INFORME TÉCNICO PARA

Ministerio para la Transición Ecológica Secretaría de Estado de Medio Ambiente Dirección General de Biodiversidad y Calidad Ambiental Subdirección General de Biodiversidad y Medio Natural

ANALISIS DE RESULTADOS DE LA CARACTERIZACIÓN DE ESTRUCTURAS TRANSVERSALES POTENCIALES PARA EL PASO DE FAUNA IDENTIFICADAS EN UN MUESTREO EN INFRAESTRUCTURAS LINEALES DE TRANSPORTE DE ESPAÑA,

AÑO 2018

SILCO Estadística y Aplicaciones Ambientales SL

ANALISIS DE RESULTADOS DE LA CARACTERIZACIÓN DE ESTRUCTURAS TRANSVERSALES POTENCIALES PARA EL PASO DE FAUNA IDENTIFICADAS EN UN MUESTREO EN INFRAESTRUCTURAS LINEALES DE TRANSPORTE DE ESPAÑA

INDICE DE LOS TRABAJOS

1.	RESUMEN	3
2.	INTRODUCCION	4
3.	PROCESO DE CONTROL DE CALIDAD DEL ESTUDIO	
4.	ANÁLISIS ESTADÍSTICO DE LA INFORMACION	10
5.	ESTUDIO DEL CUMPLIMIENTO DE LAS PRESCRIPCIONES MÉTRICAS	37
6.	ESTUDIO DEL CUMPLIMIENTO DE LAS PRESCRIPCIONES TÉCNICAS NO MÉTRICAS PARA EL ACONDICIONAMIENTO DE PASOS DE FAUNA	52
7.	ANALISIS CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA (SIG). LOCALIZACIÓN EN GOOGLE EARTH.	59
8.	CONCLUSIONES	62
	ANEXOS Y APÉNDICES:	
	ANEXO 1. RELACIÓN DE CAMBIOS EN LA BASE DE DATOS ORIGINAL ANEXO 2. GRADO DE CUMPLIMIENTO POR CARACTERÍSTICA NO MÉTRICA Y TIPO DE ESTRUCTURA	65 69
	ANEXO 3. INCORPORACION DE LA INFORMACIÓN GENERADA A LA BASE DE DATOS	77
	APÉNDICE 1. ESTUDIO DE LAS VARIABLE MÉTRICAS	78
	APÉNDICE 2. ESTUDIO DE LAS VARIABLES NO MÉTRICAS	106
	APÉNDICE 3. ESTRUCTURAS QUE CUMPLEN DIMENSIONES DENTRO Y FUERA DEL ÁREA DEL CIERVO	129

RESUMEN

Se complementa el trabajo "Localización y caracterización de estructuras transversales potenciales para el paso de fauna en infraestructuras lineales de transporte", realizado por MAGRAMA entre 2015 y 2016, a partir de un muestreo de 940 cuadrículas UTM de 1x1 km en España, seleccionadas aleatoriamente entre las identificadas como prioritarias para la desfragmentación (MAGRAMA 2013). Se corrigen algunos valores, principalmente, tras la unificación de criterios para la medida del ancho de las estructuras inferiores múltiples, y se analizan estadísticamente los datos. Las estructuras transversales identificadas y caracterizadas podrían mejorar la permeabilidad de las redes de infraestructuras de transporte para la fauna y mejorar la seguridad vial aplicando unos esfuerzos de adecuación, bajos, medios o altos, dependiendo de los detalles que fuesen necesarios reparar. La selección de las estructuras y de las características de las mismas que se podrían mejorar puede realizarse desde la aplicación ejecutada en Google Earth, en la que las estructuras se disponen, según su cumplimiento o tipo de esfuerzo requerido, sobre las áreas prioritarias para la desfragmentación de hábitats, las áreas de distribución de algunos especies silvestre, los espacios naturales y Red Natura 2000 y áreas agrarias de alto valor natural.

INTRODUCCION

Los objetivos reflejados en el documento *Prescripciones técnicas para el diseño de pasos de fauna y vallados perimetrales (MMA 2006*), establecieron la necesidad de aportar diseños de pasos de fauna y vallados perimetrales que facilitaran el cruce de la fauna silvestre a través de la red de infraestructuras de transporte, con el mínimo riesgo para la seguridad vial, y reduciendo la fragmentación de los hábitats del entorno de las vías. De acuerdo con ello, se establecieron recomendaciones para aumentar la efectividad de las medidas correctoras de la fragmentación, ofreciendo alternativas de diseño o acondicionamientos de las estructuras que permitieran una óptima adecuación, según distintos contextos paisajísticos y requerimientos de algunas especies afectadas.

En 2013 se identificaron áreas prioritarias para el desarrollo de acciones de desfragmentación de hábitats en infraestructuras lineales y su entorno en toda España, trabajo que se recogió en el documento *Identificación de áreas a desfragmentar para reducir los impactos de las infraestructuras lineales de transporte en la biodiversidad (MAGRAMA, 2013).* Este trabajo alentaba a las comunidades autónomas para profundizar en la identificación de áreas de desfragmentación.

