PROYECTO DE CONCESIÓN DEL FONDEADERO DE MARINA DE FORNELLS EN LA BAHÍA DE FORNELLS. MENORCA (ISLAS BALEARES)

PROYECTO DE CONCESIÓN DEL FONDEADERO DE MARINA DE FORNELLS EN LA BAHÍA DE FORNELLS. MENORCA (ISLAS BALEARES)

TABLA DE CONTENIDO

1. MEMORIA
2. ANEJOS
3. PLANOS
4. PLIEGO DE PRESCRIPCIONES TÉCNICAS
5. PRESUPUESTO

\pm

\min

MEMORIA

MEMORIA

ÍNDICE

1. Consideraciones ambientales y justificación del proyecto
2
2
2. Concepción de las actuaciones.
3. Concepción de las actuaciones.
5
5
4. Batimetria
5. Batimetria
6
6
6. Clima Marítimo
7. Clima Marítimo
6
6
8. Propagación de oleaje.
7
7
9. Diseño del campo de boyas
7
7
10. Cálculos.
11. Cálculos.
8
8
12. Operatividad
13. Operatividad 8
14. Oferta de amarres
9
15. Seguridad y Salud.
9
16. Planos.
10
17. Pliego de Prescripciones Técnicas Particulares. 10
18. Presupuesto. 11

MEMORIA

1. Consideraciones ambientales y justificación del proyecto.

La bahía de Fornells constituye un enclave privilegiado en el sistema portuario de la isla de Menorca. La bahía ofrece un abrigo único en la fachada maritima Norte de la Isla, amenazada únicamente por la tramontana.

Menorca es uno de los principales destinos turísticos de la navegación de recreo, ganando de año en año nuevos adeptos, todo ello en el contexto de que España es el tercer país del mundo más importante como destino turístico.

La isla de Menorca destaca en el ámbito del turismo litoral, dentro de las Islas Baleares, por varias razones muy justificadas, entre las que deben citarse condiciones naturales, clima, orientación, agua mediterránea, condiciones sociales y culturales.

Es bien sabido que la costa, espacio de transición entre los ámbitos terrestre y marítimo, de características bien diferentes, es un ámbito muy variable por su propia naturaleza y además ciertos tramos, dada la presión antrópica, (a la que están sometidos por la ley económica básica de los países de economía de mercado de la oferta y la demanda) de creciente valor económico y financiero.

Es por ello que siendo razonable ocuparse con especial atención de un espacio tan frágil como resulta ser la costa en general, lo es aún más en aquellos tramos que han adquirido un mayor valor como es el caso de Fornells.

La bahía de Fornells posee otra característica que la hace especial, y es su particular ecosistema y la riqueza de su fauna marina, constituyendo un enclave privilegiado en el ecosistema balear. Se caracteriza por su buen estado
de conservación y por un elevado atractivo paisajístico y naturalistico, y esto es válido también para sus fondos, que presentan una gran heterogeneidad y variedad de hábitats

Merece la pena destacar que esta zona de la isla de menorca es la mayor de las tres zonas costeras de las Islas Baleares consideradas reserva marina. Se trata de una amplia bahía de alto valor ecológico con carácter de reserva integral.

La reserva marina del norte de Menorca incluye las aguas interiores comprendidas entre el cap Gros, la isla de los Porros y la punta des Morter. En ella se distinguen tres áreas con diferente nivel de protección: el área A o de reserva integral, el área B donde se podrá autorizar solamente la pesca profesional, y el área C o de amortiguamiento de impactos. Asi mismo, existe una zona de veda temporal para la pesca recreativa. Desde su establecimiento, se ha producido una notable recuperación de la vida marina en la zona

La amplia bahia de Fornells, de fondos predominantemente blandos, presenta unas características ecológicas particulares, con importante presencia de comunidades formadas por las fanerógamas marinas "Cymodocea nodosa" y "Zostera nolti", así como de algas con sistemas rizoidales de fijación como "Caulerpa prolifera", "Flabellia petiolata" y "Halimeda tuna". Una parte de esta bahía fue gravemente degradada por las jaulas flotantes para el engorde de peces que se instalaron en sus aguas a finales de los años 80, y su inclusión dentro de la reserva ha permitido su regeneración natural.

El ámbito litoral, frontera entre los ámbitos terrestre y maritimo es utilizado, tanto por los usuarios del espacio terrestre, bañistas, como por los de ámbito marítimo: navegantes deportivos, buceadores y pescadores. Se encuentran autorizados el buceo, según en qué zonas, y el fondeo de embarcaciones de recreo, siempre que se eviten los campos de posidonia. La pesca profesional está autorizada y regulada para aquellos profesionales adscritos a la cofradía de pescadores de Fornells.

En condiciones de uso limitado por parte de unos y de otros, como ocurre en la mayor parte de las costas del planeta la mayor parte del tiempo, las condiciones naturales permiten el esporádico uso compartido del frágil espacio litoral por todos los escasos usuarios potenciales, siendo necesaria una mayor regulación, y ejecución de infraestructuras.

Actualmente se da una avalancha de embarcaciones que fondean de manera libre e incontrolada en la bahía de Fornells, en época estival, incluso en la zona de la reserva, con el consiguiente daño medioambiental y caos organizativo.

A tal efecto existen actualmente unos pantalanes flotantes de temporada, con autorización provisional por parte de la Dirección General de Costas. No obstante estos pantalanes no son capaces de dar respuesta a la gran demanda existente de atraques, y muestra de ello es la gran lista de espera que tiene el puerto deportivo de Fornells.

Asi el tramo litoral de Bahía de Fornells puede encuadrarse dentro de las calificaciones anteriores.

En la actualidad se produce un fondeo masivo, no regulado ni balizado, de embarcaciones en la bahía de Fornells, tanto de vecinos del municipio como de embarcaciones charter de turistas que recalan o se refugian en la bahía, dadas las excepcionales condiciones de abrigo de la misma. Estos fondeos se producen principalmente en época estival y con buen tiempo, no obstante la escasez de infraestructuras náuticas durante el resto del año hace necesaria una actuación con carácter anual.

Los fondeos libres llenan de muertos el fondo marino de la bahía y la superficie queda llena de boyas que dificultan la navegación, pudiendo llegar a hacerla peligrosa. Por otra parte con el fondeo con anclas se produce el garreo arrastrándose por los fondos de la reserva, además de ofrecer un amarre peor.

La finalidad del presente proyecto es la de regularizar la situación existente de fondeos indiscriminados, organizándolos y concentrándolos en un único punto,
concentrando los muertos y las boyas de amarre, con todas las facilidades para los usuarios y las correspondientes medidas de seguridad y balizamiento.

De este modo se pretende preservar la Reserva Marina, en la parte oriental de la bahía de Fornells y defender el canal de navegación, definido claramente por la batimetría de la bahía.

Además, de definir la obra a realizar, el mediante el presente documento se solicita la concesión de los $360 \mathrm{~m}^{2}$ en tierra destinadas a la zona de varada y las 3.7 Ha . de superficie de agua.

Aunque está en tramitación el deslinde en la bahia de Fornells, y dados los plazos de tramitación de concesiones, se redacta el presente proyecto para iniciar los trámites conducentes a la concesión del fondeadero y zona de varadero.

2. Concepción de las actuaciones.

En primer lugar en este documento se han definido una serie de instalaciones destinadas al fondeo de embarcaciones deportivas, instalaciones éstas que se pretende sean operativas todo el año, y localicen las aguas de fondeo de embarcaciones, permitiendo la separación adecuada de éstas y de las del baño, compatibilizando adecuadamente ambas actividades, evitando el fondeo incontrolado.

En segundo lugar, ha sido necesario definir, de acuerdo a la normativa vigente, una serie de instalaciones de balizamiento para señalar adecuadamente los lugares de fondeo a los barcos usuarios de los mismos así como para separar adecuadamente los diferentes usos, impidiendo los riesgos derivados de una falta de regulación, con respeto total a los derechos y deseos de toda la comunidad de la bahía, así como a la reserva natural de la bahía.

El presente proyecto de regulación de espacios en el ámbito marítimo contempla unas actuaciones con carácter provisional de la instalación de boyas de amarre para veinticuatro embarcaciones de entre 7 y 10 metros de eslora, junto con las instalaciones adecuadas de balizamiento, tanto para embarcaciones, como para el resto de los usos mencionados con anterioridad.

3. Batimetría.

Se ha utilizado para el presente proyecto una batimetria obtenida a partir de la carta náutica de la zona complementada y confirmada con una navegación con sonda digital y posicionamiento visual gracias a la proximidad de ambas orillas, pues el tipo de actuaciones propuestas no justifica estudios especificos al respecto.

La bahía de Fornells cuenta con un canal de entrada de en torno a los diez quince metros de profundidad, hasta la altura del Islote Sargantanes, disminuyendo rápidamente a partir de este punto.

La zona destinada a fondeo, situada entre el paseo marítimo de Fornells y la Punta de Sa Creu, tiene un calado medio de cuatro metros de profundidad.

4. Clima Marítimo.

Para definir las acciones medioambientales intervinientes en los cálculos de las instalaciones proyectadas, en el anejo de Clima Marítimo se han considerado el oleaje, el viento y las mareas en la zona de estudio, según información disponible en la zona, no habiéndose procedido a la toma directa de datos en mar.

El análisis de los datos recopilados adecuado a las necesidades y características del presente proyecto se presenta en el anejo correspondiente.

5. Propagación de oleaje.

La energia de oleaje que entra en la bahía está limitada por la anchura del paso de entrada. Parte de esta energía se pierde en su expansión lateral contra las orillas. En lugar propuesto para el fondeadero la bahía triplica la anchura de la bocana, llegando, por tanto, un oleaje muy suavizado por la refracción y difracción.

Las conclusiones principales son que las únicas zonas descartables en cuanto a la ubicación del proyecto son el canal de entrada a la bahía y la propia entrada, en función del oleaje en temporal.

6. Diseño del campo de boyas.

En el anejo incluido bajo este epígrafe se encuentra recogida la justificación de las dimensiones en planta de la zona de fondeo así como la distancia entre las boyas proyectadas. Además, se definen las condiciones exigibles por motivos de señalización y balizamiento.

En el documento se recoge la ubicación de las veinticuatro boyas de amarre y de las sesenta y cinco boyas de balizamiento dispuestas, para separar las zonas de baño, de las de fondeo y acceso de embarcaciones.

7. Cálculos.

Para definir en detalle los elementos de fondeo y de balizamiento, se analiza en el anejo de cálculos las acciones que determinan el diseño de estos elementos, dimensionándose además todos ellos.

Se ha tomado como embarcación de proyecto una embarcación de $7-8 \mathrm{~m}$ de eslora, 2.5 m de manga y un metro de calado (excepto quillas y horzas).

La profundidad media se ha estipulado en seis metros.

Este dimensionamiento es la base para el presupuesto de las instalaciones proyectadas.

8. Operatividad.

En cuanto a la operatividad de la terminal, en el anejo correspondiente se analizan las condiciones operativas límite debido a los agentes medioambientales imperantes en la zona, comparándose estos con las necesidades debidas a la explotación.

Se concluye que las condiciones medioambientales no afectan la operatividad al lo largo del año, si bien en temporales excepcionales puede ser recomendable desalojarlo.

9. Oferta de amarres

Con este proyecto se pretende dar respuesta a parte de la demanda de atraques existente en la Bahía de Fornells, con fin el de ordenar el fondeo incontrolado, evitando daños a la Reserva Marina.

Bajo estas premisas se ofrece un total de 24 fondeos para embarcaciones de una eslora máxima de diez metros.

Los fondeos serán de uso público con un mínimo del cuarenta por ciento reservados para vecinos o propietarios de Fornells.

10.Seguridad y Salud.

Por ultimo, y en cuanto a anejos incluidos en el documento, en el correspondiente a Seguridad y Salud se establecen las directrices para la prevención de riesgos de accidentes laborales, de enfermedades profesionales y de daños a terceros. Así mismo se estudian las instalaciones de sanidad, higiene y bienestar de los trabajadores durante la obra de las instalaciones proyectadas. Todo ello en obligado cumplimiento de las disposiciones vigentes.

11. Planos.

La memoria y anejos incluidos se complementan con los siguientes planos de proyecto incluidos:

- Situación de la Bahía de Fornells.
- Batimetría.
- Reserva marina integral del Norte de Menorca
- Zona profunda de la bahía
- Determinación de la zona apta para el fondeo
- Planta General
- Detalle de balizamiento
- Superficies originadas

12. Pliego de Prescripciones Técnicas Particulares.

Incluido en el presente proyecto, y como resulta preceptivo, se incluye un Pliego de Prescripciones Técnicas Particulares en donde se recogen todas las instrucciones, normas, prescripciones y especificaciones, que además de lo indicado en la Memoria, Planos y Presupuesto, definen todos los requisitos de las obras del fondeadero.

Este pliego se ha dividido en:

- Descripción de las obras y normas aplicables.
- Condiciones que deben de satisfacer los materiales.
- Ejecución de las obras.
- Medición y abono de las obras.
- Disposiciones generales.

13. Presupuesto.

Realizadas las mediciones correspondientes de todas las unidades de obra que intervienen en el presente proyecto, y tras definir unos precios unitarios a aplicar, el presupuesto en Euros asciende a las cifras siguientes:

| $\begin{array}{c}\text { PRESUPUESTO DE EJECUCIÓN } \\ \text { MATERIAL }\end{array}$ | | DEL FONDEADERO |
| :--- | :--- | :---: |$] 16,656.00$

Madrid, 11 de Marzo de 2008

José Luis Almazán Gárate
Dr. Ingeniero de Caminos, Canales y Puertos
Colegiado $\mathrm{N}^{\circ} 4.656$

ANEJOS

BATIMETRÍA

La bahía de Fornells se encuentra encajada entre dos unidades fisiográficas claramente definidas, la singularidad másica que forma la Mola de Fornells por el Este y el Coll de Sa Cabra por el Oeste (ver plano topográfico), con una anchura a la entrada de 250 metros, y un espejo de agua de 380 Ha .

En la batimetría se pueden observar el canal de entrada a la bahía que llega hasta el centro de la misma, con calados superiores a los diez metros. A ambos lados del canal el fondo se eleva rápidamente quedando en torno a un 60% del espejo de agua en profundidades inferiores a los cuatro metros.

Siguiendo la evolución histórica de la bahía, se puede observar que la acción de la dinámica litoral sobre la morfología de la misma es prácticamente inapreciable, a escala temporal humana.

La elección de la ubicación del fondeadero se ha llevado a cabo buscando un calado mínimo de dos metros, condicionada por evitar la zona de reserva integral, así como el canal de entrada de la bahía.

El tramo de costa elegido cuenta con el abrigo de los bajos que se extienden frente al paseo marítimo de Fornells. Estos bajos constituyen una berma a la profundidad de dos metros, a partir de la cual la pendiente es ligeramente más pronunciada, lugar en que se sitúa el fondeadero con calados entre los dos y ocho metros.

Por otra parte, en el presente proyecto se han tomado, como datos base de batimetría, la correspondiente carta náutica de aproches a la bahía de Fornells, detalle de la cual se adjuntan en el presente anejo.

Asi mismo se ha realizado un modelado digital de la misma, el cual recoge las batimétricas o isobatas de toda la franja litoral en estudio.

Estos datos se han corroborado con una batimetría adicional mediante sonda digital y posicionamiento visual. El posicionamiento es aproximado pero válido gracias a la multitud de referencias visuales, la proximidad de la orilla y el hecho de tratarse de una bahía con os orillas enfrentadas.

Esta batimetria se realizó en Febrero de 2008. En la imagen presentada a continuación, tomada desde la embarcación, se puede observar la zona prevista para la varada de embarcaciones.

