Bayes		NN		KNN		Support Vector Machine		Deep Learning	
Pansharpening Algorithms	OA (%)	Kappa	OA (%)	Kappa	OA (%)	Kappa	OA (%)	Kappa	OA (%)	Kappa	OA (%)	Kappa
MS	75.44	0.67	79.48	0.71	77.58	0.67	77.67	0.67	80.61	0.72	-	-
GS	81.85	0.75	77.80	0.69	77.93	0.68	81.50	0.73	82.41	0.74	-	-
FIHS	80.79	0.74	81.92	0.74	79.25	0.70	82.77	0.75	83.72	0.76	-	-
HCS	79.67	0.73	78.27	0.70	79.10	0.70	82.30	0.74	82.72	0.74	-	-
MTF_GLP	80.88	0.74	75.12	0.66	76.37	0.66	81.16	0.73	83.14	0.75	-	-
MTF_GLP_HPM	80.76	0.74	78.27	0.70	77.92	0.68	82.55	0.74	83.18	0.75	-	-
WAVE_ATROUS	81.13	0.74	86.04	0.80	82.84	0.75	85.22	0.78	87.68	0.82	-	-
WAT Ø FRAC	74.90	0.69	89.14	0.84	84.07	0.77	88.54	0.83	89.39	0.85	94.60	0.92

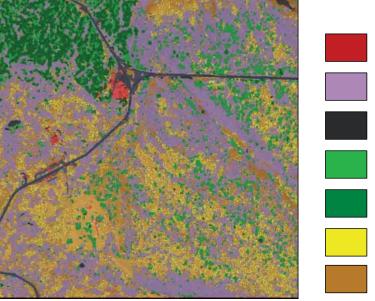

Clasificación de especies vegetales


Resultados de la clasificación basada en objetos

Pansharpening: GS

Clasificación: Basado en ejemplos \rightarrow OA=81.85% K=0.75




Clasificación de especies vegetales

Resultados de la clasificación basada en objetos

Pansharpening: WAT⊗FRAC

Clasificación: Bayes \rightarrow OA=89.14% K=0.84

Urban

Road

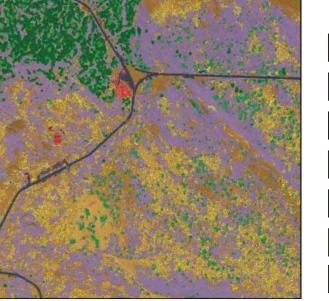
P. lasiospermus

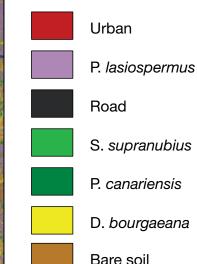
S. supranubius

P. canariensis

D. bourgaeana

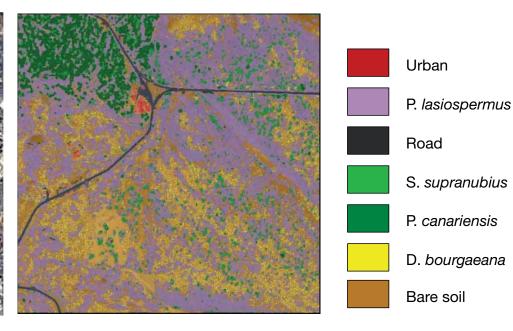
Bare soil


Clasificación de especies vegetales


Resultados de la clasificación basada en objetos

Pansharpening: WAT⊗FRAC

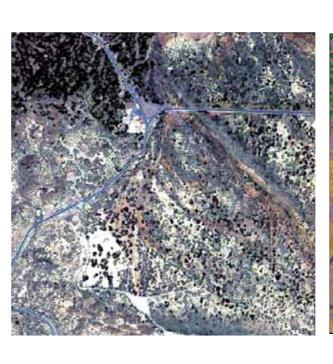
Clasificación: Nearest Neigborhood → OA=84.07% K=0.77