Entre 2014 y 2016, MAGRAMA, a través de una encomienda de gestión al CEDEX, realizó la caracterización de estructuras transversales en carreteras y vías de ferrocarril, encontradas en un muestreo de 940 cuadrículas UTM de 1 Km², de las cuadrículas consideradas prioritarias para la desfragmentación de hábitats en el documento citado anteriormente. Dicho trabajo supuso:

- La selección muestral de las 940 cuadrículas de UTM mencionadas.
- La creación de una base de datos en la que se incorporaron todas las estructuras localizadas y caracterizadas (1.358 estructuras), según las variables establecidas en una ficha de campo descriptiva de cada estructura transversal, con su localización, características de la vía, de la estructura y la descripción del entorno.
- La elaboración de un Sistema de Información Geográfica (SIG) que incluye la información asociada a cada estructura transversal.
- Algunos resultados preliminares.

Uno de los campos de la ficha de campo y de la base de datos creada reflejaba si cada una de las estructuras cumplía con las dimensiones mínimas indicadas en el documento de 2006.

En 2015 se publica la segunda edición, revisada y ampliada de este documento de 2006: Prescripciones técnicas para el diseño de pasos de fauna y vallados perimetrales (segunda edición, revisada y ampliada) (MAGRAMA 2015).

FINALIDAD

La finalidad del presente estudio es complementar el trabajo realizado entre 2014 y 2016, de caracterización de 1.358 estructuras transversales identificadas en una muestra de 940 cuadrículas UTM de 1x1 km, ampliando sus resultados para orientar el futuro trabajo en desfragmentación de hábitats del entorno de las infraestructuras lineales de transporte.

OBJETO

El objeto del trabajo es el análisis exhaustivo y la obtención de resultados que aporten información detallada relevante sobre la distribución y características de las estructuras trasversales construidas en carreteras y vías de ferrocarril que permitan valorar su contribución a la conectividad ecológica.

Las tareas realizadas son:

- 1) Tratamiento de los datos previo al análisis, con la inspección de la información, detección y resolución de incidencias como control de calidad de los datos para el estudio. En esta fase se encuentra la identificación de las estructuras para las que se dieron medidas que se han considerado erróneas por discrepancias en los criterios de medición entre equipos de campo.
- 2) Análisis estadístico de la información, principalmente a través de análisis multivariante, que comprende la obtención de estadísticos y distribuciones de frecuencias de los datos depurados, una vez eliminados los errores encontrados y las incidencias corregidas. En cada tipo de estructura se analizan las relaciones entre un conjunto de variables seleccionadas del documento nº 1 de la Serie de Documentos para la reducción de la fragmentación de hábitats causada por infraestructuras de transporte, *Prescripciones técnicas para el diseño de pasos de fauna y vallados perimetrales (segunda edición, revisada y ampliada)*, MAPAMA 2015. Con los objetivos principales de conocer:
 - Identificación de la tipología de estructuras que discrimine significativamente grupos de estructuras de acuerdo a su función, dimensiones y otras características primordiales.
 - Reducción del número de variables descriptivas por eliminación de redundancia y variables finales a considerar.

- 3) Identificación de las estructuras que cumplen con el conjunto de prescripciones técnicas no métricas seleccionadas del documento 1 y de las estructuras, que no cumpliéndolas, podrían mejorarse aplicando lo que denominaremos *Esfuerzo de adaptación*. Así pues, se identificarán las que cumplen, las que no cumplen pero el esfuerzo de adaptación es bajo, aquellas en las que el esfuerzo puede ser medio y las que se podrían corregir con un esfuerzo alto.
- 4) Localización de las estructuras en los Sistemas de Información Geográfica (SIG) a través de coberturas SHP y KML de los siguientes casos:
 - a) Localización con respecto a la posibilidad conectora de las estructuras. Se diferencian las que pueden considerarse pasos de fauna, que cumplen con las prescripciones técnicas del documento 1, de las demás, clasificadas por el esfuerzo que requerirían para su adaptación. Las estructuras se muestran superpuestas a las coberturas GIS (shapes) de la cartografía del Documento 6 (Identificación de áreas a desfragmentar para reducir los impactos de las infraestructuras lineales de transporte en la biodiversidad).
 - b) Localización, como en el punto anterior, en las áreas de distribución de varias especies silvestres.
 - c) Localización, como en los puntos anteriores, superponiendo las coberturas espaciales de los Espacios Naturales Protegidos (EENNPP), de los Lugares de Interés comunitarios (LIC), de las Zonas de Especial Protección para las Aves (ZEPAS) y de las zonas de Alto Valor Agrícola (AAVN).

Es importante destacar que no es posible conocer, a fecha de este estudio, el año de construcción o instalación de cada una de las estructuras que se analizan. Seguramente muchas de ellas son anteriores a 2006. El propósito de este trabajo es facilitar la mejora para el paso de fauna de una muestra de estructuras transversales existentes, mediante la aplicación, al menos, de esfuerzos de inversión y acondicionamientos de poca o mediana envergadura. Son muchas las estructuras que con un esfuerzo reducido podrían mejorar la permeabilidad de las infraestructuras lineales para la fauna en áreas prioritarias para la desfragmentación. La identificación de las estructuras, de acuerdo con el esfuerzo que requeriría su adecuación, las características que deberían mejorarse y su localización, teniendo en cuenta las especies silvestres que utilizan el entorno y el valor para la conservación de las áreas limítrofes, puede ser de gran ayuda para dar un paso más en la sostenibilidad ambiental de las redes de infraestructuras de transporte.