ANEJO $\mathrm{N}^{\circ} 2$
CLIMA MARÍTIMO

Clima Marítimo

ÍNDICE

1. OLEAJE. 2
2. VIENTO 7
3. MAREAS 10

CLIMA MARITIMO

1. Oleaje.

Para la representación del oleaje de la zona se han utilizado los datos de las siguientes fuentes:
a) las Recomendaciones para Obras Marítimas, ROM 0.3-91, Zona IX, publicada por el MOPT, Dirección General de Puertos, 1992. La ROM recoge los regimenes medio y extremal para la zona extrapolados a partir de las medidas brutas proporcionadas por dos fuentes, datos escalares de la boya REMRO-Mahón (la posición de la boya es: 39.718° $\mathrm{N}, 4.442^{\circ} \mathrm{O}$, profundidad 25 m), y medidas desde barcos en ruta.

La serie de datos analizados corresponde al periodo comprendido entre los años 1984 y 1990. A continuación se da la hoja de la ROM correspondiente a la zona de Menorca.
(1)
b) Se ha empleado los datos correspondientes a la boya direccional de Mahón, tipo Wavescan, de aguas profundas, ubicada A 300 m de profundidad, con coordenadas: Latitud: $39^{\circ} 43.8^{\prime} \mathrm{N}$, Longitud: $4^{\circ} 25.2^{\prime} \mathrm{E}$

Localización de la boya de Mahón
TABLA DE FRECUENCIAS ANUAL PARA EL OLEAJE COMPUESTO

Dirección:		$\mathrm{Hs}(\mathrm{m})$											Total
		$<=0.5$	1	1.5	2	2.5	3	3.5					
CALMAS													
N	0												0.478
NE	45	3.505	4.195	2.018	1.115	0.266	0.053	0.79	---	--	-	--	33.14
E	90	3.027	6.479	2.762	1.221	0.319	0.159	---	---	--	-	--	11.15
SE	135	3.877	4.567	3.133	1.487	0.159	---	---	---	--	---	--	13.97
S	180	2.124	1.328	0.266	0.266	0.106	---	---				--	13.22
SW	225	1.699	7.169	3.452	1.646	0.159	0.053	--	----	---		---	4.089
W	270	0.537	1.387	1.54	0.584	0.266	0.212	0.053	---	--	---	---	14.18
NW	315	0.637	1.434	1.859	0.69	0.478	0.053	0.053	--	---	--	--	4.567
Total		0.478	35.58	23.47	13.49	5.151	2.602	0.903		---	--	---	5.204
								.903	0.106	0.053	--	---	100

ALTURA COMPUESTA (metros) frente a DIRECCIÓN ASOCIADA A LA ALTURA MÁXIMA.

A continuación se facilitan:

- Rosa de oleaje correspondiente al año 2007 para la altura de ola significante.

$$
\text { ALTURA } \quad(\mathrm{m})
$$

LUGAR	Manon	ANO	2007
T. MUESTREO	HHor.	EFICACIA:	6449%

- Relación de altura de ola - periodo de pico para correspondientes al año 2007 para la altura de ola significante.

Mes		Hs	Tp	Dir		Dia	Hora
Ene		3.9	11.1	8		2	11
Feb		3.4	10.7	357		15	7
Mar		2.1	7	183		29	2
Abr		2.9	7.8	37		14	11
May		3.4	9.6	351		29	5
Jun		3.4	10	5		2	10
Jul		2.8	9.6	5		10	7
Ago		3	9.8	9		31	3
Sep		4.1	11.3	17		5	6
Oct		3.2	9.4	358		10	9

c) La boya de Mahón proporciona información útil en cuanto al oleaje por estar en aguas profundas, no obstante se encuentra en la fachada Suroeste de la Isla mientras que la bahía de Fornells está en la Norte, razón por la cual se han empleado los datos obtenidos a partir del Punto WANA 2081041, situado frente a dicha bahía, interpolados por modelos de propagación del oleaje:

	ALTURA	(m)	
LUGAR	WANA2O8 04^{-}	ANO	2007
T. MUESTREO -	3 Hor .	EFICACIA:	87.57\%

ALTURA	(mi)
I	02109
	91.02
	02.03
	03-03
	O4.08
	Q 5 .00
	06.07
	>07

d) Adicionalmente se incluyen los informes de regímenes medios y extremales de la boya de Mahón para el periodo 1993-2006.

2. Viento,

Para la caracterización del viento de la zona se han utilizado los datos contenidos en las Recomendaciones de Obras Marítimas ROM 0.4-95, Vientos Zona IX, publicada por el MOPT, Dirección General de Puertos, 1995. Esta norma recoge los regímenes medio y extremal para la zona extrapolados a partir de las medidas brutas proporcionadas por dos fuentes, estaciones meteorológicas de media situadas en varios puntos de la costa, y medidas desde barcos en ruta. Los periodos de medida van desde principios de siglo hasta 1987.

También se han empleado los datos de la boya de Mahón, más próxima a la zona en estudio.

A continuación se dan las hojas de la ROM correspondientes a la zona de Menorca.

3. Mareas.

Los niveles de marea considerados son los medidos en el Puerto de Mahón, y son los siguientes:

- Carrera de Marea, 0.8 metros.
- Pleamar Máxima Viva Equinoccial (PMVE), +0.50 metros sobre el nivel 0.00 .
- Bajamar Máxima Viva Equinoccial (BMVE), -0.30 metros sobre el nivel 0.00 .

CLIMA MEDIO DE OLEAJE

Boya de Mahon
Conjunto de Datos: REDEXT

CODIGO B.D.	2838	
LONGITUD	4.442	E
LATITUD	39.718	N
PROFUNDIDAD	300	m

BANCO DE DATOS OCEANOGRÁFICOS DE PUERTOS DEL ESTADO

ÁREA DE MEDIO FÍSICO
ÍNDICE GENERAL 2
Índice General
1 Metodología 3
1.1 Régimen Medio 3
2 Conjunto de datos REDEXT 4
3 Mahon 5
3.1 Tablas Hs-Tp (Anual) 6
3.2 Tablas Hs-Tp (Estacional) 7
3.3 Rosas de Oleaje (Anual) 11
3.4 Rosas de Oleaje (Estacional) 12
3.5 Tablas Hs - Dir. (Anual) 16
3.6 Tablas Hs - Dir. (Estacional) 17
3.7 Regimen Medio de Hs (Anual) 21
3.8 Regimen Medio de Hs (Estacional) 22
3.9 Regimen Medio Direccional Hs (Anual) 24
3.10 Regimen Medio Direccional Hs (Estacional: Dic.- Feb.) 27
3.11 Regimen Medio Direccional Hs (Estacional: Mar.- MAY,) 30
3.12 Regimen Medio Direccional Hs (Estacional: Jun.- Ago.) 33
3.13 Regimen Medio Direccional Hs (Estacional: Set.- Nov.) 36

1 Metodologîa

1.1 Régimen Medio

Se puede definir como régimen medio de una serie temporal al conjunto de estados de oleaje que más probablemente nos podemos encontrar.

Si representaramos los datos en forma de histograma no acumulado, el régimen medio vendría definido por aquella banda de datos en la que se contiene la masa de probabilidad que hay entorno al máximo del histograma.

El régimen medio se describe, habitualmente, mediante una distribución teórica que ajusta dicha zona media o central del histograma. Es decir no todos los datos participan en el proceso de estimación de los parámetros de la distribución teórica, solo lo hacen aquellos datos cuyos valores de presentación caen el la zona media del histograma.

La distribución elegida para describir el régimen medio de las series de oleaje es Weibull cuya expresión es la siguiente.

$$
F_{e}(x)=1-\exp \left(-\left(\frac{x-B}{A}\right)^{C}\right)
$$

El parámetro B es conocido como párametro de centrado y su valor a de ser menor que el menor de los valores justados; A es el parámetro de escala y ha de ser mayor que 0; y , finalmente, C es el parámetro de forma y suele moverse entre 0.5 y 3.5

El régimen medio, generalmente, suele representarse de una forma grafica mediante un histograma acumulado y el correspondiente ajuste teorico, todo ello en una escala especial en la cual Weibull aparece representada como una recta.

Ajustar los datos a una distribución teórica, en vez de utilizar el histograma permite obtener una expresión compacta que suaviza e interpola la información proporcianada por el histograma.

El régimen medio esta directamente relacionado con lo que se denominan condiciones medias de operatividad. Es decir, caracteriza el comportamiento probabilístico del régimen de viento u oleaje en el que por término medio se va desenvolver una determinada actividad influida por uno de estos agentes.

En éste informe se presenta el régimen medio siguiendo diferentes criterios de selección o agrupación de los datos. En primer lugar se presenta el régimen medio sobre la totalidad de los años completos registrados; seguidamente se presentan los régimenes medios estimados sobre los datos agrupados por estaciones climáticas; y, finalmente, y de modo opcional, los regímenes medios para los datos agrupados por direcciones.

2 Conjunto de datos REDEXT

Procedencia y obtencion del conjunto de datos

El conjunto de datos REDEXT está formado por las medidas procedentes de la Red de Boyas de Aguas Profundas de Puertos del Estado, tambien denominada Red Exterior. Esta red unifica, amplia y actualiza las antiguas redes de boyas RAYO y EMOD.

Los boyas de esta red se caracterizan por estar fondeadas lejos de la línea de costa a. gran profundidad (mas de 200 metro de profundidad). Por tanto, las medidas de oleaje de estos sensores no están perturbadas por efectos locales. Por ello, cada boya proporciona observaciones representativas de grandes zonas litorales.

Esta red está compuesta por boyas de tipo Wavescan y SeaWatch. Todas la boyas con independencia del modelo producen datos con cadencia horaria. No obstante, los parametros de oleaje se han calculado sobre series de desplazamientos registradas en intervalos inferior a una hora. En concreto para esta red el periodo de medida es de, aproximadamente, 30 minutos. De modo analogo, los valores de velocidad media del viento estan calculados sobre periodos de 10 minutos. En todos los casos la velocidad del viento se mide a 3 metros sobre la superficie libre del mar.

Es importante señalar que las caracteríticas de estas boyas en cuanto a dotación de sensores han ido evolucionando a lo largo de su historia. En sus orígenes las boyas fondeadas en Cabo Silleiro, Golfo de Cádiz, Gran Canaria, Tenerife Sur, Mar de Alborán, y Cabo de Gata no disponían de sensores de oleaje direccional. Solo desde el año 2003 todas las boyas disponen de este tipo de sensores

A trave de la pagina Web de Puertos del Estado es posible ampliar la información referente a las carecteristicas generales de dicho conjunto de datos mediante el enlace

$$
\text { www.puertos.es }>\text { Oceanografía }>\text { Banco de datos }>\text { Conjuntos de Datos }
$$

o bien conocer mas detaller de la configuracion y lugar de fondeo mediante el enlace www.puertos.es $>$ Oceanografía $>$ Rcdes de Medida $>$ Red de Aguas Profundas

3 Mahon

Conjunto de Datos: REDEXT
Boya de: Mahon
Longitud: 4.442 E
Latitud: 39.718 N
Profundidad: 300 m

3.1 Tablas Hs-Tp (Anual)

Distribución Conjunta de Periodo de Pico y Altura Significativa

Lugar: Mahon
Periodo: Anual
Serie Analizada ; Abr. 1993 - Dic. 2006

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (mi)	Tp (s)											Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	>10.0	
≤ 0.5	\checkmark	-	2.197	5.569	7.639	5.201	1.808	- 625	. 097	. 046	. 051	23.235
1.0	\sim	-	. 123	3.473	7.310	9.613	9.139	1.563	. 152	. 089	. 089	31.550
1.5	-	-	-	. 093	1.808	3.680	6.744	5.793	. 731	. 169	. 008	19.026
2.0	-	\checkmark	-	. 004	. 123	1.061	2.358	5.146	1.893	. 646	. 025	11.256
2.5	-	-	-	-	. 004	. 152	. 668	2.430	2.142	1.001	. 030	6.427
3.0	-	-	-	-	-	. 004	. 194	. 879	1.259	1.234	. 148	3.718
3.5	*	-	-	$=$	-	-	. 034	. 262	. 499	1.023	. 152	1.969
4.0	-	\checkmark	-	-	-	-	. 008	. 076	. 182	558	. 292	1.115
4.5	-	-	-	-	-	\sim	-	. 017	.076	. 376	. 275	.744
5.0	-	-	-	-	\cdots	-	-	. 004	. 021	. 169	. 270	. 465
>5.0	-	\cdots	-	-	-	-	-	-	. 008	. 123	. 363	. 494
Total	-	-	2.320	9.139	16,884	19,711	20.953	16.796	7.060	5.434	1.703	100%

3.2 Tablas Hs-Tp (Estacional)

Distribución Conjunta de Periodo de Pico y Altura Significativa

Lugar: Mahon

Periodo : Dic. - Feb.

Serie Analizada ; Abr. 1993 - Dic. 2006

Tabla. Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (m)	Tp (s)											Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7:0	8.0	9.0	10.0	> 10.0	
≤ 0.5	-	-	887	2.809	3.950	3.274	1.204	. 275	. 106	. 042	169	12.717
1.0	\checkmark	-	. 021	2.704	5.978	6.464	6.316	1.542	. 296	. 190	. 211	23.722
1.5	-	-	-	. 084	1.880	4.225	6.865	6.168	. 993	296	. 042	20.553
2.0	-	-	-	-	. 169	1.563	3.105	5.556	2.704	. 993	. 021	14.121
2.5	-	-	-	-	-	211	1.162	3.549	3.338	1.627	. 084	9.970
3.0	-	\sim	-	-	-	-	401	1.521	2.366	2.429	. 465	7.182
3.5	-	-	-	-	-	-	. 021	. 570	1.267	2.134	. 380	4.373
4.0	-	-	-	-	-	-	. 021	. 190	. 422	1.627	. 613	2.873
4.5	-	-	-	-	-	-	-	. 063	.211	. 929	760	1.965
5.0	=	-	-	-	\checkmark	-	-	. 021	. 021	. 486	. 676	1.204
>5.0	-	-	-	-	-	-	-	-	. 021	. 338	. 972	1.331
Total	-	-	. 908	5.598	11.977	15.737	19.096	19.455	11.745	11.090	4.394	100%

Tablas Hs-Tp (Estacional)

Distribución Conjunta de Periodo de Pico y Altura Significativa

Lugar: Mahon
Periodo : Mar. - May.

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (m)	$\mathrm{Tp}(\mathrm{s})$											Total
	≤ 2.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10,0	>10.0	
≤ 0.5	-	$-$	2.163	4.876	6.894	6.587	2.212	. 678	. 129	. 032	. 048	23.620
1.0	-	-	.129	2.874	6.087	8.444	10.446	1.986	. 194	. 161	. 161	30.481
1.5	-	-	-	.129	1.776	2.922	6.571	6.797	1.001	. 307	-	19.503
2.0	-	-	-	-	.178	. 936	2.486	5.102	2.196	. 936	. 048	11.882
2.5	-	-	-	-	. 016	. 178	. 597	2.325	2.341	1.372	. 016	6.845
3.0	-	-	-	-	-	. 016	. 194	. 904	1.001	1.211	. 048	3.374
3.5	-	-	-	-	-	-	.065	. 274	. 420	1.179	. 145	2.083
4.0	\sim	-	-	-	-	-	. 016	.065	. 210	. 371	468	1.130
4.5	-	-	-	-	-	-	-	-	. 032	. 307	. 307	. 646
5.0	-	-	-	-	$=$	-	-	-	\%	. 081	. 178	. 258
>5.0	-	\checkmark	-	\sim	-	-	-	-	-	. 032	. 145	. 178
Total	-	\checkmark	2,293	7.879	14.950	19.083	22.586	18.130	7.523	5.990	1.566	100%

Tablas Hs-Tp (Estacional)
Distribución Conjunta de Periodo de Pico y Altura Significativa
LUGAR: Mahon

Periodo: Jun. - Ago.