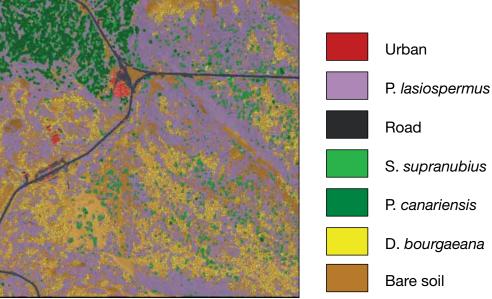

Clasificación de especies vegetales

Resultados de la clasificación basada en objetos

Pansharpening: WAT⊗FRAC

Clasificación: K-Nearest Neigborhood → OA=88.54% K=0.83




Clasificación de especies vegetales

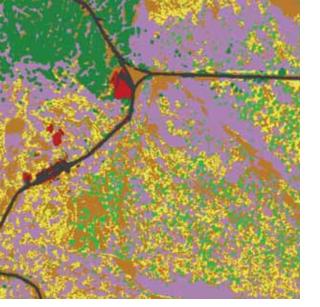
Resultados de la clasificación basada en objetos

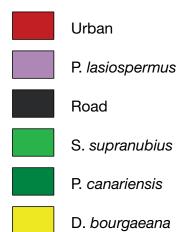
Pansharpening: WAT⊗FRAC

Clasificación: SVM \rightarrow OA=89.39% K=0.85

Cartografía de especies vegetales en el Teide

Clasificación de especies vegetales


Resultados de la clasificación basada en objetos


Pansharpening: WAT⊗FRAC

Clasificación: Deep Learning → OA=94.60% K=0.92

Cartografía de especies vegetales en el Teide

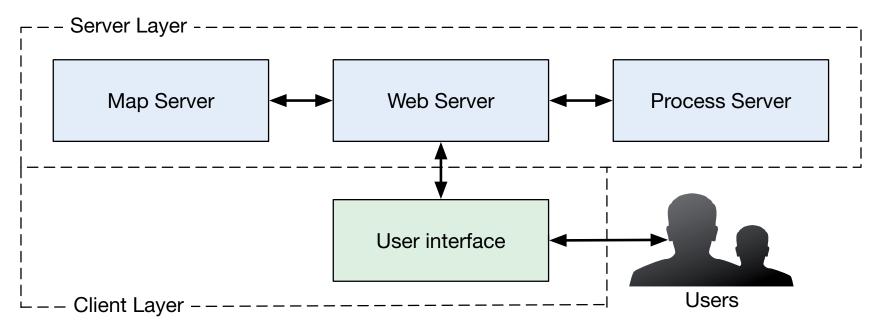
Clasificación de especies vegetales

Conclusiones

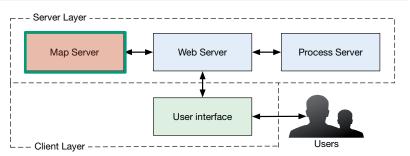
- El ecosistema objeto de estudio presenta una complejidad alta, dificultando la discriminación de las diferentes cubiertas vegetales presentes
- La aproximación basada en objetos reduce en general los tiempos de cómputo y de forma notable en el caso del algoritmo SVM
- De las clasificaciones realizadas con productos comerciales la de mayor precisión corresponde a la imagen fusionada con WAT⊗FRAC y clasificada con SVM basado en objetos →OA=89.39% y K=0.85
- Las técnicas de Deep Learning mejoran notablemente las clasificaciones obtenidas con software comercial → OA=94.60% y K=0.92
- Deep Learning requiere de GRANDES bases de datos anotados

Índice

- Proyecto ARTeMISat
- Evolución de la cobertura de nieve en el P. N. del Teide
- Evolución de la cobertura vegetal en el P. N. del Teide
- Cartografía de especies vegetales de en el P. N. del Teide
- Plataforma web de anotación



Arquitectura

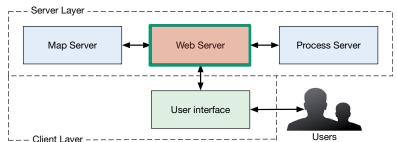


Server layer: Map server

Este módulo contiene las imágenes fuente (raster) y los datos vectoriales

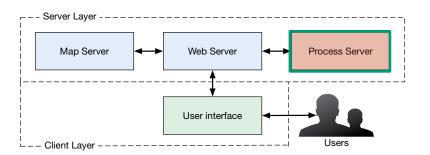
Rendering raster and vector data

Almacenamiento de los datos estructurados y de los datos vectoriales



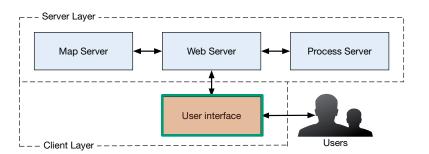
Server layer: Web server

Este módulo alojalos códigos fuente y regula el tráfico entrante y las demandas de los usuarios