PROCESO DE CONTROL DE CALIDAD DEL ESTUDIO

INTRODUCCION

El proceso de control de calidad de los datos es un sistema de actividades técnicas habituales para preparar, medir y controlar la calidad de los datos para su posterior análisis.

El sistema está destinado a:

- Prever actualizaciones y revisiones habituales y coherentes para asegurar la integridad, corrección y exhaustividad de los datos.
- Identificar y reparar errores y omisiones en base a una metodología establecida.

METODOS

En este caso se han realizado dos fases diferentes en la inspección de la información:

- Revisión por modelización de los datos.
- Revisión por identificación de clasificaciones y medidas erróneas.

La base de datos revisada es la aportada por el estudio MAGRAMA 2016. Encomienda de gestión al CEDEX para la realización de trabajos de asistencia técnica de la Dirección General de Calidad y Evaluación Ambiental y Medio Natural (2014-2016). Actuación nº 8. Localización y descripción de las medidas correctoras de la desfragmentación de hábitats en las cuadrículas UTM 1x1Km seleccionadas.

Revisión por modelización de los datos

Se ha realizado una exhaustiva revisión de todas las variables de la base de datos para encontrar:

- Errores de codificación en las categorías de las variables no métricas.
- Errores de medida en las variables métricas (valores decimales en variables de tipo entero, valores atípicos (*outliers*) inconsistentes con la muestra, etc.
- Errores de frecuencia (no puede haber más datos en una muestra o submuestra de los que existan en la población o muestra, respectivamente, de la que se extrae).

Como referencia que establece la estructura de los datos se toma se toma el *Anexo II. Modelo de datos* del documento *Localización y descripción de las medidas correctoras* de la fragmentación de hábitats en las cuadrículas UTM1X1KM seleccionadas.

Se han detectado algunos casos que corresponden a:

- Cálculos en cuatro casos de la variable 027 (IA, Índice de apertura), no realizados.
- Intercambio de valores en un caso entre la altura (variable 025) y el ancho (variable 024). Como resultado también se cambia el IA (027).
- Un caso de cerramiento (variable 066) reasignado.

Revisión por identificación de clasificaciones y medidas erróneas.

Se observa que en las estructuras múltiples se han utilizados dos criterios para medir su ancho. Para algunas estructuras múltiples se toma la anchura total, mientras que para otras se toma la anchura de uno de los vanos o marcos, sin que se pueda inferir ningún criterio que justifique la diferencia de medición, por lo que podría deberse a una falta de homogeneidad de criterio entre equipos de campo. Además, en el caso de drenajes, en unas ocasiones se mide un solo vano cuando alguno de los otros está inundado, mientras que en otros casos se mide la estructura total aunque en su mayor parte esté inundada.

Se efectúan las siguientes correcciones de las estructuras múltiples en la base de datos, a partir de las notas escritas en el apartado de observaciones de la ficha de campo, de las fotografías y en algunos casos de su visualización en Google maps:

- Revisión de datos de *Anchura* (variable *024*): se cambia la anchura completa de la estructura a la de sólo uno de los vanos. Se mide uno que no esté inundado o uno de los vanos que permita el paso de fauna terrestre, aunque esté parcialmente inundado (si son varios y desiguales se ha medido el que tenía mejores dimensiones para el paso de fauna). En los casos en que se ha comprobado que la medida indicada no corresponde claramente con la observada en fotos se ha optado por eliminar dicha anchura.
- Revisión de datos de *Índice de Apertura* (variable *027*), consecuencia de la corrección o eliminación de la anchura.
- Revisión del campo *Composición* (variable *021*) de los *Tipos de paso* (variable *002*) correspondientes a *VIA* (Viaducto) y *ODF* (Drenaje). Se han redefinido algunas de las categorías, que quedan como sigue:
 - o *Inaccesible*: No se ha podido ver que composición tiene ni tomar medidas.
 - Simple: Estructura con un único vano o hueco. Las medidas tomadas son del total de la estructura.
 - o Doble: Estructura con doble vano, uno de los dos está inundado.
 - o *Doble paso*: Estructura con doble vano; ambos permitiendo el paso de fauna terrestre. Las medidas tomadas del ancho son de uno de los vanos.
 - o *Triple*: Estructura con triple vano, uno o dos de los cuales están inundados.

- Triple paso: Estructura con triple vano; todos los cuales permiten el paso de fauna terrestre. Las medidas tomadas de la anchura (024) son de uno de los vanos.
- o Otra: Estructura con más de 3 vanos, varios de ellos inundados.
- Otra paso: Estructura con más de 3 vanos; todos los cuales permiten el paso de fauna terrestre. Las medidas tomadas de la anchura (variable 024) son de uno de los vanos.
- No aplica: Pasos superiores o viaductos de columnas, en los cuales la visibilidad no está mermada por estas.