Serie Analizada : Abr. 1993 - Dic. 2006

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (m)	$\operatorname{Tp}(\mathrm{s})$											Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9,0	10.0	>10.0	
≤ 0.5	-	-	3.705	8.966	11.417	6.583	2.135	. 868	. 014	-	-	33.687
1.0	-	$=$. 193	4.380	9.324	12.009	10.136	1.446	. 083	. 028	-	37.598
1.5	-	-	-	. 096	1.556	3.140	6.666	4.531	. 234	. 069	-	16.293
2.0	-	-	-	. 014	. 028	. 510	1.487	4.187	. 964	. 248	-	7.437
2.5	.	-	\sim	-	-	. 028	. 220	1.171	1.005	. 262	-	2.686
3.0	-	-	-	-	-	-	. 014	. 372	. 510	. 565	. 041	1.501
3.5	-	-	\sim	-	-	-	. 014	. 096	. 096	. 303	. 055	. 565
4.0	-	-	-	-	-	-	-	. 028	. 014	. 110	. 028	. 179
4.5	-	-	-	-	-	\sim	-	-	=	. 028	-	. 028
5.0	-	-	\sim	-	-	-	-	-	-	-	-	-
>5.0	.	-	\checkmark	\checkmark	-	-	-	-	. 014	. 014	-	. 028
Total	-	-	3.898	13.455	22.325	22.270	20,672	12.698	2.933	1.625	. 124	100%

Tablas Hs-Tp (Estacional)

Distribuoión Conjunta de Periodo de Pico y Altura Significativa

Lugar : Mahon

Periodo : Sep. - Nov.

Serie Analizada: Abr. 1993 - Dic. 2006

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (m)	$\operatorname{Tp}(\mathrm{s})$											Total
	≤ 1.0	220	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	>10.0	
≤ 0.5	\checkmark	-	1.369	4.235	6.663	3.468	1.442	. 548	. 164	. 128	. 018	18.036
2.0	-	-	. 110	3.614	T. 174	10.478	8.781	1.260	. 073	-	. 018	31.508
1.5	-	-	-	0.55	2.118	4.783	6.937	6.006	. 858	. 037	-	20.792
2.0	-	-	-	-	. 146	1.497	2.720	6.115	2.081	. 548	. 037	13.143
2.5	-	-	-	-	-	. 237	. 913	3.249	2.391	1.022	. 037	7.850
3.0	-	-	-	-	-	\checkmark	. 256	. 968	1.588	1.114	. 128	4.053
3.5	-	-	-	-	-	\checkmark	. 037	. 201	. 456	. 840	. 091	1.625
4.0	-	-	-	-	-	-	-	. 055	.164	. 438	. 164	. 821
4.5	-	-	-	-	-	-	-	. 018	.120	438	. 183	. 748
5.0	-	-	-	-	-	\sim	-	-	. 073	.219	. 383	. 675
>5.0	\checkmark	-	\checkmark	-	\sim	-	-	-	-	. 183	. 566	. 748
Total	\checkmark	\%	1.479	7.904	16.101	20.464	21.084	18,419	7.959	4.965	1.625	100%

3.3 Rosas de Oleaje (Anual)

Rosa de Altura Significativa
Lugar: Mahon
Periodo : Anual
Intervalo de Calmas : 0-0.2
Serie Analizada: Abr. 1993 - Dic. 2006 Porcentaje de Calmas : $4,26 \%$

Altura Significativa (m)

$$
\begin{gathered}
0.2-00 \\
0.5-1.0 \\
1.0-1.5 \\
1.5-2.0 \\
2.0-2.5 \\
>2.5
\end{gathered}
$$

3.4 Rosas de Oleaje (Estacional)

Rosa de Altura Significativa
Lugar: Mahon
Periodo: Dic. - Feb. Serfe Analizada: Abr. 1993 - Dic. 2006
Intervalo de Calmas: 0-0.2
Porcentaje de Calmas : 2.21%

Rosas de Oleaje (Estacional)

Rosa de Alitura Significativa

Lugar: Mahon
Periodo : Mar. - May.
Intervalo de Calmas: $0-0.2$

Serie Analizada : Abr. 1993 - Dic. 2006

Porcentaje de Calmas : 3.97%

Rosas de Oleaje (Estacional)

Rosa de Altura Significativa
Lugar: Mahon
Periodo : Jun. - Ago. Serie Analizada: Abr. 1993-Dic. 2006
Intervalo de Calmas : 0-0.2
Porgentaje de Calmas : 6.94%

Rosas de Oleaje (Estacional)

Rosa de Altura Significativa

Lugar: Mahon

Periodo: Sep. - Nov.
Intervalo De Calmas : 0-0.2
Serie Analizada: Abr. 1993 - Dic. 2006
Porcentaje de Calmas : 2.82%

3.5 Tablas Hs - Dir. (Anual)

Distribución Conjunta de Dirección y Altura Significativa

LuGAR: Mahon
Periodo : Anual
Serie Analizada : Abr. 1993 - Dic. 2006

Tabla Altura Significativa (Hs) - Dirección en \%

Direcciót		Hs (m)												Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5					
CALMAS		4.258						3.0	3.5	4,0	4.5	5.0	>5.0	
N	0.0		1.631	4.735	4.726	4.061								4.258
NNE	22.5		1.899	3.530	2.185	1.150	2.924 656	1.825 351	1.072	.702	. 444	. 273	. 249	22.642
NE	45.0		1.712	1.714	. 758	. 476	. 656	. 351	- 268	. 143	. 083	.069	069	10.404
ENE	67.5		1.150	1.220	.758 .587	.476 .273	.176 .139	. 106	. 069	. 032	. 023	-	. 042	5.137
E	90.0		1.201	1.598	. 845	. 374	-139	088	. 028	. 009	. 005	-	,	3.497
ESE	112.5		1.991	3.359	.845 1.695	.374 .577	. 226	-115	.014	. 032	,009	. 005	\sim	3.407 4.421
SE	135.0		2.615	3.493	1.197	.577 .286	.226 .079	. 055	. 065	. 032	.005	-	-	8.006
SSE	157.5		1.793	1.626	. 328	. 206	. 079	. 018	. 005	\sim	-	-	-	7.692
s	180.0		1.123	. 966	. 277	. 111	018	-	. 005	-	005	-	-	3.858
SSW	202.5		. 864	2.190	. 970	.111 .490	.069 .152	. 023	027	-	\sim	-	005	2.573
BW	225,0		. 979	3.980	2.352	.490 1.548	. 152	. 089	. 023	. 009	-	-	-	4.782
WSW	247.5		. 564	1.095	r 864	1.048 .508	.693 .356	. 407	. 134	. 051	. 018	. 005	. 018	9.184
W	270.0		. 328	. 716	. 393	. 508	. 356	. 148	.042	. 023	. 005	-	. 023	3.627
WNW	292.5		. 240	. 573	. 323	. 231		. 083	.037	. 009	. 009	. 005	-	1.963
NW	315.0		. 282	. 716	. 444	. 208	-148	. 060	. 028	. 005	. 009	-	-	1.617
NNW	337.5		.601	1.118	. 919	. 513	+231 .346	.069 .356	. 055	. 005	. 009	-	-	2.019
Total		4.258	19.002	31.628	18.863	11.148	. 346	. 356	. 180	. 074	. 079	. 079	. 055	4.320
						0.065	3.788	2.024	1.127	. 702	. 434	.462	100\%	

3.6 Tablas Hs - Dir. (Estacional)

Distribución Conjunta de Dirección y Altura Significativa

Lugar: Mahon
Periodo : Dic. - Feb.
Serie Analizada: Abr. 1993 - Dic. 2006

Tabla Altura Sigaificativa (Hs) - Dirección en \%

Dirección	Hs (m)												Total
	≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	>5.0	
GALMAS	2.212												2.212
N 0.0		. 885	2.389	3.296	3.495	3.583	2.875	2.493	1. 747	1.261	. 730	. 708	23.402
NNE 22.5		1.239	2.345	2.477	2.101	1.659	1.040	. 907	. 509	. 288	. 265	. 243	13,072
NE $\quad 45.0$		1.128	2.300	1.172	. 995	. 420	. 288	. 221	. 133	. 088	-	. 022	6.768
ENE 67.5		. 774	1.150	. 951	. 553	. 310	. 155	-	. 022	. 022	-	-	$3.93{ }^{7}$
E 90.0		. 398	. 597	. 5553	. 442	. 464	. 199	044	. 066	-	. 022	-	2.787
ESE 112.5		. 796	1.637	1.349	442	. 066	.111	. 044	. 022	.	-	-	4.468
SE $\quad 135.0$. 708	1.150	. 619	. 398	. 088	-	-	-	-	-	-	2.964
SSE 157.5		. 464	. 752	. 221	. 111	,044	-	-	-	-	-	-	1.593
\$ 180.0		. 597	. 619	. 288	.133	.066	.044	-	-	-	-	-	1.747
SSW 202.5		. 509	2.632	1.371	. 730	155	. 265	. 022	. 022	-	-	-	5.707
SW 225.0		.907	3.141	3.473	2.168	. 995	. 951	. 420	. 155	. 044	. 022	-	12.276
WSW 247.5		.796	1.261	1.416	. 907	-. 553	. 199	. 066	. 044	. 022	-	-	5.264
W 270.0		. 531	1.283	. 375	. 420	. 199	. 111	. 111	-	-	.	-	3.229
WNW 292.5		. 376	. 863	. 398	. 354	-243	. 088	. 022	-	-	-	-	2.315
NW 315.0		. 288	. 885	. 597	. 221	. 619	. 044	.044	. 022	-	-	-	2.721
NNW 337.5		. 487	.951	1.305	575	. 597	. 641	.177	. 177	-243	. 155	. 199	5.508
Total	2.212	10.883	23.955	20.062	14.046	10.064	7.012	4.512	2.920	1.969	1.194	1.172	100%

TABLAS HS - DIR. (Estadional)

Distribución Conjunta de Dirección y Altura Significativa

LUGAR: Mahon

Periodo : Mar. - May.

Serie Analizada: Abr. 1993 - Dic. 2006

Tabla Altura Significativa (Hs) - Dirección en \%

Dirección		$\mathrm{Hs}(\mathrm{m})$												Total
cammas		≤ 0	0.5	1.0	1.5	2.0	2.5	3.0	3.5					
		3.968						1.0	3.5	4.0	4.5	5.0	>5.0	
N	0.0		1.625	3.739	4.211									3.968
NNE	22.5		1.415	2.551	1.538	3.634 1.048	2.621 524	1.293	.716	. 612	. 315	. 175	. 157	3.968 19.098
NE	45.0		1.368	1.468	. 6.581	1.048 472	. 524	. 245	. 192	. 087	. 052	. 017	457	19.098
ENE	67.5		1.276	1.468 .891	.681 .507	-472	175	. 087	. 070	.017	. 017	.	-	7.671
E	90.0		1.310	1.608	. 507	. 280	.192	. 122	. 017	.017	-	-	-	4.351
ESE	112.5		2.534	3.547	. 81805	+419	. 315	. 192	. 017	070	035			3.302
SE	135.0		2.638	3.634	1905	1.031	. 577	. 087	. 192	.105	. 017	-	-	4.810
SSE	157.5		2.062	3.634 1922	1.276	. 332	. 070	.052	. 017			-	-	9.945
S	180.0		1.485	1.922	. 419	. 087	017	-	. 017			-	-	8.020
SsW	202.5		1.310	1.276	. 280	. 052	. 087	017	\sim			-	\sim	4.626
SW	22.5 .0		1.310 1.136	2.656	1.398	. 542	2.25	. 052	. 017	01	-	-	-	3.198
WSw	247.5		.136 .384	3.233	3.145	1.887	. 909	. 454	. 122	. 052	-	-	-	6.298
W	270.0		$\begin{array}{r}-384 \\ \hline 192\end{array}$	1.171	-909	. 489	. 454	175	. 070		.017	-	-	10.956
WNW	292.5		.192 .140	. 734	.437	. 349	. 140	.140	035		-	-	-	3.669
Nw	315.0		.140 .245	. 751	. 612	. 349	. 175	. 052	. 070	. 01	-	-	-	2.044
NNW	337.5		.245 .594	. 647	. 489	. 280	. 105	. 035	. 087		. 035	-	-	2.184
Total			. 594	-891	. 786	. 559	. 315	. 332	. 367	. 070	. 017	-	$-$	1.905
		3.968	9.710	30.718	19.465	11.812	6.919	3.337	2.009	1.08	. 070	. 052	-	4.036
									1.083	. 577	. 245	157	100\%	

Tablas Hs - Dir. (Estacional)
Distribución Conuunta de Dirección y Altura Significativa
Lugar: Mahon
Periodo : Jun. - Ago.
Serie Analizada : Abr. 1993 - Dic. 2006

Tabla Altura Significativa (Hss) - Dirección en \%

Dirección		Hs (m)												Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0				
Calmas		6.942									4.5	5.0	≥ 5.0	
N	0.0		2.592	8.037	7.071									6.942
NNE	22.5		3,236	5.430	2.316	$\begin{array}{r} .8(11 \\ 522 \end{array}$	$\begin{array}{r} 2.117 \\ 092 \end{array}$	$\begin{array}{r} 1.181 \end{array}$	429	153	031	-	-	26.413
NE	45.0		2.500	1.472	. 215	. 046	. 015		. 015	-	-	-	-	11.672
Ene	67.5		1.396	1.334	,245	,		. 015	. 046	-	-	-	-	4.249
E	90.0		1.779	2.040	. 429	. 107	. 081	. 015	. 046	-	-	-	-	3.037
ESE	112.5		2.562	8.057	1,365	. 261	. 015	-015	-	-	-	-	-	4.402
SE	135.0		4.172	4.908	. 966	. 061	-615	-	-	-	-	-	-	8.160
SSE	157.5		2.899	2.101	. 322	. 031	-	-	-	-	-	-	-	10.108
s	180.0		1.580	. 982	. 199	. 046	-	-	-	-	-	-	-	5.353
SSW	202.5		. 859	1.002	491	. 107	031	-	-	-	-	-	-	2.807
SW	225.0		1.089	2.270	. 874	. 899	. 138	061	-	-	-	$=$	-	3.390
WSW	247.5		. 506	. 675	. 215	. 092	. 046	. 01	-	-	-	-	-	4.832
W	270.0		. 261	. 353	. 169	. 046	. 015	-	-	-	-	-	-	1.534
WNW	292.5		. 169	. 307	123	. 046	. 046			-	-	-	-	-844
Nw	315.0		. 353	. 859	. 261	. 092	. 046			-	-	-	-	. 706
NNW	337.5		. 675	1.426	. 818	. 475	. 153	. 184	. 107		-	-	-	1.657
Total		6.942	26.627	38.054	16.075	7,132	2.746	1.580	. 598	. 184	-	-	. 031	3.896
										184	. 031	-	. 031	100%

Tablas Hs - Dir. (Estacional)

Distribución Conjunta de Dirección y Aurura Significativa

Lugar: Mahon

Periodo: Sep. - Nov.