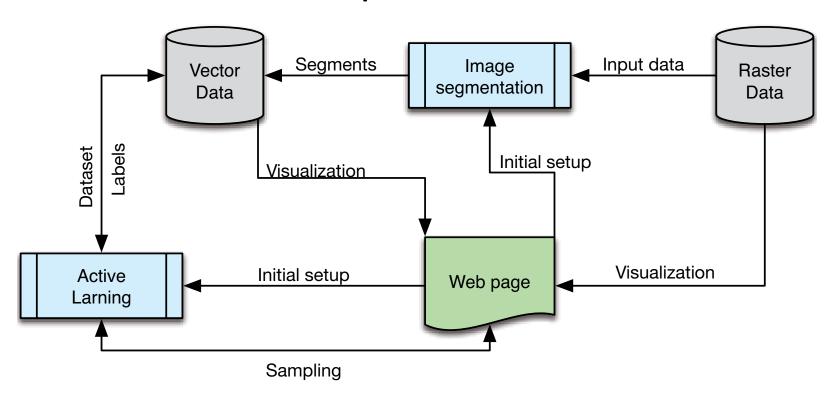
Server layer: Process server

- Las tareas principales de este módulo son la segmenatcióny clasificación de las imágenes
- Las solicitudes de los usuarios recibidas por el Web Server son reenviadas a este módulo

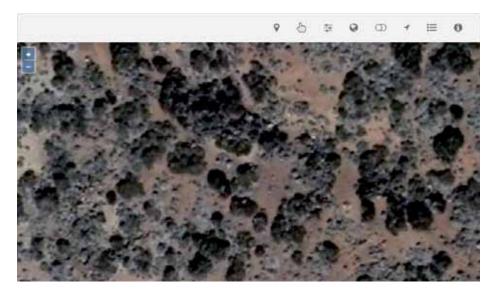


Client layer: Process server

- Este módulo define las interacciones entre los usuarios y la plataforma a través de un navegador de Internet
- La interfaz de usuario es una página web implementada mediante tecnologías AJAX y Javascript

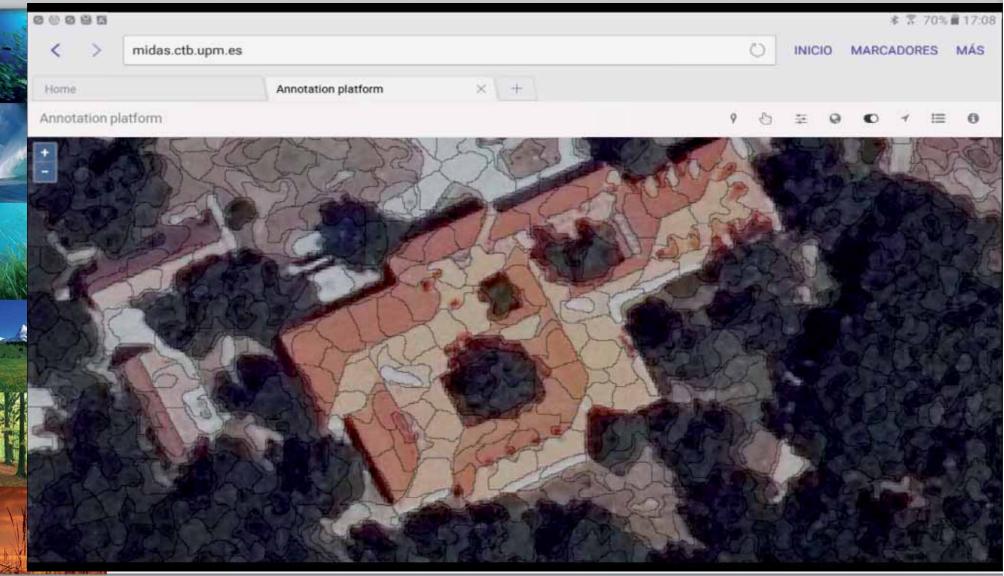


Estructura de la plataforma



Funcionalidades de la interfaz de usuario

- Es configurable a través de una interfaz de administración
- Selección de diferentes composiciones en color
- Localización de un punto a partir de sus coordenadas geográficas
- Mostrar y ocultar los límites de los segmentos
- Etiquetado de uno o más segmentos simultaneamente
- Zoom



App para dispositivos móviles: offline

- Selección de diferentes composiciones en color
- Localización de un punto a partir de sus coordenadas geográficas
- Mostrar y ocultar los límites de los segmentos
- Etiquetado de uno o más segmentos simultaneamente
- Zoom
- Sincronizable con la plataforma web