El sentido de esta nueva clasificación es que combinada con la anchura en estructuras múltiples aporta más información sobre la potencialidad para el paso de fauna, más allá del dato de anchura que se da. Los datos originales, de anchuras totales para estructuras múltiples, generalmente de poca altura, sobredimensionan los índices de apertura. Se debe de tener en cuenta que, además, algunas estructuras de drenaje, tipo puente, presentan muros anchos entre vanos, lo que contribuye también a sobredimensionar el índice de apertura.

RESULTADOS

Los cambios realizados se muestran en el Anexo 1. Al efectuar estos cambios se ha creado una nueva base de datos relacional corregida. Todas las correcciones se pueden ver también en esta misma base de datos, como una tabla denominada *correcciones 2018*, donde se encuentran localizadas las estructuras (variable *Codigo_FB*) y corrección realizada (en campo *Correciones2018*).

Además, por cada caso corregido se muestra su situación y un campo con la corrección realizada. El nuevo campo *anchura_mal* corresponde a las medidas eliminadas, por comprobar que el dato no era correcto sin ser posible rectificarlo.

Es muy importante señalar que en la base de datos relacional NO se cambian los valores de los casos revisados en sus tablas originales correspondientes, sino que, para realizar consultas con los valores corregidos, debe utilizarse la tabla de correcciones creada.

ANALISIS ESTADISTICO DE LA INFORMACION

INTRODUCCION

El propósito de éste estudio es analizar las relaciones entre algunas de las variables contenidas en la base de datos del estudio MAGRAMA 2016. Encomienda de gestión al CEDEX para la realización de trabajos de asistencia técnica de la Dirección General de Calidad y Evaluación Ambiental y Medio Natural (2014-2016). Actuación nº 8. Localización y descripción de las medidas correctoras de la desfragmentación de hábitats en las cuadrículas UTM 1x1Km seleccionadas, una vez efectuadas las correcciones que se indican en el capítulo de Control de calidad de este estudio. Dichas variables describen una serie de características de las estructuras transversales a las infraestructuras lineales de transporte y afectan al cumplimiento o no de las indicaciones presentes en el documento Prescripciones técnicas para el diseño de pasos de fauna y vallados perimetrales. (Segunda edición, revisada y ampliada), (MAGRAMA 2015), o documento 1.

La búsqueda de relaciones estadísticamente significativas va encaminada a la posibilidad de reducción del número de variables o categorías que describen las estructuras. Las redundancias que se encuentren entre las variables, pueden aconsejar la eliminación de información superflua y el ahorro de costes y tiempo de recogida de información en posteriores muestreo.

MEDOTODOLOGIA GENERAL

Como base para el tratamiento de los datos se usa la información del *Informe A8T2* del citado estudio. En él tenemos:

- Los datos: aportados en su *Anexo VI, BBDD Localización y Descripción de Medidas Correctoras Fragmentación Hábitats,* con el muestreo de 940 cuadrículas UTM de 1x1 kilómetros que incluyen 1.358 infraestructuras.
- La descripción de la información: que aparece en su *ANEXO II, Modelo de datos,* con la descripción de variables y categorías.

Dada la complejidad del modelo de datos, con 743 variables que describen cada estructura, sólo se han extraído un conjunto reducido que se corresponden con las prescripciones técnicas del documento 1. Entre las de carácter métrico están la longitud, la anchura y la altitud (respectivamente variables 023, 024 y 025 de la base de datos). Las de carácter no métrico, además de la *Función* de la infraestructura (variables 018_1 a 019 6), se muestran en la siguiente tabla.