Serie Analizada: Abr. 1993 - Dic. 2006

Tabla Altura Significativa (Hs) - Dirección en \%

Dirección		$\mathrm{Fs}(\mathrm{m})$												Total
		≤ 0.2	0.5	1.0	1.5	2.0	9.5	3.0	3.5	4.0	4.5	5.0	>5.0	
CALMAS		2.820												2,820
N	0.0		1.046	3.670	3.526	4.100	3.752	2.337	1.087	. 574	. 390	. 328	. 267	21.076
NNE	22.5		1.292	3.239	2.501	1.230	. 636	. 226	. 103	. 062	. 041	. 041	. 082	9.451
NE	45.0		1.743	1.784	1.189	. 574	. 164	-103	.021	-	-	-	. 164	5.741
ENE	67.5		1.025	1.518	. 800	. 369	.108	. 082	. 041	-	-	-	-	3.936
E	90.0		1.046	1.927	1.640	. 615	. 164	. 082	-	-	-	-	-	5.474
DSE	112.5		1.702	3.936	2.214	. 595	. 246	. 041	. 021	-	-	-	-	8.754
SE	135.0		3.276	3.608	1.948	. 431	.185	. 021	-	-	-	-	-	8.467
SSE	157.5		1.230	1.456	. 328	. 123	. 021	-	-	-	. 021	-	-	3.178
s	180.0		. 574	.902	. 369	. 246	. 144	. 041	-	-	-	-	021	2.296
SSW	202.5		. 677	1.620	. 738	. 718	. 205	. 062	. 062	-	-	-	\checkmark	4.080
Sw	225.0		.718	3.485	2.958	2.112	. 902	. 308	062	. 021	. 021	\sim	. 082	10.067
WSW	247.5		. 636	1.415	1.169	. 718	. 472	. 267	. 041	. 041	-	-	. 103	4.859
W	270.0		. 390	. 656	.472	. 287	.185	. 103	. 021	. 021	. 041	021	-	2.194
WNW	292.5		. 328	. 451	185	. 236	, 164	. 103	. 021	. 021	\sim	-	-	1.497
NW	315.0		. 226	. 451	. 492	.267	. 267	. 164	. 103	-	. 0221	-	-	1.989
NNW	337.5		. 615	1.128	. 861	. 451	-410	. 349	. 062	. 041	. 041	. 141	021	4.121
Total		2.820	15.520	31.245	20.789	13.060	8.016	4.285	1.640	. 779	. 574	. 533	738	100%

3.7 Regimen Medio de Hs (Anual)

ANUAL

3.8 Regimen Medio de Hs (Estacional)

Diciembre-Febrero

Marzo-Mayo

Regimen Medio de Hs (Estacional)

Junto-Acosto

Septiembre-Noviembre
REGIMEN MEDIO DE ALTURA SIGNIFICATIVA
LUGAR:
SERIE:
PERIODO: Abr. 1993 - Dic. 2006
Sep. - Nov.

[^0]
3.9 Regimen Medio Direccional Hs (Anual)

Regimen Medio Direccional Hs (Anual)

SSE

SW

WSW

Regrmen Medio Direccional Hs (Anual)

NNW

3.10 Regimen Medio Direccional Hs (Estacional: Dic.-Feb.

ENE

ESE

Regimen Medio Direccional Hs (Estacional: Dic.-Feb.)

SSW
SW

WSW

Regimen Medio Direccional Hs (Estacional: Dio.-Feb.)

3.11 Regimen Medio Direccional Hs (Estacional: Mar.-May.)

ESE

Regimen Medio Direccional Hs (Estacional: Mar.-May.)

SW

WSW

Regimen Medio Direccional Hs (Estacional: Mar.-May.)

3.12 Regimen Medio Direccional Hs (Estacional: Jun.-Ago.

ENE

ESE

Regimen Medio Direccional Hs (Estacional: Jun.-Ago.)

SSE

WSW

Regrmen Medio Direccional Hs (Estacional: Jun.-Ago.)

3.13 Regimen Medio Direccional Hs (Estacional: Set.-Nov.

NE

ENE

ESE

Regimen Medio Direccional Hs (Estacional: Set.-Nov.)

SSW

Regimen Medio Direccional Hs (Estacional: Set.-Nov.)

NNW

MINISTERIO DE FOMENTO

Puertos del Estado

EXTREMOS MAXIMOS DE OLEAJE (ALTURA SIGNIFICANTE)

Boya de Mahón

CODIGO B.D. 2838

LONGITUD	4.442	E
LATITUD	39.718	N
PROFUNDIDAD	300	m
PERIODO	1993	2005

BANCO DE DATOS OCEANOGRÁFICOS
DE PUERTOS DEL ESTADO

NOTA:

El presente documento ha sido elaborado utilizando datos procedentes del Banco de Datos Oceanográficos de Puertos del Estado.

Los datos utilizados proceden tanto de las Redes de Medida como de los Modelos con los que cuenta Puertos del Estado. Dichos datos han sido almacenados tras aplicar controles de calidad y procesos de validación que garanticen la mayor fiabilidad posible.

Los resultados contenidos en este documento tiene carácter consultivo u orientativo, por lo que en ningún caso Puertos del Estado se hará valedor o responsable de las consecuencias que se pudieran derivar de su uso.
Índice General
1 Conceptos y Formulas Utiles 4
1.1 Régimen Extremal 4
1.2 Temporal. Picos sobre un Umbral 4
1.3 Probabilidad Anual de Excedencia 5
1.4 Periodo de Retorno 5
1.5 Vida Util y Probabilidad de Excedencia de la Altura de Diseño. 6
1.6 Altura Significante y Periodo de Pico en situacion de temporal. 6
2 Utilizando la Información de las tablas. 7
3 Resultados: Boya de Mahón (2838) 8

1 Conceptos y Formulas Utiles

1.1 Régimen Extremal

La seguridad y la operatividad de una instalación en la costa puede estar condicionada por la acción del oleaje en situación de temporal. Es decir, en situaciones donde la altura del olaje alcanza una intensidad poco frecuente.

Con el fin de acotar el riesgo que corre una instalación, debido a la acción del oleaje, es necesario tener una estimación de la frecuencia o probabililidad con la que se presentan temporales que superen una cierta Altura Significante de ola

Un régimen extremal de oleaje, es precisamente, un modelo estadístico que describe la probabilidad con la que se puede presentar un temporal de una cierta altura de riesgo.

1.2 Temporal. Picos sobre un Umbral

En este informe se denomina temporal a aquella situación durante la cual la altura del oleaje supera un cierto umbral. Se supone, ademas, que el tiempo mínimo que transcurre entre la aparición de dos temporales independientes es de 5 dias.

Un temporal queda representado por el pico o valor máximo de altura alcanzado por el oleaje durante un periodo de 5 dias.

El método de selección de temporales descrito se conoce como POT (Peak Over Threshold). La figura superior ilustra como se realiza la selección de los valores de altura que representan el comportamiento extremal de una serie.

1.3 Probabilidad Anual de Excedencia

La probalidad de que el mayor temporal ocurrido en un an̄o tenga una Altura Significante superior un cierto valor H_{a} prestablecido esta dado por la expresión,

$$
P_{a}(x)=1-e^{-\lambda\left(1-F_{w}\left(H_{a}\right)\right)}
$$

Donde " λ " es el numero medio de temporales ocurridos en un año, y $F_{i \omega}$ es la distribución Weibull de excedencias cuya expresión es

$$
F_{w}\left(H_{a}\right)=1-\exp \left(-\left(\frac{H_{a}-\alpha}{\beta}\right)^{7}\right)
$$

Los valores de los parametros λ, α, β y γ se proporcionan en la seccion de resultados.

1.4 Periodo de Retorno

El numero de años que en promedio transcurren entre temporales que superan un cierto valor de Altura Significante H_{r}, se denomina Periodo de Retorno T_{r} asociado a la Altura de Retorno H_{r}.

La relación entre T_{r} y H_{r} estdada por la siguiente expresión

$$
T_{T}=\frac{1}{P_{a}\left(H_{r}\right)}
$$

Donde P_{a} es la Probabilidad Anual de Excedencia. Sustituyendo P_{a} por su expresión se obtiene la siguiente relación aproximada valida para valores de T_{r} superiores a. 10 años

$$
H_{r}=\beta\left(-\ln \left(\frac{1}{\lambda T_{r}}\right)\right)^{\frac{1}{\gamma}}+\alpha
$$

El Periodo de Retorno es un modo intuitivo de evaluar como de "raro" o poco frecuente es un suceso. No obstante, es muy importante recordar que T_{r} es un tiempo promedio. De hecho, de modo general, la probabilidad de que la Altura de Retorno H_{r} asociada al Periodo de Retorno T_{r} se supere antes de T_{r} años tiende al valor 0.64.

1.5 Vida Util y Probabilidad de Excedencia de la Altura de Diseño.

Para garantizar un cierto nivel de seguridad en una obra expuesta a la acción del oleaje es necesario proyectarla de modo que este acotada la probabilidad de que, durante un tiempo predeterminado, pueda fallar por excedencia de la Altura de Diseño. La especificación del grado de seguridad conduce a los siguientes conceptos

- Altura de Diseño: Al proyectar una obra se dimensiona de modo que sea capaz de soportar la acción de temporales con altura menor o igual a. la Altura de Diseño:
- Vida Util: La Vida Util de un proyecto es el periodo de tiempo durante el cual es necesario garantizar la permanencia en servicio de una instalacion. En el caso de una obra en ejecución la vida util es el tiempo esperado para el desarrollo de la obra.
- Probabilidad de Excedencia: La Probabilidad de Excedencia es la probabilidad de que almenos un temporal supere la Altura de Diseño dentro del tiempo de Vida Util.

La determinación de la. Altura de Diseño, y por tanto, el nivel de seguridad, se realiza especificando el valor admisíble de la Probabilidad de Excedencia de la Altura de Diseño durante el tiempo de Vida Util. A su vez la. Vida Util y la Probabilidad de Excedencia admisible se determinan en funcion de los costos economicos y sociales de un posible fallo.

La Probabilidad de Excedencia P_{L} de la Altura de Diseño H_{d} en una Vida Util de L años viene dada por la relación.

$$
P_{L}\left(H_{d}\right)=1-\left(1-P_{a}\left(H_{d}\right)\right)^{L}
$$

El Peridod de Retorno T_{r} asociado à la altura de diseño H_{d} está ligado la Probabilidad de Excedencia en una Vida Util de L años a traves de la siguiente relación.

$$
T_{r}=-\frac{L}{\ln \left(1-P_{L}\right)}
$$

1.6 Altura Significante y Periodo de Pico en situacion de temporal.

En este trabajo se ha supuesto que la Altura Significante caracteriza de modo principal la severidad de un temporal. No obstante, la acción de un temporal sobre una extructura tambien depende del Periodo del Oleaje.

Por ello, una vez seleccionados los picos de temporal se establece una relación empírica entre el Periodo de Pico y la Altura Significante del oleaje ajustando por minimos cuadrados una relación del tipo.

$$
E\left(T_{p}\right)=a H_{s}{ }^{c}
$$

Donde $E\left(T_{p}\right)$ es el Valor Esperado o probable del Periodo de Pico para el pico de un temporal de altura significante H_{s}

2 Utilizando la Información de las tablas.

De modo general este informe condensa, del siguiente modo, los resultados del modelo extremal ajustado:

- Gráfico con el ajuste de los valores extremos a una distribución Weibull. En dicho gráfico se representa la siguiente información
- El eje de ordenadas se representa la altura de los temporales
- El eje de abcisas se representa la probabilidad anual de superación.
- Los puntos dibujados representan la altura de los temporales observados
- La recta representa la función de distribución Weibul ajustada.
- La intersección de las lineas verticales punteadas con la recta de ajuste determina las estimas centrales o alturas de retorno asociadas a diferentes periodos de retorno
- La intersección de las lineas verticales con la banda superior permite estimar la incertidumbre existente al estimar las alturas de retorno
- Tabla con resultados asociados a un conjunto de Periodos de Retorno de uso frecuente. Esta tabla incluye
- Lista de Periodos de Retorno
- Alturas de Retorno asociadas
- Bandas Superior de Confianza de las Alturas de Retorno
- Valor Esperado del Periodo de Pico para cada Alturas de Retorno
- Probabilidad de Excedencia de cada Altura de Retorno en una Vida Util de 20 años.
- Probabilidad de Excedencia de cada Altura de Retorno en una Vida Utíl de 50 años.
- Parámetros α (Alfa), β (Beta), γ (Gamma), y Lambda (Lambda) del modelo ajustado.
- Relación entre la Altura Significante de Ola y el Periodo de Pico.

3 Resultados: Boya de Mahón (2838)

REGIMEN EXTREMAL ESCALAR DE OLEAJE

LUGAR:
PARÁMETRO : PROFUNDIDAD :

Mahón
Altura Significante SERIE ANALIZADA: 300.0

P. de Retorno (Años)	20.00	50.00	225.00	475.00
Estima Central de Hs (m)	7.82	8.31	9.06	9.41
Banda Sup. 90% Hs	8.88	9.65	10.86	11.45
Valor Esperado de Tp (s)	12.12	12.43	12.88	13.08
Prob. de Exc. en 20 Años	0.64	0.33	0.09	0.04
Prob. de Exc. en 50 Años	0.92	0.64	0.20	0.10

Parametros del Ajuste POT de Altura Significante

Umbral de Excedencia	$3.50(\mathrm{~m})$	Parametros de la	Alfa $=3.28$
Num. Min. de Dias Entre Picos	5.00	Distribucion Weibull	Beta $=1.50$
Num. Med. Anual de Picos (Lambda)	11.77	de Excedencias	Gamma $=1.53$

Relacion entre Altura Significante (m) y Periodo de Pico (s)

ANEJO $\mathrm{N}^{\circ} 3$
DISEÑO DE CAMPO DE BOYAS

DISEÑO DEL CAMPO DE BOYAS

ÍNDICE

1. Introducción 1
2. Circulo de borneo de cada boya de amarre 1
3. Disposición en planta de los CÍRCULOS de borneo 2
4. Balizamiento del campo de boyas 3

DISEÑO DEL CAMPO DE BOYAS

1. INTRODUCCIÓN.

Para cubrir las necesidades de atraque frente en la Bahía de Fornells se ha estimado que el número ideal de boyas de amarre a disponer es de veinticinco, en base a un somero análisis de demanda y de puntas de esta.

En cuanto a las características de la embarcación media se establece en 7-8 metros la eslora, 2.5 metros la manga, y 1 metro el calado máximo, incluido resguardo, siendo para este tamaño para el que se ha diseñado la instalación.

Por otra parte, tanto para este anejo, como para el de cálculos, se han utilizado los contenidos de las siguientes publicaciones:

- Recomendaciones para el Proyecto de la Configuración Marítima de los Puertos: Canales de Acceso y Áreas de Flotación (ROM 3.1.- 99). Puertos del Estado, 1999.
- Normas Técnicas sobre Obras e Instalaciones de Ayuda a la Navegación. Área de Señales Marítimas. MOPU, 1986.
- Balizamiento de Playas del Mediterráneo. Articulo de Rafael Soler Gayá. Revista de Obras Publicas, Mayo de 1996.

2. CIRCULO DE BORNEO DE CADA BOYA DE AMARRE.

Se entiende como circulo de borneo, a un círculo que define el área circular alrededor de cada boya de amarre utilizado por el barco atracado. Esta área, con centro en la posición teórica vertical de equilibrio perfecto de la boya de amarre, es circular porque el amarre permite la libre orientación del barco, y tiene un radio, dado por la ROM, suma de los siguientes factores:

- Eslora del barco, 7 metros.
- Longitud de amarras, aproximadamente el 50% de la eslora, 3 metros.
- Desplazamiento horizontal de la boya, que en el caso que nos ocupa (ver cálculo de la catenaria de las boyas de amare en el anejo correspondiente) es de unos 4 metros.
- Resguardo, que como mínimo tiene 5 metros.

En total, el radio de borneo, suma de los factores anteriores, es de 19 metros, con lo que la circunferencia de borneo tiene 38 metros de diámetro.

El fondeo ayudado de una maniobra de anclas reduce considerablemente la superficie necesaria, lo que permite, en caso de necesidad el uso de estos espacios por embarcaciones de mayor eslora ayudándose del ancla.

3. DISPOSICIÓN EN PLANTA DE LOS CÍRCULOS DE BORNEO.

Con la finalidad de optimizar el espacio, los atraques se dispondrán modularmente disponiendo tres círculos de borneo con centro en las esquinas de un triángulo equilátero, que se componen en una estructura hexagonal, tal y como se refleja en la figura siguiente:

PROYECTO DE CONCESIÓN DEL FONDEADERO DE MARINA DE FORNELLS EN LA BAHÍA DE FORNELLS. MENORCA (ISLAS BALEARES)

PROYECTO DE CONCESIÓN DEL FONDEADERO DE MARINA DE FORNELLS EN LA BAHÍA DE FORNELLS. MENORCA (ISLAS BALEARES)

TABLA DE CONTENIDO

1. MEMORIA
2. ANEJOS
3. PLANOS
4. PLIEGO DE PRESCRIPCIONES TÉCNICAS
5. PRESUPUESTO

\pm

\min

MEMORIA

MEMORIA

ÍNDICE

1. Consideraciones ambientales y justificación del proyecto
2
2
2. Concepción de las actuaciones.
3. Concepción de las actuaciones.
5
5
4. Batimetria
5. Batimetria
6
6
6. Clima Marítimo
7. Clima Marítimo
6
6
8. Propagación de oleaje.
7
7
9. Diseño del campo de boyas
7
7
10. Cálculos.
11. Cálculos.
8
8
12. Operatividad
13. Operatividad 8
14. Oferta de amarres
9
15. Seguridad y Salud.
9
16. Planos.
10
17. Pliego de Prescripciones Técnicas Particulares. 10
18. Presupuesto. 11

MEMORIA

1. Consideraciones ambientales y justificación del proyecto.

La bahía de Fornells constituye un enclave privilegiado en el sistema portuario de la isla de Menorca. La bahía ofrece un abrigo único en la fachada maritima Norte de la Isla, amenazada únicamente por la tramontana.

Menorca es uno de los principales destinos turísticos de la navegación de recreo, ganando de año en año nuevos adeptos, todo ello en el contexto de que España es el tercer país del mundo más importante como destino turístico.

La isla de Menorca destaca en el ámbito del turismo litoral, dentro de las Islas Baleares, por varias razones muy justificadas, entre las que deben citarse condiciones naturales, clima, orientación, agua mediterránea, condiciones sociales y culturales.

Es bien sabido que la costa, espacio de transición entre los ámbitos terrestre y marítimo, de características bien diferentes, es un ámbito muy variable por su propia naturaleza y además ciertos tramos, dada la presión antrópica, (a la que están sometidos por la ley económica básica de los países de economía de mercado de la oferta y la demanda) de creciente valor económico y financiero.

Es por ello que siendo razonable ocuparse con especial atención de un espacio tan frágil como resulta ser la costa en general, lo es aún más en aquellos tramos que han adquirido un mayor valor como es el caso de Fornells.

La bahía de Fornells posee otra característica que la hace especial, y es su particular ecosistema y la riqueza de su fauna marina, constituyendo un enclave privilegiado en el ecosistema balear. Se caracteriza por su buen estado
de conservación y por un elevado atractivo paisajístico y naturalistico, y esto es válido también para sus fondos, que presentan una gran heterogeneidad y variedad de hábitats

Merece la pena destacar que esta zona de la isla de menorca es la mayor de las tres zonas costeras de las Islas Baleares consideradas reserva marina. Se trata de una amplia bahía de alto valor ecológico con carácter de reserva integral.

La reserva marina del norte de Menorca incluye las aguas interiores comprendidas entre el cap Gros, la isla de los Porros y la punta des Morter. En ella se distinguen tres áreas con diferente nivel de protección: el área A o de reserva integral, el área B donde se podrá autorizar solamente la pesca profesional, y el área C o de amortiguamiento de impactos. Asi mismo, existe una zona de veda temporal para la pesca recreativa. Desde su establecimiento, se ha producido una notable recuperación de la vida marina en la zona

La amplia bahia de Fornells, de fondos predominantemente blandos, presenta unas características ecológicas particulares, con importante presencia de comunidades formadas por las fanerógamas marinas "Cymodocea nodosa" y "Zostera nolti", así como de algas con sistemas rizoidales de fijación como "Caulerpa prolifera", "Flabellia petiolata" y "Halimeda tuna". Una parte de esta bahía fue gravemente degradada por las jaulas flotantes para el engorde de peces que se instalaron en sus aguas a finales de los años 80, y su inclusión dentro de la reserva ha permitido su regeneración natural.

El ámbito litoral, frontera entre los ámbitos terrestre y maritimo es utilizado, tanto por los usuarios del espacio terrestre, bañistas, como por los de ámbito marítimo: navegantes deportivos, buceadores y pescadores. Se encuentran autorizados el buceo, según en qué zonas, y el fondeo de embarcaciones de recreo, siempre que se eviten los campos de posidonia. La pesca profesional está autorizada y regulada para aquellos profesionales adscritos a la cofradía de pescadores de Fornells.

En condiciones de uso limitado por parte de unos y de otros, como ocurre en la mayor parte de las costas del planeta la mayor parte del tiempo, las condiciones naturales permiten el esporádico uso compartido del frágil espacio litoral por todos los escasos usuarios potenciales, siendo necesaria una mayor regulación, y ejecución de infraestructuras.

Actualmente se da una avalancha de embarcaciones que fondean de manera libre e incontrolada en la bahía de Fornells, en época estival, incluso en la zona de la reserva, con el consiguiente daño medioambiental y caos organizativo.

A tal efecto existen actualmente unos pantalanes flotantes de temporada, con autorización provisional por parte de la Dirección General de Costas. No obstante estos pantalanes no son capaces de dar respuesta a la gran demanda existente de atraques, y muestra de ello es la gran lista de espera que tiene el puerto deportivo de Fornells.

Asi el tramo litoral de Bahía de Fornells puede encuadrarse dentro de las calificaciones anteriores.

En la actualidad se produce un fondeo masivo, no regulado ni balizado, de embarcaciones en la bahía de Fornells, tanto de vecinos del municipio como de embarcaciones charter de turistas que recalan o se refugian en la bahía, dadas las excepcionales condiciones de abrigo de la misma. Estos fondeos se producen principalmente en época estival y con buen tiempo, no obstante la escasez de infraestructuras náuticas durante el resto del año hace necesaria una actuación con carácter anual.

Los fondeos libres llenan de muertos el fondo marino de la bahía y la superficie queda llena de boyas que dificultan la navegación, pudiendo llegar a hacerla peligrosa. Por otra parte con el fondeo con anclas se produce el garreo arrastrándose por los fondos de la reserva, además de ofrecer un amarre peor.

La finalidad del presente proyecto es la de regularizar la situación existente de fondeos indiscriminados, organizándolos y concentrándolos en un único punto,
concentrando los muertos y las boyas de amarre, con todas las facilidades para los usuarios y las correspondientes medidas de seguridad y balizamiento.

De este modo se pretende preservar la Reserva Marina, en la parte oriental de la bahía de Fornells y defender el canal de navegación, definido claramente por la batimetría de la bahía.

Además, de definir la obra a realizar, el mediante el presente documento se solicita la concesión de los $360 \mathrm{~m}^{2}$ en tierra destinadas a la zona de varada y las 3.7 Ha . de superficie de agua.

Aunque está en tramitación el deslinde en la bahia de Fornells, y dados los plazos de tramitación de concesiones, se redacta el presente proyecto para iniciar los trámites conducentes a la concesión del fondeadero y zona de varadero.

2. Concepción de las actuaciones.

En primer lugar en este documento se han definido una serie de instalaciones destinadas al fondeo de embarcaciones deportivas, instalaciones éstas que se pretende sean operativas todo el año, y localicen las aguas de fondeo de embarcaciones, permitiendo la separación adecuada de éstas y de las del baño, compatibilizando adecuadamente ambas actividades, evitando el fondeo incontrolado.

En segundo lugar, ha sido necesario definir, de acuerdo a la normativa vigente, una serie de instalaciones de balizamiento para señalar adecuadamente los lugares de fondeo a los barcos usuarios de los mismos así como para separar adecuadamente los diferentes usos, impidiendo los riesgos derivados de una falta de regulación, con respeto total a los derechos y deseos de toda la comunidad de la bahía, así como a la reserva natural de la bahía.

El presente proyecto de regulación de espacios en el ámbito marítimo contempla unas actuaciones con carácter provisional de la instalación de boyas de amarre para veinticuatro embarcaciones de entre 7 y 10 metros de eslora, junto con las instalaciones adecuadas de balizamiento, tanto para embarcaciones, como para el resto de los usos mencionados con anterioridad.

3. Batimetría.

Se ha utilizado para el presente proyecto una batimetria obtenida a partir de la carta náutica de la zona complementada y confirmada con una navegación con sonda digital y posicionamiento visual gracias a la proximidad de ambas orillas, pues el tipo de actuaciones propuestas no justifica estudios especificos al respecto.

La bahía de Fornells cuenta con un canal de entrada de en torno a los diez quince metros de profundidad, hasta la altura del Islote Sargantanes, disminuyendo rápidamente a partir de este punto.

La zona destinada a fondeo, situada entre el paseo marítimo de Fornells y la Punta de Sa Creu, tiene un calado medio de cuatro metros de profundidad.

4. Clima Marítimo.

Para definir las acciones medioambientales intervinientes en los cálculos de las instalaciones proyectadas, en el anejo de Clima Marítimo se han considerado el oleaje, el viento y las mareas en la zona de estudio, según información disponible en la zona, no habiéndose procedido a la toma directa de datos en mar.

El análisis de los datos recopilados adecuado a las necesidades y características del presente proyecto se presenta en el anejo correspondiente.

5. Propagación de oleaje.

La energia de oleaje que entra en la bahía está limitada por la anchura del paso de entrada. Parte de esta energía se pierde en su expansión lateral contra las orillas. En lugar propuesto para el fondeadero la bahía triplica la anchura de la bocana, llegando, por tanto, un oleaje muy suavizado por la refracción y difracción.

Las conclusiones principales son que las únicas zonas descartables en cuanto a la ubicación del proyecto son el canal de entrada a la bahía y la propia entrada, en función del oleaje en temporal.

6. Diseño del campo de boyas.

En el anejo incluido bajo este epígrafe se encuentra recogida la justificación de las dimensiones en planta de la zona de fondeo así como la distancia entre las boyas proyectadas. Además, se definen las condiciones exigibles por motivos de señalización y balizamiento.

En el documento se recoge la ubicación de las veinticuatro boyas de amarre y de las sesenta y cinco boyas de balizamiento dispuestas, para separar las zonas de baño, de las de fondeo y acceso de embarcaciones.

7. Cálculos.

Para definir en detalle los elementos de fondeo y de balizamiento, se analiza en el anejo de cálculos las acciones que determinan el diseño de estos elementos, dimensionándose además todos ellos.

Se ha tomado como embarcación de proyecto una embarcación de $7-8 \mathrm{~m}$ de eslora, 2.5 m de manga y un metro de calado (excepto quillas y horzas).

La profundidad media se ha estipulado en seis metros.

Este dimensionamiento es la base para el presupuesto de las instalaciones proyectadas.

8. Operatividad.

En cuanto a la operatividad de la terminal, en el anejo correspondiente se analizan las condiciones operativas límite debido a los agentes medioambientales imperantes en la zona, comparándose estos con las necesidades debidas a la explotación.

Se concluye que las condiciones medioambientales no afectan la operatividad al lo largo del año, si bien en temporales excepcionales puede ser recomendable desalojarlo.

9. Oferta de amarres

Con este proyecto se pretende dar respuesta a parte de la demanda de atraques existente en la Bahía de Fornells, con fin el de ordenar el fondeo incontrolado, evitando daños a la Reserva Marina.

Bajo estas premisas se ofrece un total de 24 fondeos para embarcaciones de una eslora máxima de diez metros.

Los fondeos serán de uso público con un mínimo del cuarenta por ciento reservados para vecinos o propietarios de Fornells.

10.Seguridad y Salud.

Por ultimo, y en cuanto a anejos incluidos en el documento, en el correspondiente a Seguridad y Salud se establecen las directrices para la prevención de riesgos de accidentes laborales, de enfermedades profesionales y de daños a terceros. Así mismo se estudian las instalaciones de sanidad, higiene y bienestar de los trabajadores durante la obra de las instalaciones proyectadas. Todo ello en obligado cumplimiento de las disposiciones vigentes.

11. Planos.

La memoria y anejos incluidos se complementan con los siguientes planos de proyecto incluidos:

- Situación de la Bahía de Fornells.
- Batimetría.
- Reserva marina integral del Norte de Menorca
- Zona profunda de la bahía
- Determinación de la zona apta para el fondeo
- Planta General
- Detalle de balizamiento
- Superficies originadas

12. Pliego de Prescripciones Técnicas Particulares.

Incluido en el presente proyecto, y como resulta preceptivo, se incluye un Pliego de Prescripciones Técnicas Particulares en donde se recogen todas las instrucciones, normas, prescripciones y especificaciones, que además de lo indicado en la Memoria, Planos y Presupuesto, definen todos los requisitos de las obras del fondeadero.

Este pliego se ha dividido en:

- Descripción de las obras y normas aplicables.
- Condiciones que deben de satisfacer los materiales.
- Ejecución de las obras.
- Medición y abono de las obras.
- Disposiciones generales.

13. Presupuesto.

Realizadas las mediciones correspondientes de todas las unidades de obra que intervienen en el presente proyecto, y tras definir unos precios unitarios a aplicar, el presupuesto en Euros asciende a las cifras siguientes:

| $\begin{array}{c}\text { PRESUPUESTO DE EJECUCIÓN } \\ \text { MATERIAL }\end{array}$ | | DEL FONDEADERO |
| :--- | :--- | :---: |$] 16,656.00$

Madrid, 11 de Marzo de 2008

José Luis Almazán Gárate
Dr. Ingeniero de Caminos, Canales y Puertos
Colegiado $\mathrm{N}^{\circ} 4.656$

ANEJOS

BATIMETRÍA

La bahía de Fornells se encuentra encajada entre dos unidades fisiográficas claramente definidas, la singularidad másica que forma la Mola de Fornells por el Este y el Coll de Sa Cabra por el Oeste (ver plano topográfico), con una anchura a la entrada de 250 metros, y un espejo de agua de 380 Ha .

En la batimetría se pueden observar el canal de entrada a la bahía que llega hasta el centro de la misma, con calados superiores a los diez metros. A ambos lados del canal el fondo se eleva rápidamente quedando en torno a un 60% del espejo de agua en profundidades inferiores a los cuatro metros.

Siguiendo la evolución histórica de la bahía, se puede observar que la acción de la dinámica litoral sobre la morfología de la misma es prácticamente inapreciable, a escala temporal humana.

La elección de la ubicación del fondeadero se ha llevado a cabo buscando un calado mínimo de dos metros, condicionada por evitar la zona de reserva integral, así como el canal de entrada de la bahía.

El tramo de costa elegido cuenta con el abrigo de los bajos que se extienden frente al paseo marítimo de Fornells. Estos bajos constituyen una berma a la profundidad de dos metros, a partir de la cual la pendiente es ligeramente más pronunciada, lugar en que se sitúa el fondeadero con calados entre los dos y ocho metros.

Por otra parte, en el presente proyecto se han tomado, como datos base de batimetría, la correspondiente carta náutica de aproches a la bahía de Fornells, detalle de la cual se adjuntan en el presente anejo.

Asi mismo se ha realizado un modelado digital de la misma, el cual recoge las batimétricas o isobatas de toda la franja litoral en estudio.

Estos datos se han corroborado con una batimetría adicional mediante sonda digital y posicionamiento visual. El posicionamiento es aproximado pero válido gracias a la multitud de referencias visuales, la proximidad de la orilla y el hecho de tratarse de una bahía con os orillas enfrentadas.

Esta batimetria se realizó en Febrero de 2008. En la imagen presentada a continuación, tomada desde la embarcación, se puede observar la zona prevista para la varada de embarcaciones.