Variable	Grupo	Parámetro	Opciones
030	Material	Material (estructural) de la base del paso (no si es por sedimentación)	Hormigón / Chapa corrugada / Tierra / Natural / Otro
037	Acceso	Acceso a la estructura: Bajante escalonada	SI/NO
046	Acceso	Acceso a la estructura: Arqueta de sedimentación	SI/NO
052	Acceso	Banquetas laterales	Un lado / Dos lados
090	Acceso	Función estructuras adicionales: Camino no asfaltado	SI/NO
060P2	Acceso	Función estructuras adicionales: Ferrocarril	SI/NO
060P3	Acceso	Función estructuras adicionales: Carretera asfaltada	SI/NO
062_1	Medidas favorecedoras fauna	Medidas para favorecer el paso de la fauna: Sustrato natural en la base	SI/NO
062_1P	Medidas favorecedoras fauna	Medidas para favorecer el paso de la fauna: Sustrato natural en franjas laterales	SI/NO
062_6	Medidas favorecedoras fauna	Medidas para favorecer el paso de la fauna: Pantallas laterales opacas	SI/NO
062_8	Medidas favorecedoras fauna	Medidas favorecedoras fauna Medidas para favorecer el paso de la fauna: Soleras de hormigón en ODT (recubrimiento de la base del tubo)	SI/NO
290	Cerramiento	Cerramiento perimetral en las embocaduras (situación)	A un lado de la vía / En ambos lados de la vía
071	Cerramiento	Cerramiento perimetral en las embocaduras (tipología)	Cinegético / Simple o doble torsión
073_1	Cerramiento	Cerramiento perimetral en las embocaduras (defectos): Mal ajustado a las aletas del paso	SI/NO
073_2	Cerramiento	Cerramiento perimetral en las embocaduras (defectos): Huecos por rotura o caída de la malla	SI/NO
073_3	Cerramiento	Cerramiento perimetral en las embocaduras (defectos): Huecos por erosión bajo la malla	SI/NO
073_4	Cerramiento	Cerramiento perimetral en las embocaduras (defectos): Huecos por cruce de cuneta bajo la malla	ON/IS
095_1	Entorno embocaduras	Labores de revegetación embocadura A. Composición	Plantación autóctonas continuación del hábitat del entorno
102_1	Entorno embocaduras	Labores de revegetación embocadura B. Composición	Plantación autóctonas continuación del hábitat del entorno
132	Entorno embocaduras	Conexión con el entorno en embocadura A. Directa	ON/IS
133_4	Entorno embocaduras	Modo de conexión indirecta con el entorno en embocadura A: Previo cruce de vía de servicio	SI/NO
133_5	Entorno embocaduras	Modo de conexión indirecta con el entorno en embocadura A: Previo cruce de carretera	SI/NO
133_6	Entorno embocaduras	Modo de conexión indirecta con el entorno en embocadura A: Previo cruce de vía de ferrocarril convencional	ON/IS
133_13	Entorno embocaduras	Modo de conexión indirecta con el entorno en embocadura A: Vallado	SI/NO
147	Entorno embocaduras	Conexión con el entorno en embocadura B. Directa	SI/NO
148_4	Entorno embocaduras	Modo de conexión indirecta con el entorno en embocadura B: Previo cruce de vía de servicio	SI/NO
148_5	Entorno embocaduras	Modo de conexión indirecta con el entorno en embocadura B: Previo cruce de carretera	SI/NO
148_6	Entorno embocaduras	Modo de conexión indirecta con el entorno en embocadura B: Previo cruce de vía de ferrocarril convencional	ON/IS
148_13	Entorno embocaduras	Modo de conexión indirecta con el entorno en embocadura B: Vallado	SI/NO

Se va estudiar la distribución de estas variables frente a los diferentes tipos de estructuras que existen y tienen datos. En este estudio se cambia las denominaciones dadas en el trabajo MAGRAMA 2016 de "Viaducto adaptado al paso de fauna" y "Drenaje adaptado al paso de fauna" por "Viaducto" y "Drenaje" respectivamente, ya que las estructuras que se identificaron no tenían por qué estar adaptadas para el paso de fauna y, de hecho, la inmensa mayoría no lo estaban.

De esta forma, los diferentes tipos de estructuras que se analizan son:

- ECO, Ecoducto.
- PSF, Paso superior de fauna.
- PSM, Paso superior multifuncional.
- VIA, viaducto.
- PGM, paso inferior para grandes mamíferos.
- PPV, Paso inferior para pequeños vertebrados.
- PIM, Paso inferior multifuncional.
- ODF, Drenaje.
- TUN, Túnel (se refiere a la parte superior).

Un estudio previo a los análisis muestra que la proporción de casos en los tipos de estructura son muy diferentes, como se ve en la siguiente tabla.

Tipo de estructura		
Tipo de estructura	Frecuencia	Porcentaje
Ecoducto	8	0,6
Paso superior específico para fauna	7	0,5
Paso superior multifuncional	48	3,5
Viaducto	441	32,5
Paso inferior específico para grandes mamíferos	4	0,3
Paso inferior específico para pequeños vertebrados	31	2,3
Paso inferior multifuncional	225	16,6
Drenaje	522	38,4
Túnel	72	5,3
Total	1358	100,0

Esto muestra que el sistema esta no balanceado y que el sesgo va a ser muy fuerte en perjuicio de los tipos de estructuras menos representadas.

Entre los tipos de análisis que se van a realizar predominan los de tipo multivariante para representar las similitudes o diferencias entre variables y categorías de las variables.

Estudio de variables no métricas

Por un lado, entre las variables de tipo no métrico (nominales), se van a utilizar las pruebas Chi-cuadrado y las técnicas del Análisis de Correspondencias Simple y Múltiple.

La *Prueba de Chi-cuadrado de Pearson* (χ2) es una prueba estadística aplicada a conjuntos de datos categóricos para evaluar qué tan probable es que cualquier diferencia observada entre los conjuntos se dé por casualidad. Nos muestra si entre las categorías de dos variables no métricas existe algún tipo de relación, aunque no como es de fuerte esa relación. Para conseguirlo utilizamos los análisis multivariantes ya que en ocasiones vamos a relacionar las categorías de más de dos variables.

El *Análisis de Correspondencias Simple* (AC), es una técnica que estudia la interdependencia facilitando la reducción dimensional de una clasificación de objetos sobre un conjunto de características descriptivas o atributos especificados por el investigador, y proporcionando un mapa perceptual de objetos relativos a estos atributos. Este tipo de análisis sólo permite la entrada de dos variables.