ANEJO $\mathrm{N}^{\circ} 2$
CLIMA MARÍTIMO

Clima Marítimo

ÍNDICE

1. OLEAJE. 2
2. VIENTO 7
3. MAREAS 10

CLIMA MARITIMO

1. Oleaje.

Para la representación del oleaje de la zona se han utilizado los datos de las siguientes fuentes:
a) las Recomendaciones para Obras Marítimas, ROM 0.3-91, Zona IX, publicada por el MOPT, Dirección General de Puertos, 1992. La ROM recoge los regimenes medio y extremal para la zona extrapolados a partir de las medidas brutas proporcionadas por dos fuentes, datos escalares de la boya REMRO-Mahón (la posición de la boya es: 39.718° $\mathrm{N}, 4.442^{\circ} \mathrm{O}$, profundidad 25 m), y medidas desde barcos en ruta.

La serie de datos analizados corresponde al periodo comprendido entre los años 1984 y 1990. A continuación se da la hoja de la ROM correspondiente a la zona de Menorca.
(1)
b) Se ha empleado los datos correspondientes a la boya direccional de Mahón, tipo Wavescan, de aguas profundas, ubicada A 300 m de profundidad, con coordenadas: Latitud: $39^{\circ} 43.8^{\prime} \mathrm{N}$, Longitud: $4^{\circ} 25.2^{\prime} \mathrm{E}$

Localización de la boya de Mahón
TABLA DE FRECUENCIAS ANUAL PARA EL OLEAJE COMPUESTO

Dirección:		$\mathrm{Hs}(\mathrm{m})$											Total
		$<=0.5$	1	1.5	2	2.5	3	3.5					
CALMAS													
N	0												0.478
NE	45	3.505	4.195	2.018	1.115	0.266	0.053	0.79	---	--	-	--	33.14
E	90	3.027	6.479	2.762	1.221	0.319	0.159	---	---	--	-	--	11.15
SE	135	3.877	4.567	3.133	1.487	0.159	---	---	---	--	---	--	13.97
S	180	2.124	1.328	0.266	0.266	0.106	---	---				--	13.22
SW	225	1.699	7.169	3.452	1.646	0.159	0.053	--	----	---		---	4.089
W	270	0.537	1.387	1.54	0.584	0.266	0.212	0.053	---	--	---	---	14.18
NW	315	0.637	1.434	1.859	0.69	0.478	0.053	0.053	--	---	--	--	4.567
Total		0.478	35.58	23.47	13.49	5.151	2.602	0.903		---	--	---	5.204
								.903	0.106	0.053	--	---	100

ALTURA COMPUESTA (metros) frente a DIRECCIÓN ASOCIADA A LA ALTURA MÁXIMA.

A continuación se facilitan:

- Rosa de oleaje correspondiente al año 2007 para la altura de ola significante.

$$
\text { ALTURA } \quad(\mathrm{m})
$$

LUGAR	Manon	ANO	2007
T. MUESTREO	HHor.	EFICACIA:	6449%

- Relación de altura de ola - periodo de pico para correspondientes al año 2007 para la altura de ola significante.

Mes		Hs	Tp	Dir		Dia	Hora
Ene		3.9	11.1	8		2	11
Feb		3.4	10.7	357		15	7
Mar		2.1	7	183		29	2
Abr		2.9	7.8	37		14	11
May		3.4	9.6	351		29	5
Jun		3.4	10	5		2	10
Jul		2.8	9.6	5		10	7
Ago		3	9.8	9		31	3
Sep		4.1	11.3	17		5	6
Oct		3.2	9.4	358		10	9

c) La boya de Mahón proporciona información útil en cuanto al oleaje por estar en aguas profundas, no obstante se encuentra en la fachada Suroeste de la Isla mientras que la bahía de Fornells está en la Norte, razón por la cual se han empleado los datos obtenidos a partir del Punto WANA 2081041, situado frente a dicha bahía, interpolados por modelos de propagación del oleaje:

	ALTURA	(m)	
LUGAR	WANA2O8 04^{-}	ANO	2007
T. MUESTREO -	3 Hor .	EFICACIA:	87.57\%

ALTURA	(mi)
I	02109
	91.02
	02.03
	03-03
	O4.08
	Q 5 .00
	06.07
	>07

d) Adicionalmente se incluyen los informes de regímenes medios y extremales de la boya de Mahón para el periodo 1993-2006.

2. Viento,

Para la caracterización del viento de la zona se han utilizado los datos contenidos en las Recomendaciones de Obras Marítimas ROM 0.4-95, Vientos Zona IX, publicada por el MOPT, Dirección General de Puertos, 1995. Esta norma recoge los regímenes medio y extremal para la zona extrapolados a partir de las medidas brutas proporcionadas por dos fuentes, estaciones meteorológicas de media situadas en varios puntos de la costa, y medidas desde barcos en ruta. Los periodos de medida van desde principios de siglo hasta 1987.

También se han empleado los datos de la boya de Mahón, más próxima a la zona en estudio.

A continuación se dan las hojas de la ROM correspondientes a la zona de Menorca.

3. Mareas.

Los niveles de marea considerados son los medidos en el Puerto de Mahón, y son los siguientes:

- Carrera de Marea, 0.8 metros.
- Pleamar Máxima Viva Equinoccial (PMVE), +0.50 metros sobre el nivel 0.00 .
- Bajamar Máxima Viva Equinoccial (BMVE), -0.30 metros sobre el nivel 0.00 .

CLIMA MEDIO DE OLEAJE

Boya de Mahon
Conjunto de Datos: REDEXT

CODIGO B.D.	2838	
LONGITUD	4.442	E
LATITUD	39.718	N
PROFUNDIDAD	300	m

BANCO DE DATOS OCEANOGRÁFICOS DE PUERTOS DEL ESTADO

ÁREA DE MEDIO FÍSICO
ÍNDICE GENERAL 2
Índice General
1 Metodología 3
1.1 Régimen Medio 3
2 Conjunto de datos REDEXT 4
3 Mahon 5
3.1 Tablas Hs-Tp (Anual) 6
3.2 Tablas Hs-Tp (Estacional) 7
3.3 Rosas de Oleaje (Anual) 11
3.4 Rosas de Oleaje (Estacional) 12
3.5 Tablas Hs - Dir. (Anual) 16
3.6 Tablas Hs - Dir. (Estacional) 17
3.7 Regimen Medio de Hs (Anual) 21
3.8 Regimen Medio de Hs (Estacional) 22
3.9 Regimen Medio Direccional Hs (Anual) 24
3.10 Regimen Medio Direccional Hs (Estacional: Dic.- Feb.) 27
3.11 Regimen Medio Direccional Hs (Estacional: Mar.- MAY,) 30
3.12 Regimen Medio Direccional Hs (Estacional: Jun.- Ago.) 33
3.13 Regimen Medio Direccional Hs (Estacional: Set.- Nov.) 36

1 Metodologîa

1.1 Régimen Medio

Se puede definir como régimen medio de una serie temporal al conjunto de estados de oleaje que más probablemente nos podemos encontrar.

Si representaramos los datos en forma de histograma no acumulado, el régimen medio vendría definido por aquella banda de datos en la que se contiene la masa de probabilidad que hay entorno al máximo del histograma.

El régimen medio se describe, habitualmente, mediante una distribución teórica que ajusta dicha zona media o central del histograma. Es decir no todos los datos participan en el proceso de estimación de los parámetros de la distribución teórica, solo lo hacen aquellos datos cuyos valores de presentación caen el la zona media del histograma.

La distribución elegida para describir el régimen medio de las series de oleaje es Weibull cuya expresión es la siguiente.

$$
F_{e}(x)=1-\exp \left(-\left(\frac{x-B}{A}\right)^{C}\right)
$$

El parámetro B es conocido como párametro de centrado y su valor a de ser menor que el menor de los valores justados; A es el parámetro de escala y ha de ser mayor que 0; y , finalmente, C es el parámetro de forma y suele moverse entre 0.5 y 3.5

El régimen medio, generalmente, suele representarse de una forma grafica mediante un histograma acumulado y el correspondiente ajuste teorico, todo ello en una escala especial en la cual Weibull aparece representada como una recta.

Ajustar los datos a una distribución teórica, en vez de utilizar el histograma permite obtener una expresión compacta que suaviza e interpola la información proporcianada por el histograma.

El régimen medio esta directamente relacionado con lo que se denominan condiciones medias de operatividad. Es decir, caracteriza el comportamiento probabilístico del régimen de viento u oleaje en el que por término medio se va desenvolver una determinada actividad influida por uno de estos agentes.

En éste informe se presenta el régimen medio siguiendo diferentes criterios de selección o agrupación de los datos. En primer lugar se presenta el régimen medio sobre la totalidad de los años completos registrados; seguidamente se presentan los régimenes medios estimados sobre los datos agrupados por estaciones climáticas; y, finalmente, y de modo opcional, los regímenes medios para los datos agrupados por direcciones.

2 Conjunto de datos REDEXT

Procedencia y obtencion del conjunto de datos

El conjunto de datos REDEXT está formado por las medidas procedentes de la Red de Boyas de Aguas Profundas de Puertos del Estado, tambien denominada Red Exterior. Esta red unifica, amplia y actualiza las antiguas redes de boyas RAYO y EMOD.

Los boyas de esta red se caracterizan por estar fondeadas lejos de la línea de costa a. gran profundidad (mas de 200 metro de profundidad). Por tanto, las medidas de oleaje de estos sensores no están perturbadas por efectos locales. Por ello, cada boya proporciona observaciones representativas de grandes zonas litorales.

Esta red está compuesta por boyas de tipo Wavescan y SeaWatch. Todas la boyas con independencia del modelo producen datos con cadencia horaria. No obstante, los parametros de oleaje se han calculado sobre series de desplazamientos registradas en intervalos inferior a una hora. En concreto para esta red el periodo de medida es de, aproximadamente, 30 minutos. De modo analogo, los valores de velocidad media del viento estan calculados sobre periodos de 10 minutos. En todos los casos la velocidad del viento se mide a 3 metros sobre la superficie libre del mar.

Es importante señalar que las caracteríticas de estas boyas en cuanto a dotación de sensores han ido evolucionando a lo largo de su historia. En sus orígenes las boyas fondeadas en Cabo Silleiro, Golfo de Cádiz, Gran Canaria, Tenerife Sur, Mar de Alborán, y Cabo de Gata no disponían de sensores de oleaje direccional. Solo desde el año 2003 todas las boyas disponen de este tipo de sensores

A trave de la pagina Web de Puertos del Estado es posible ampliar la información referente a las carecteristicas generales de dicho conjunto de datos mediante el enlace

$$
\text { www.puertos.es }>\text { Oceanografía }>\text { Banco de datos }>\text { Conjuntos de Datos }
$$

o bien conocer mas detaller de la configuracion y lugar de fondeo mediante el enlace www.puertos.es $>$ Oceanografía $>$ Rcdes de Medida $>$ Red de Aguas Profundas

3 Mahon

Conjunto de Datos: REDEXT
Boya de: Mahon
Longitud: 4.442 E
Latitud: 39.718 N
Profundidad: 300 m

3.1 Tablas Hs-Tp (Anual)

Distribución Conjunta de Periodo de Pico y Altura Significativa

Lugar: Mahon
Periodo: Anual
Serie Analizada ; Abr. 1993 - Dic. 2006

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (mi)	Tp (s)											Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	>10.0	
≤ 0.5	\checkmark	-	2.197	5.569	7.639	5.201	1.808	- 625	. 097	. 046	. 051	23.235
1.0	\sim	-	. 123	3.473	7.310	9.613	9.139	1.563	. 152	. 089	. 089	31.550
1.5	-	-	-	. 093	1.808	3.680	6.744	5.793	. 731	. 169	. 008	19.026
2.0	-	\checkmark	-	. 004	. 123	1.061	2.358	5.146	1.893	. 646	. 025	11.256
2.5	-	-	-	-	. 004	. 152	. 668	2.430	2.142	1.001	. 030	6.427
3.0	-	-	-	-	-	. 004	. 194	. 879	1.259	1.234	. 148	3.718
3.5	*	-	-	$=$	-	-	. 034	. 262	. 499	1.023	. 152	1.969
4.0	-	\checkmark	-	-	-	-	. 008	. 076	. 182	558	. 292	1.115
4.5	-	-	-	-	-	\sim	-	. 017	.076	. 376	. 275	.744
5.0	-	-	-	-	\cdots	-	-	. 004	. 021	. 169	. 270	. 465
>5.0	-	\cdots	-	-	-	-	-	-	. 008	. 123	. 363	. 494
Total	-	-	2.320	9.139	16,884	19,711	20.953	16.796	7.060	5.434	1.703	100%

3.2 Tablas Hs-Tp (Estacional)

Distribución Conjunta de Periodo de Pico y Altura Significativa

Lugar: Mahon

Periodo : Dic. - Feb.

Serie Analizada ; Abr. 1993 - Dic. 2006

Tabla. Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (m)	Tp (s)											Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7:0	8.0	9.0	10.0	> 10.0	
≤ 0.5	-	-	887	2.809	3.950	3.274	1.204	. 275	. 106	. 042	169	12.717
1.0	\checkmark	-	. 021	2.704	5.978	6.464	6.316	1.542	. 296	. 190	. 211	23.722
1.5	-	-	-	. 084	1.880	4.225	6.865	6.168	. 993	296	. 042	20.553
2.0	-	-	-	-	. 169	1.563	3.105	5.556	2.704	. 993	. 021	14.121
2.5	-	-	-	-	-	211	1.162	3.549	3.338	1.627	. 084	9.970
3.0	-	\sim	-	-	-	-	401	1.521	2.366	2.429	. 465	7.182
3.5	-	-	-	-	-	-	. 021	. 570	1.267	2.134	. 380	4.373
4.0	-	-	-	-	-	-	. 021	. 190	. 422	1.627	. 613	2.873
4.5	-	-	-	-	-	-	-	. 063	.211	. 929	760	1.965
5.0	=	-	-	-	\checkmark	-	-	. 021	. 021	. 486	. 676	1.204
>5.0	-	-	-	-	-	-	-	-	. 021	. 338	. 972	1.331
Total	-	-	. 908	5.598	11.977	15.737	19.096	19.455	11.745	11.090	4.394	100%

Tablas Hs-Tp (Estacional)

Distribución Conjunta de Periodo de Pico y Altura Significativa

Lugar: Mahon
Periodo : Mar. - May.

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (m)	$\mathrm{Tp}(\mathrm{s})$											Total
	≤ 2.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10,0	>10.0	
≤ 0.5	-	$-$	2.163	4.876	6.894	6.587	2.212	. 678	. 129	. 032	. 048	23.620
1.0	-	-	.129	2.874	6.087	8.444	10.446	1.986	. 194	. 161	. 161	30.481
1.5	-	-	-	.129	1.776	2.922	6.571	6.797	1.001	. 307	-	19.503
2.0	-	-	-	-	.178	. 936	2.486	5.102	2.196	. 936	. 048	11.882
2.5	-	-	-	-	. 016	. 178	. 597	2.325	2.341	1.372	. 016	6.845
3.0	-	-	-	-	-	. 016	. 194	. 904	1.001	1.211	. 048	3.374
3.5	-	-	-	-	-	-	.065	. 274	. 420	1.179	. 145	2.083
4.0	\sim	-	-	-	-	-	. 016	.065	. 210	. 371	468	1.130
4.5	-	-	-	-	-	-	-	-	. 032	. 307	. 307	. 646
5.0	-	-	-	-	$=$	-	-	-	\%	. 081	. 178	. 258
>5.0	-	\checkmark	-	\sim	-	-	-	-	-	. 032	. 145	. 178
Total	-	\checkmark	2,293	7.879	14.950	19.083	22.586	18.130	7.523	5.990	1.566	100%

Tablas Hs-Tp (Estacional)
Distribución Conjunta de Periodo de Pico y Altura Significativa
LUGAR: Mahon

Periodo: Jun. - Ago.

Serie Analizada : Abr. 1993 - Dic. 2006

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (m)	$\operatorname{Tp}(\mathrm{s})$											Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9,0	10.0	>10.0	
≤ 0.5	-	-	3.705	8.966	11.417	6.583	2.135	. 868	. 014	-	-	33.687
1.0	-	$=$. 193	4.380	9.324	12.009	10.136	1.446	. 083	. 028	-	37.598
1.5	-	-	-	. 096	1.556	3.140	6.666	4.531	. 234	. 069	-	16.293
2.0	-	-	-	. 014	. 028	. 510	1.487	4.187	. 964	. 248	-	7.437
2.5	.	-	\sim	-	-	. 028	. 220	1.171	1.005	. 262	-	2.686
3.0	-	-	-	-	-	-	. 014	. 372	. 510	. 565	. 041	1.501
3.5	-	-	\sim	-	-	-	. 014	. 096	. 096	. 303	. 055	. 565
4.0	-	-	-	-	-	-	-	. 028	. 014	. 110	. 028	. 179
4.5	-	-	-	-	-	\sim	-	-	=	. 028	-	. 028
5.0	-	-	\sim	-	-	-	-	-	-	-	-	-
>5.0	.	-	\checkmark	\checkmark	-	-	-	-	. 014	. 014	-	. 028
Total	-	-	3.898	13.455	22.325	22.270	20,672	12.698	2.933	1.625	. 124	100%

Tablas Hs-Tp (Estacional)

Distribuoión Conjunta de Periodo de Pico y Altura Significativa

Lugar : Mahon

Periodo : Sep. - Nov.

Serie Analizada: Abr. 1993 - Dic. 2006

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en \%

Hs (m)	$\operatorname{Tp}(\mathrm{s})$											Total
	≤ 1.0	220	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	>10.0	
≤ 0.5	\checkmark	-	1.369	4.235	6.663	3.468	1.442	. 548	. 164	. 128	. 018	18.036
2.0	-	-	. 110	3.614	T. 174	10.478	8.781	1.260	. 073	-	. 018	31.508
1.5	-	-	-	0.55	2.118	4.783	6.937	6.006	. 858	. 037	-	20.792
2.0	-	-	-	-	. 146	1.497	2.720	6.115	2.081	. 548	. 037	13.143
2.5	-	-	-	-	-	. 237	. 913	3.249	2.391	1.022	. 037	7.850
3.0	-	-	-	-	-	\checkmark	. 256	. 968	1.588	1.114	. 128	4.053
3.5	-	-	-	-	-	\checkmark	. 037	. 201	. 456	. 840	. 091	1.625
4.0	-	-	-	-	-	-	-	. 055	.164	. 438	. 164	. 821
4.5	-	-	-	-	-	-	-	. 018	.120	438	. 183	. 748
5.0	-	-	-	-	-	\sim	-	-	. 073	.219	. 383	. 675
>5.0	\checkmark	-	\checkmark	-	\sim	-	-	-	-	. 183	. 566	. 748
Total	\checkmark	\%	1.479	7.904	16.101	20.464	21.084	18,419	7.959	4.965	1.625	100%

3.3 Rosas de Oleaje (Anual)

Rosa de Altura Significativa
Lugar: Mahon
Periodo : Anual
Intervalo de Calmas : 0-0.2
Serie Analizada: Abr. 1993 - Dic. 2006 Porcentaje de Calmas : $4,26 \%$

Altura Significativa (m)

$$
\begin{gathered}
0.2-00 \\
0.5-1.0 \\
1.0-1.5 \\
1.5-2.0 \\
2.0-2.5 \\
>2.5
\end{gathered}
$$

3.4 Rosas de Oleaje (Estacional)

Rosa de Altura Significativa
Lugar: Mahon
Periodo: Dic. - Feb. Serfe Analizada: Abr. 1993 - Dic. 2006
Intervalo de Calmas: 0-0.2
Porcentaje de Calmas : 2.21%

Rosas de Oleaje (Estacional)

Rosa de Alitura Significativa

Lugar: Mahon
Periodo : Mar. - May.
Intervalo de Calmas: $0-0.2$

Serie Analizada : Abr. 1993 - Dic. 2006

Porcentaje de Calmas : 3.97%

Rosas de Oleaje (Estacional)

Rosa de Altura Significativa
Lugar: Mahon
Periodo : Jun. - Ago. Serie Analizada: Abr. 1993-Dic. 2006
Intervalo de Calmas : 0-0.2
Porgentaje de Calmas : 6.94%

Rosas de Oleaje (Estacional)

Rosa de Altura Significativa

Lugar: Mahon

Periodo: Sep. - Nov.
Intervalo De Calmas : 0-0.2
Serie Analizada: Abr. 1993 - Dic. 2006
Porcentaje de Calmas : 2.82%

3.5 Tablas Hs - Dir. (Anual)

Distribución Conjunta de Dirección y Altura Significativa

LuGAR: Mahon
Periodo : Anual
Serie Analizada : Abr. 1993 - Dic. 2006

Tabla Altura Significativa (Hs) - Dirección en \%

Direcciót		Hs (m)												Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5					
CALMAS		4.258						3.0	3.5	4,0	4.5	5.0	>5.0	
N	0.0		1.631	4.735	4.726	4.061								4.258
NNE	22.5		1.899	3.530	2.185	1.150	2.924 656	1.825 351	1.072	.702	. 444	. 273	. 249	22.642
NE	45.0		1.712	1.714	. 758	. 476	. 656	. 351	- 268	. 143	. 083	.069	069	10.404
ENE	67.5		1.150	1.220	.758 .587	.476 .273	.176 .139	. 106	. 069	. 032	. 023	-	. 042	5.137
E	90.0		1.201	1.598	. 845	. 374	-139	088	. 028	. 009	. 005	-	,	3.497
ESE	112.5		1.991	3.359	.845 1.695	.374 .577	. 226	-115	.014	. 032	,009	. 005	\sim	3.407 4.421
SE	135.0		2.615	3.493	1.197	.577 .286	.226 .079	. 055	. 065	. 032	.005	-	-	8.006
SSE	157.5		1.793	1.626	. 328	. 206	. 079	. 018	. 005	\sim	-	-	-	7.692
s	180.0		1.123	. 966	. 277	. 111	018	-	. 005	-	005	-	-	3.858
SSW	202.5		. 864	2.190	. 970	.111 .490	.069 .152	. 023	027	-	\sim	-	005	2.573
BW	225,0		. 979	3.980	2.352	.490 1.548	. 152	. 089	. 023	. 009	-	-	-	4.782
WSW	247.5		. 564	1.095	r 864	1.048 .508	.693 .356	. 407	. 134	. 051	. 018	. 005	. 018	9.184
W	270.0		. 328	. 716	. 393	. 508	. 356	. 148	.042	. 023	. 005	-	. 023	3.627
WNW	292.5		. 240	. 573	. 323	. 231		. 083	.037	. 009	. 009	. 005	-	1.963
NW	315.0		. 282	. 716	. 444	. 208	-148	. 060	. 028	. 005	. 009	-	-	1.617
NNW	337.5		.601	1.118	. 919	. 513	+231 .346	.069 .356	. 055	. 005	. 009	-	-	2.019
Total		4.258	19.002	31.628	18.863	11.148	. 346	. 356	. 180	. 074	. 079	. 079	. 055	4.320
						0.065	3.788	2.024	1.127	. 702	. 434	.462	100\%	

3.6 Tablas Hs - Dir. (Estacional)

Distribución Conjunta de Dirección y Altura Significativa

Lugar: Mahon
Periodo : Dic. - Feb.
Serie Analizada: Abr. 1993 - Dic. 2006

Tabla Altura Sigaificativa (Hs) - Dirección en \%

Dirección	Hs (m)												Total
	≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	>5.0	
GALMAS	2.212												2.212
N 0.0		. 885	2.389	3.296	3.495	3.583	2.875	2.493	1. 747	1.261	. 730	. 708	23.402
NNE 22.5		1.239	2.345	2.477	2.101	1.659	1.040	. 907	. 509	. 288	. 265	. 243	13,072
NE $\quad 45.0$		1.128	2.300	1.172	. 995	. 420	. 288	. 221	. 133	. 088	-	. 022	6.768
ENE 67.5		. 774	1.150	. 951	. 553	. 310	. 155	-	. 022	. 022	-	-	$3.93{ }^{7}$
E 90.0		. 398	. 597	. 5553	. 442	. 464	. 199	044	. 066	-	. 022	-	2.787
ESE 112.5		. 796	1.637	1.349	442	. 066	.111	. 044	. 022	.	-	-	4.468
SE $\quad 135.0$. 708	1.150	. 619	. 398	. 088	-	-	-	-	-	-	2.964
SSE 157.5		. 464	. 752	. 221	. 111	,044	-	-	-	-	-	-	1.593
\$ 180.0		. 597	. 619	. 288	.133	.066	.044	-	-	-	-	-	1.747
SSW 202.5		. 509	2.632	1.371	. 730	155	. 265	. 022	. 022	-	-	-	5.707
SW 225.0		.907	3.141	3.473	2.168	. 995	. 951	. 420	. 155	. 044	. 022	-	12.276
WSW 247.5		.796	1.261	1.416	. 907	-. 553	. 199	. 066	. 044	. 022	-	-	5.264
W 270.0		. 531	1.283	. 375	. 420	. 199	. 111	. 111	-	-	.	-	3.229
WNW 292.5		. 376	. 863	. 398	. 354	-243	. 088	. 022	-	-	-	-	2.315
NW 315.0		. 288	. 885	. 597	. 221	. 619	. 044	.044	. 022	-	-	-	2.721
NNW 337.5		. 487	.951	1.305	575	. 597	. 641	.177	. 177	-243	. 155	. 199	5.508
Total	2.212	10.883	23.955	20.062	14.046	10.064	7.012	4.512	2.920	1.969	1.194	1.172	100%

TABLAS HS - DIR. (Estadional)

Distribución Conjunta de Dirección y Altura Significativa

LUGAR: Mahon

Periodo : Mar. - May.

Serie Analizada: Abr. 1993 - Dic. 2006

Tabla Altura Significativa (Hs) - Dirección en \%

Dirección		$\mathrm{Hs}(\mathrm{m})$												Total
cammas		≤ 0	0.5	1.0	1.5	2.0	2.5	3.0	3.5					
		3.968						1.0	3.5	4.0	4.5	5.0	>5.0	
N	0.0		1.625	3.739	4.211									3.968
NNE	22.5		1.415	2.551	1.538	3.634 1.048	2.621 524	1.293	.716	. 612	. 315	. 175	. 157	3.968 19.098
NE	45.0		1.368	1.468	. 6.581	1.048 472	. 524	. 245	. 192	. 087	. 052	. 017	457	19.098
ENE	67.5		1.276	1.468 .891	.681 .507	-472	175	. 087	. 070	.017	. 017	.	-	7.671
E	90.0		1.310	1.608	. 507	. 280	.192	. 122	. 017	.017	-	-	-	4.351
ESE	112.5		2.534	3.547	. 81805	+419	. 315	. 192	. 017	070	035			3.302
SE	135.0		2.638	3.634	1905	1.031	. 577	. 087	. 192	.105	. 017	-	-	4.810
SSE	157.5		2.062	3.634 1922	1.276	. 332	. 070	.052	. 017			-	-	9.945
S	180.0		1.485	1.922	. 419	. 087	017	-	. 017			-	-	8.020
SsW	202.5		1.310	1.276	. 280	. 052	. 087	017	\sim			-	\sim	4.626
SW	22.5 .0		1.310 1.136	2.656	1.398	. 542	2.25	. 052	. 017	01	-	-	-	3.198
WSw	247.5		.136 .384	3.233	3.145	1.887	. 909	. 454	. 122	. 052	-	-	-	6.298
W	270.0		$\begin{array}{r}-384 \\ \hline 192\end{array}$	1.171	-909	. 489	. 454	175	. 070		.017	-	-	10.956
WNW	292.5		.192 .140	. 734	.437	. 349	. 140	.140	035		-	-	-	3.669
Nw	315.0		.140 .245	. 751	. 612	. 349	. 175	. 052	. 070	. 01	-	-	-	2.044
NNW	337.5		.245 .594	. 647	. 489	. 280	. 105	. 035	. 087		. 035	-	-	2.184
Total			. 594	-891	. 786	. 559	. 315	. 332	. 367	. 070	. 017	-	$-$	1.905
		3.968	9.710	30.718	19.465	11.812	6.919	3.337	2.009	1.08	. 070	. 052	-	4.036
									1.083	. 577	. 245	157	100\%	

Tablas Hs - Dir. (Estacional)
Distribución Conuunta de Dirección y Altura Significativa
Lugar: Mahon
Periodo : Jun. - Ago.
Serie Analizada : Abr. 1993 - Dic. 2006

Tabla Altura Significativa (Hss) - Dirección en \%

Dirección		Hs (m)												Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0				
Calmas		6.942									4.5	5.0	≥ 5.0	
N	0.0		2.592	8.037	7.071									6.942
NNE	22.5		3,236	5.430	2.316	$\begin{array}{r} .8(11 \\ 522 \end{array}$	$\begin{array}{r} 2.117 \\ 092 \end{array}$	$\begin{array}{r} 1.181 \end{array}$	429	153	031	-	-	26.413
NE	45.0		2.500	1.472	. 215	. 046	. 015		. 015	-	-	-	-	11.672
Ene	67.5		1.396	1.334	,245	,		. 015	. 046	-	-	-	-	4.249
E	90.0		1.779	2.040	. 429	. 107	. 081	. 015	. 046	-	-	-	-	3.037
ESE	112.5		2.562	8.057	1,365	. 261	. 015	-015	-	-	-	-	-	4.402
SE	135.0		4.172	4.908	. 966	. 061	-615	-	-	-	-	-	-	8.160
SSE	157.5		2.899	2.101	. 322	. 031	-	-	-	-	-	-	-	10.108
s	180.0		1.580	. 982	. 199	. 046	-	-	-	-	-	-	-	5.353
SSW	202.5		. 859	1.002	491	. 107	031	-	-	-	-	-	-	2.807
SW	225.0		1.089	2.270	. 874	. 899	. 138	061	-	-	-	$=$	-	3.390
WSW	247.5		. 506	. 675	. 215	. 092	. 046	. 01	-	-	-	-	-	4.832
W	270.0		. 261	. 353	. 169	. 046	. 015	-	-	-	-	-	-	1.534
WNW	292.5		. 169	. 307	123	. 046	. 046			-	-	-	-	-844
Nw	315.0		. 353	. 859	. 261	. 092	. 046			-	-	-	-	. 706
NNW	337.5		. 675	1.426	. 818	. 475	. 153	. 184	. 107		-	-	-	1.657
Total		6.942	26.627	38.054	16.075	7,132	2.746	1.580	. 598	. 184	-	-	. 031	3.896
										184	. 031	-	. 031	100%

Tablas Hs - Dir. (Estacional)

Distribución Conjunta de Dirección y Aurura Significativa

Lugar: Mahon

Periodo: Sep. - Nov.