En el *Análisis de Correspondencias Múltiples* (ACM), la tabla de contingencia puede estar formada por más de dos variables bajo la forma de una matriz multientrada. En un proceso bastante similar al análisis de dos entradas, las variables adicionales son ajustadas, de forma que todas las categorías están situadas en el mismo espacio multidimensional. Las tablas que representan varias variables en las mismas filas o columnas se denominan *tablas disyuntivas completas* (TDC).

Ambos análisis están basados en distancias proporcionadas por la chi-cuadrado y permiten obtener unos valores de similitud que ofrecen una medida estandarizada de asociación, con las que el AC y el ACM crean una medida de distancia métrica y obtiene dimensiones ortogonales sobre las cuales se pueden colocar las categorías para tener más en cuenta las fortaleza de la asociación representada por las distancias en lo que se conoce como *mapas perceptuales*.

Estos análisis tienen dos objetivos básicos:

- Búsqueda de la asociación entre categorías de columna o fila: el análisis puede utilizarse para examinar la asociación entre las categorías de sólo una fila o sólo una columna. Las categorías pueden examinarse para ver si dos de ellas pueden ser *combinadas* (es decir, están muy próximas en el mapa) o si ofrecen *discriminación* (es decir, están localizadas separadamente en el mapa perceptual).
- Búsqueda de la asociación entre categorías de fila Y columnas: donde el interés está en representar la *asociación* entre categorías de filas y columnas.

Estudio de variables métricas

Existía de base un problema con las dimensiones altura (en algunos viaductos) y anchura, por la manera en que se han recogido, sin un planteamiento claro de uniformidad frente a la complejidad de formas que tienen las estructuras. Como consecuencia se han corregido algunas (véase la fase de control de calidad) y se han eliminado las que no podían corregirse.

Con un carácter exploratorio se analiza su comportamiento frente a los diferentes tipos de estructuras para conocer que similitudes o diferencias los caracterizan dimensionalmente.

Hay otras variables métricas como son el *Índice de apertura* (variable 027) o el *Índice adimensional* (variable 027P) que no se utilizan por ser combinaciones lineales de las demás.

Se procede a la adecuación de dimensiones para el análisis multivariante (muy sensible a ciertas condiciones previas que tienen que seguir las variables métricas, como son la *Normalidad* u *Homogeneidad de varianzas*), tras observar las distribuciones de las variables de dimensiones.

Una vez confirmadas las condiciones previas se realiza un Análisis Discriminante y un Árbol de clasificación.

Con el *Análisis discriminante* se utilizan los valores previamente conocidos de las variables independientes para predecir en qué categoría de la variable dependiente corresponde. A veces el análisis discriminante se conoce en ocasiones como análisis de la clasificación, ya que define una regla o esquema de clasificación que permita predecir la población a la que es más probable que tenga que pertenecer una nueva observación. Es decir asignar nuevos individuos al grupo que mejor corresponde en una clasificación ya establecida, construida a partir de individuos distintos.

Los Arboles de Clasificación son una técnica estadística simple para la segmentación, la estratificación, la predicción, la reducción de datos y el filtrado de variables, la identificación de interacciones y la unión de categorías. Crean un modelo de clasificación basado en diagramas de flujo y clasifican los casos en grupos o pronostican valores de una variable dependiente (criterio) basada en valores de variables independientes (predictoras).

Una de las ventajas de los árboles de clasificación en relación con las técnicas tradicionales de análisis de datos multivariantes, especialmente con el Análisis Discriminante, es su comportamiento considerablemente mejor (más eficiente) ante situaciones de estructura discriminante muy alejadas de la linealidad.

RELACION DE ESTUDIOS REALIZADOS

Principales análisis que se realizan entre los tipos de variable no métricas:

- Estudio de la relación entre la *Función de la estructuras* y los diferentes *Tipos de estructuras*.
- Estudio de la relación entre *los Materiales de base de la estructuras* y los diferentes *Tipos de estructuras*.
- Estudio de la relación entre los *Accesos de las estructuras* y los diferentes *Tipos de estructuras*.
- Estudio de la relación entre las *Medidas favorecedoras del paso de fauna en las estructuras* y los diferentes *Tipos de estructuras*.
- Estudio de la relación entre las *Características de los cerramientos en las vías* y los diferentes *Tipos de estructuras*.
- Estudio de la relación entre las *Características del hábitat y el entorno de las estructuras* y los diferentes *Tipos de estructura*.

Se pueden consultar los análisis más completos en el *Anexo Estudios variables no métricas*.

Para las variables de tipo métrico:

- Estudio de la relación entre las *Dimensiones (longitud, ancho y largo) de las estructuras* y los diferentes *Tipos de estructuras*.

Se pueden consultar los análisis más completos en el Anexo Estudios variables métricas.

ESTUDIO DE LA RELACIÓN ENTRE LA *FUNCIÓN DE LAS ESTRUCTURAS* Y LOS DIFERENTES *TIPOS DE ESTRUCTURA*.

Objetivo

Analizar si la tipología de las construcciones discrimina grupos de estructuras según su función y localizar posibles redundancias entre las categorías.

Métodos

Las variables y sus categorías que entran en el estudio se muestran en la siguiente tabla.

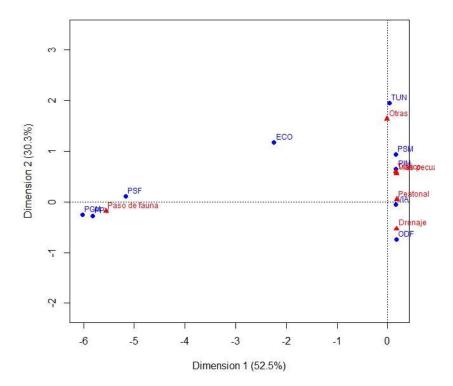
Funciones de las infraestructuras por tipo de paso											
	Paso de				Vías						
	fauna	Tráfico	Drenaje	Otras	pecuarias	Peatonal					
ECO	3	1	0	4	0	0					
PSF	6	0	0	1	0	0					
PSM	0	47	0	3	0	0					
VIA	2	229	424	38	3	3					
PGM	4	0	0	0	0	0					
PPV	30	0	1	0	0	0					
PIM	0	206	55	21	10	3					
ODF	1	3	520	0	1	2					
TUN	0	25	0	72	0	0					

En el caso de la variable *paso de fauna*, en la base de datos aparece como presente en todas las estructuras. La función de paso de fauna, en términos estrictos, no es compatible con algunas de las otras funciones, sobre todo sin matizar las adaptaciones que la estructura tiene para la compatibilización de las funciones. Revisados los casos, se ha puesto que existe (dato SI) cuando no lo hace cualquiera de las restantes funciones.

Se han realizado los siguientes análisis previos al multivariante:

- Análisis descriptivo de las diferentes variables.
- Análisis chi-cuadrado entre el tipo de paso y las correspondientes a cada función de la infraestructura.

Una vez revisadas se ha realizado el análisis de correspondencias múltiple (ACM).


Resultados

En la tabla anterior se comprueba que el problema ya comentado del sesgo entre casos de las diferentes tipos de estructuras es importante. Aparecen muchas celdas con muy pocos datos y demasiadas con valor cero.

Esta situación ha afectado a todas las pruebas de la chi-cuadrado, muy sensible a la falta de datos en las celdas y no permite validar con un mínimo de certeza estadística los resultados.

Acudimos a los análisis de correspondencias para poder tener cierta perspectiva exploratoria de cómo afecta la situación de sesgo a las variables.

Para comprobar la relación entre variables y categorías, el ACM nos da como resultado el siguiente mapa perceptual.

Con un 52% de proporción de la variabilidad explicada por la dimensión 1, lo que significa un grado estadístico de asociación fuerte, se encuentran los tipos de estructuras inferiores adaptadas al paso de grandes mamíferos (PGM) y pequeños vertebrados (PPV) y superiores adaptada a la fauna (PSF) con la función específica de la estructura de paso de fauna.

Por otro lado, pero solo con una proporción que explica un 30% de las relaciones, el túnel (TUN) se encuentra muy asociado a la función denominada Otras (sobre todo influidas por las exigencias del relieve). En esta misma dimensión y relacionada con lo anterior, se puede ver también una asociación entre las estructuras superiores e inferiores multifuncionales (PSM y PIM) con las vías pecuarias y el tráfico. Por otro lado, como sería lógico pensar, el tipo de estructura de drenaje (ODF), se encuentra muy relacionada con la función de drenaje.

Los ecoductos (ECO) no ofrecen ninguna asociación en especial con los anteriores casos (en, al menos, un caso, contiene una vía) y tanto el viaducto (VIA) como la función peatonal no permiten discriminar su relación con los demás casos.

Con respecto a la *redundancia* que pudieran tener algunas categorías o variables de acuerdo a las funciones de las estructuras se puede comentar que:

- Por parte de los tipos de estructuras, las específicas adaptadas al paso de fauna (PSF, PGM y PPV) aportan la misma información, como por otro lado, las multifuncionales (PSM y PIM), a un grado menor. Por lo que son redundantes en su información respecto a la función.
- Que los ecoductos no se asocien con las específicas al paso de fauna, siendo su máximo exponente, indica deficiencias en su adecuación, como se verá en capítulos siguientes. Lo mismo ocurre con los túneles, cuya superficie superior podría funcionar como paso específico de fauna o ecoducto de estar bien adaptada. Probablemente, la clasificación como función pecuaria se combina en algunos casos con otras funciones y por ello se desmarca del paso específico de fauna.
- Se puede reducir la redundancia considerando sólo dos grupos muy diferentes entre sí: las específicas de paso de fauna y el resto de funcionalidades.
- La funcionalidad peatonal no se ha relacionado con ninguna otra.

ESTUDIO DE LA RELACIÓN ENTRE EL *MATERIAL DE BASE EN LAS ESTRUCTURAS* Y LOS DIFERENTES *TIPOS DE ESTRUCTURAS*.