Serie Analizada: Abr. 1993 - Dic. 2006

Tabla Altura Significativa (Hs) - Dirección en \%

Dirección		$\mathrm{Fs}(\mathrm{m})$												Total
		≤ 0.2	0.5	1.0	1.5	2.0	9.5	3.0	3.5	4.0	4.5	5.0	>5.0	
CALMAS		2.820												2,820
N	0.0		1.046	3.670	3.526	4.100	3.752	2.337	1.087	. 574	. 390	. 328	. 267	21.076
NNE	22.5		1.292	3.239	2.501	1.230	. 636	. 226	. 103	. 062	. 041	. 041	. 082	9.451
NE	45.0		1.743	1.784	1.189	. 574	. 164	-103	.021	-	-	-	. 164	5.741
ENE	67.5		1.025	1.518	. 800	. 369	.108	. 082	. 041	-	-	-	-	3.936
E	90.0		1.046	1.927	1.640	. 615	. 164	. 082	-	-	-	-	-	5.474
DSE	112.5		1.702	3.936	2.214	. 595	. 246	. 041	. 021	-	-	-	-	8.754
SE	135.0		3.276	3.608	1.948	. 431	.185	. 021	-	-	-	-	-	8.467
SSE	157.5		1.230	1.456	. 328	. 123	. 021	-	-	-	. 021	-	-	3.178
s	180.0		. 574	.902	. 369	. 246	. 144	. 041	-	-	-	-	021	2.296
SSW	202.5		. 677	1.620	. 738	. 718	. 205	. 062	. 062	-	-	-	\checkmark	4.080
Sw	225.0		.718	3.485	2.958	2.112	. 902	. 308	062	. 021	. 021	\sim	. 082	10.067
WSW	247.5		. 636	1.415	1.169	. 718	. 472	. 267	. 041	. 041	-	-	. 103	4.859
W	270.0		. 390	. 656	.472	. 287	.185	. 103	. 021	. 021	. 041	021	-	2.194
WNW	292.5		. 328	. 451	185	. 236	, 164	. 103	. 021	. 021	\sim	-	-	1.497
NW	315.0		. 226	. 451	. 492	.267	. 267	. 164	. 103	-	. 0221	-	-	1.989
NNW	337.5		. 615	1.128	. 861	. 451	-410	. 349	. 062	. 041	. 041	. 141	021	4.121
Total		2.820	15.520	31.245	20.789	13.060	8.016	4.285	1.640	. 779	. 574	. 533	738	100%

3.7 Regimen Medio de Hs (Anual)

ANUAL

3.8 Regimen Medio de Hs (Estacional)

Diciembre-Febrero

Marzo-Mayo

Regimen Medio de Hs (Estacional)

Junto-Acosto

Septiembre-Noviembre
REGIMEN MEDIO DE ALTURA SIGNIFICATIVA
LUGAR:
SERIE:
PERIODO: Abr. 1993 - Dic. 2006
Sep. - Nov.

[^1]
3.9 Regimen Medio Direccional Hs (Anual)

Regimen Medio Direccional Hs (Anual)

SSE

SW

WSW

Regrmen Medio Direccional Hs (Anual)

NNW

3.10 Regimen Medio Direccional Hs (Estacional: Dic.-Feb.

ENE

ESE

Regimen Medio Direccional Hs (Estacional: Dic.-Feb.)

SSW
SW

WSW

Regimen Medio Direccional Hs (Estacional: Dio.-Feb.)

3.11 Regimen Medio Direccional Hs (Estacional: Mar.-May.)

ESE

Regimen Medio Direccional Hs (Estacional: Mar.-May.)

SW

WSW

Regimen Medio Direccional Hs (Estacional: Mar.-May.)

3.12 Regimen Medio Direccional Hs (Estacional: Jun.-Ago.

ENE

ESE

Regimen Medio Direccional Hs (Estacional: Jun.-Ago.)

SSE

WSW

Regrmen Medio Direccional Hs (Estacional: Jun.-Ago.)

3.13 Regimen Medio Direccional Hs (Estacional: Set.-Nov.

NE

ENE

ESE

Regimen Medio Direccional Hs (Estacional: Set.-Nov.)

SSW

Regimen Medio Direccional Hs (Estacional: Set.-Nov.)

NNW

MINISTERIO DE FOMENTO

Puertos del Estado

EXTREMOS MAXIMOS DE OLEAJE (ALTURA SIGNIFICANTE)

Boya de Mahón

CODIGO B.D. 2838

LONGITUD	4.442	E
LATITUD	39.718	N
PROFUNDIDAD	300	m
PERIODO	1993	2005

BANCO DE DATOS OCEANOGRÁFICOS
DE PUERTOS DEL ESTADO

NOTA:

El presente documento ha sido elaborado utilizando datos procedentes del Banco de Datos Oceanográficos de Puertos del Estado.

Los datos utilizados proceden tanto de las Redes de Medida como de los Modelos con los que cuenta Puertos del Estado. Dichos datos han sido almacenados tras aplicar controles de calidad y procesos de validación que garanticen la mayor fiabilidad posible.

Los resultados contenidos en este documento tiene carácter consultivo u orientativo, por lo que en ningún caso Puertos del Estado se hará valedor o responsable de las consecuencias que se pudieran derivar de su uso.
Índice General
1 Conceptos y Formulas Utiles 4
1.1 Régimen Extremal 4
1.2 Temporal. Picos sobre un Umbral 4
1.3 Probabilidad Anual de Excedencia 5
1.4 Periodo de Retorno 5
1.5 Vida Util y Probabilidad de Excedencia de la Altura de Diseño. 6
1.6 Altura Significante y Periodo de Pico en situacion de temporal. 6
2 Utilizando la Información de las tablas. 7
3 Resultados: Boya de Mahón (2838) 8

1 Conceptos y Formulas Utiles

1.1 Régimen Extremal

La seguridad y la operatividad de una instalación en la costa puede estar condicionada por la acción del oleaje en situación de temporal. Es decir, en situaciones donde la altura del olaje alcanza una intensidad poco frecuente.

Con el fin de acotar el riesgo que corre una instalación, debido a la acción del oleaje, es necesario tener una estimación de la frecuencia o probabililidad con la que se presentan temporales que superen una cierta Altura Significante de ola

Un régimen extremal de oleaje, es precisamente, un modelo estadístico que describe la probabilidad con la que se puede presentar un temporal de una cierta altura de riesgo.

1.2 Temporal. Picos sobre un Umbral

En este informe se denomina temporal a aquella situación durante la cual la altura del oleaje supera un cierto umbral. Se supone, ademas, que el tiempo mínimo que transcurre entre la aparición de dos temporales independientes es de 5 dias.

Un temporal queda representado por el pico o valor máximo de altura alcanzado por el oleaje durante un periodo de 5 dias.

El método de selección de temporales descrito se conoce como POT (Peak Over Threshold). La figura superior ilustra como se realiza la selección de los valores de altura que representan el comportamiento extremal de una serie.

1.3 Probabilidad Anual de Excedencia

La probalidad de que el mayor temporal ocurrido en un an̄o tenga una Altura Significante superior un cierto valor H_{a} prestablecido esta dado por la expresión,

$$
P_{a}(x)=1-e^{-\lambda\left(1-F_{w}\left(H_{a}\right)\right)}
$$

Donde " λ " es el numero medio de temporales ocurridos en un año, y $F_{i \omega}$ es la distribución Weibull de excedencias cuya expresión es

$$
F_{w}\left(H_{a}\right)=1-\exp \left(-\left(\frac{H_{a}-\alpha}{\beta}\right)^{7}\right)
$$

Los valores de los parametros λ, α, β y γ se proporcionan en la seccion de resultados.

1.4 Periodo de Retorno

El numero de años que en promedio transcurren entre temporales que superan un cierto valor de Altura Significante H_{r}, se denomina Periodo de Retorno T_{r} asociado a la Altura de Retorno H_{r}.

La relación entre T_{r} y H_{r} estdada por la siguiente expresión

$$
T_{T}=\frac{1}{P_{a}\left(H_{r}\right)}
$$

Donde P_{a} es la Probabilidad Anual de Excedencia. Sustituyendo P_{a} por su expresión se obtiene la siguiente relación aproximada valida para valores de T_{r} superiores a. 10 años

$$
H_{r}=\beta\left(-\ln \left(\frac{1}{\lambda T_{r}}\right)\right)^{\frac{1}{\gamma}}+\alpha
$$

El Periodo de Retorno es un modo intuitivo de evaluar como de "raro" o poco frecuente es un suceso. No obstante, es muy importante recordar que T_{r} es un tiempo promedio. De hecho, de modo general, la probabilidad de que la Altura de Retorno H_{r} asociada al Periodo de Retorno T_{r} se supere antes de T_{r} años tiende al valor 0.64.

1.5 Vida Util y Probabilidad de Excedencia de la Altura de Diseño.

Para garantizar un cierto nivel de seguridad en una obra expuesta a la acción del oleaje es necesario proyectarla de modo que este acotada la probabilidad de que, durante un tiempo predeterminado, pueda fallar por excedencia de la Altura de Diseño. La especificación del grado de seguridad conduce a los siguientes conceptos

- Altura de Diseño: Al proyectar una obra se dimensiona de modo que sea capaz de soportar la acción de temporales con altura menor o igual a. la Altura de Diseño:
- Vida Util: La Vida Util de un proyecto es el periodo de tiempo durante el cual es necesario garantizar la permanencia en servicio de una instalacion. En el caso de una obra en ejecución la vida util es el tiempo esperado para el desarrollo de la obra.
- Probabilidad de Excedencia: La Probabilidad de Excedencia es la probabilidad de que almenos un temporal supere la Altura de Diseño dentro del tiempo de Vida Util.

La determinación de la. Altura de Diseño, y por tanto, el nivel de seguridad, se realiza especificando el valor admisíble de la Probabilidad de Excedencia de la Altura de Diseño durante el tiempo de Vida Util. A su vez la. Vida Util y la Probabilidad de Excedencia admisible se determinan en funcion de los costos economicos y sociales de un posible fallo.

La Probabilidad de Excedencia P_{L} de la Altura de Diseño H_{d} en una Vida Util de L años viene dada por la relación.

$$
P_{L}\left(H_{d}\right)=1-\left(1-P_{a}\left(H_{d}\right)\right)^{L}
$$

El Peridod de Retorno T_{r} asociado à la altura de diseño H_{d} está ligado la Probabilidad de Excedencia en una Vida Util de L años a traves de la siguiente relación.

$$
T_{r}=-\frac{L}{\ln \left(1-P_{L}\right)}
$$

1.6 Altura Significante y Periodo de Pico en situacion de temporal.

En este trabajo se ha supuesto que la Altura Significante caracteriza de modo principal la severidad de un temporal. No obstante, la acción de un temporal sobre una extructura tambien depende del Periodo del Oleaje.

Por ello, una vez seleccionados los picos de temporal se establece una relación empírica entre el Periodo de Pico y la Altura Significante del oleaje ajustando por minimos cuadrados una relación del tipo.

$$
E\left(T_{p}\right)=a H_{s}{ }^{c}
$$

Donde $E\left(T_{p}\right)$ es el Valor Esperado o probable del Periodo de Pico para el pico de un temporal de altura significante H_{s}

2 Utilizando la Información de las tablas.

De modo general este informe condensa, del siguiente modo, los resultados del modelo extremal ajustado:

- Gráfico con el ajuste de los valores extremos a una distribución Weibull. En dicho gráfico se representa la siguiente información
- El eje de ordenadas se representa la altura de los temporales
- El eje de abcisas se representa la probabilidad anual de superación.
- Los puntos dibujados representan la altura de los temporales observados
- La recta representa la función de distribución Weibul ajustada.
- La intersección de las lineas verticales punteadas con la recta de ajuste determina las estimas centrales o alturas de retorno asociadas a diferentes periodos de retorno
- La intersección de las lineas verticales con la banda superior permite estimar la incertidumbre existente al estimar las alturas de retorno
- Tabla con resultados asociados a un conjunto de Periodos de Retorno de uso frecuente. Esta tabla incluye
- Lista de Periodos de Retorno
- Alturas de Retorno asociadas
- Bandas Superior de Confianza de las Alturas de Retorno
- Valor Esperado del Periodo de Pico para cada Alturas de Retorno
- Probabilidad de Excedencia de cada Altura de Retorno en una Vida Util de 20 años.
- Probabilidad de Excedencia de cada Altura de Retorno en una Vida Utíl de 50 años.
- Parámetros α (Alfa), β (Beta), γ (Gamma), y Lambda (Lambda) del modelo ajustado.
- Relación entre la Altura Significante de Ola y el Periodo de Pico.

3 Resultados: Boya de Mahón (2838)

REGIMEN EXTREMAL ESCALAR DE OLEAJE

LUGAR:
PARÁMETRO : PROFUNDIDAD :

Mahón
Altura Significante SERIE ANALIZADA: 300.0

P. de Retorno (Años)	20.00	50.00	225.00	475.00
Estima Central de Hs (m)	7.82	8.31	9.06	9.41
Banda Sup. 90% Hs	8.88	9.65	10.86	11.45
Valor Esperado de Tp (s)	12.12	12.43	12.88	13.08
Prob. de Exc. en 20 Años	0.64	0.33	0.09	0.04
Prob. de Exc. en 50 Años	0.92	0.64	0.20	0.10

Parametros del Ajuste POT de Altura Significante

Umbral de Excedencia	$3.50(\mathrm{~m})$	Parametros de la	Alfa $=3.28$
Num. Min. de Dias Entre Picos	5.00	Distribucion Weibull	Beta $=1.50$
Num. Med. Anual de Picos (Lambda)	11.77	de Excedencias	Gamma $=1.53$

Relacion entre Altura Significante (m) y Periodo de Pico (s)

ANEJO $\mathrm{N}^{\circ} 3$
DISEÑO DE CAMPO DE BOYAS

DISEÑO DEL CAMPO DE BOYAS

ÍNDICE

1. Introducción 1
2. Circulo de borneo de cada boya de amarre 1
3. Disposición en planta de los CÍRCULOS de borneo 2
4. Balizamiento del campo de boyas 3

DISEÑO DEL CAMPO DE BOYAS

1. INTRODUCCIÓN.

Para cubrir las necesidades de atraque frente en la Bahía de Fornells se ha estimado que el número ideal de boyas de amarre a disponer es de veinticinco, en base a un somero análisis de demanda y de puntas de esta.

En cuanto a las características de la embarcación media se establece en 7-8 metros la eslora, 2.5 metros la manga, y 1 metro el calado máximo, incluido resguardo, siendo para este tamaño para el que se ha diseñado la instalación.

Por otra parte, tanto para este anejo, como para el de cálculos, se han utilizado los contenidos de las siguientes publicaciones:

- Recomendaciones para el Proyecto de la Configuración Marítima de los Puertos: Canales de Acceso y Áreas de Flotación (ROM 3.1.- 99). Puertos del Estado, 1999.
- Normas Técnicas sobre Obras e Instalaciones de Ayuda a la Navegación. Área de Señales Marítimas. MOPU, 1986.
- Balizamiento de Playas del Mediterráneo. Articulo de Rafael Soler Gayá. Revista de Obras Publicas, Mayo de 1996.

2. CIRCULO DE BORNEO DE CADA BOYA DE AMARRE.

Se entiende como circulo de borneo, a un círculo que define el área circular alrededor de cada boya de amarre utilizado por el barco atracado. Esta área, con centro en la posición teórica vertical de equilibrio perfecto de la boya de amarre, es circular porque el amarre permite la libre orientación del barco, y tiene un radio, dado por la ROM, suma de los siguientes factores:

- Eslora del barco, 7 metros.
- Longitud de amarras, aproximadamente el 50% de la eslora, 3 metros.
- Desplazamiento horizontal de la boya, que en el caso que nos ocupa (ver cálculo de la catenaria de las boyas de amare en el anejo correspondiente) es de unos 4 metros.
- Resguardo, que como mínimo tiene 5 metros.

En total, el radio de borneo, suma de los factores anteriores, es de 19 metros, con lo que la circunferencia de borneo tiene 38 metros de diámetro.

El fondeo ayudado de una maniobra de anclas reduce considerablemente la superficie necesaria, lo que permite, en caso de necesidad el uso de estos espacios por embarcaciones de mayor eslora ayudándose del ancla.

3. DISPOSICIÓN EN PLANTA DE LOS CÍRCULOS DE BORNEO.

Con la finalidad de optimizar el espacio, los atraques se dispondrán modularmente disponiendo tres círculos de borneo con centro en las esquinas de un triángulo equilátero, que se componen en una estructura hexagonal, tal y como se refleja en la figura siguiente:

[^0]: Parametros
 Weibull
 $A=1.07$
 $B=0.18$
 $B=0.18$
 $C=1.08$

[^1]: Parametros
 Weibull
 $A=1.07$
 $B=0.18$
 $B=0.18$
 $C=1.08$