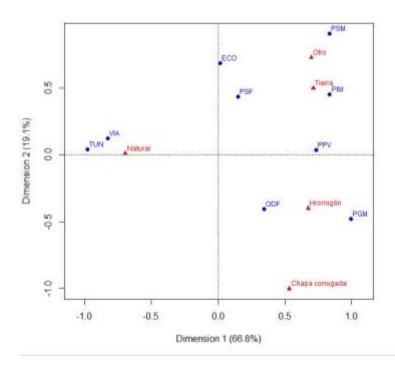
Objetivo

Analizar si la tipología de las construcciones discrimina grupos de estructuras según los materiales utilizados para la base y localizar posibles redundancias entre las categorías o variables.

Métodos

En este caso, el estudio sólo se realiza a dos variables, tipo de estructura y material de la base. La tabla de contingencia resultante al cruzar sus categorías es la siguiente:

	Chapa				
	corrugada	Hormigón	Natural	Otro	Tierra
ECO	0	0	4	0	4
PSF	0	1	3	0	3
PSM	0	13	4	26	4
VIA	0	7	396	13	19
PGM	0	3	0	0	1
PPV	0	14	4	0	12
PIM	1	79	19	34	90
ODF	22	251	162	31	44
TUN	0	0	71	0	1


Este estudio es el único, junto con el anterior de las funciones de las estructuras, en el que se ha realizado la prueba de la chi-cuadrado.

En cuanto al análisis multivariante, por las características de los datos, se va a realizar el análisis de correspondencias simple (AC), de sólo dos variables cruzadas.

Resultados

La tabla de contingencia de arriba muestra una elevada cantidad de casos nulos en el material de chapa corrugada para la mayoría de los tipos de paso, pero también hay casos nulos en otras situaciones. A pesar de que la *prueba de la chi-cuadrado* exige la condición de disponer de un porcentaje de celdas con una frecuencia esperada menor de 5, se realiza la prueba resultando que no da la existencia de relación entre la tipología de las estructuras y el material utilizado en su base, a un nivel de confianza del 95%.

Por parte del análisis de correspondencias (AC), se obtiene el mapa perceptual siguiente.

En este mapa perceptual podemos establecer semejanzas, con una proporción de casi un 70% de explicación sobre la variabilidad, entre el grupo formado por los tipos de estructuras PSM, ECO, PSF, PIM y PPV. Los PSM y PIM se relacionan entre sí y con el material de base en tierra u otro no contemplado inicialmente. A su vez los ODF y PGM están relacionados entre sí y su tipo de material suele ser el hormigón o la chapa corrugada (en los primeros). Para el PPV, todos los materiales están presentes en cantidad similar menos la base natural. Por otro lado, los tipos de estructuras ECO y PSF, se comportan de similar forma en cuanto al material de base, pero muy diferenciados al resto y con un porcentaje que lo explique de sólo un 20%; podrían ser los más naturalizados después de viaductos y túneles.

El material de base natural se presenta, en general, en los tipos de VIA y TUN.

De estos resultados se deduce que bastantes de las estructuras que pueden ser pasos específicos para fauna no disponen de un sustrato natural y, en el caso de los que podrían ser para pequeños vertebrados, algunos de ellos ni siguiera tienen tierra.

No se encontró redundancia en la información analizada.

ESTUDIO DE LA RELACIÓN ENTRE LAS CARACTERÍSTICAS DE LOS ACCESOS DE LAS ESTRUCTURAS Y LOS DIFERENTES TIPOS DE ESTRUCTURA.

Objetivo

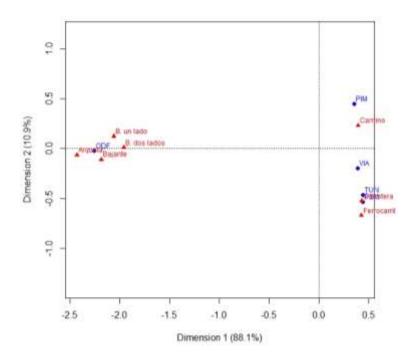
Analizar si la tipología de las construcciones discrimina grupos de estructuras según la posibilidad y características de los accesos a la estructura y localizar posibles redundancias entre las categorías.

Métodos

Las variables y sus categorías que entran en el estudio se muestran en la siguiente tabla.

Carac	Características de acceso a las estructuras										
			Camino			Banquetas					
	bajante	arqueta de	no		Carretera	a los dos	Banquetas				
	escalonada	sedimentación	asfaltado	Ferrocarril	asfaltada	lados	a un lado				
ECO	0	0	1	0	0	0	0				
PSF	0	0	0	0	0	0	0				
PSM	0	0	19	0	22	0	0				
VIA	4	0	178	11	100	1	0				
PGM	0	0	0	0	0	0	2				
PPV	0	0	0	0	0	0	1				
PIM	0	0	182	0	23	1	5				
ODF	43	9	2	0	0	10	33				
TUN	0	0	14	1	13	0	0				

Que reorganizamos para que no existan categorías sin datos o que apenas tengan información, en este caso de algunos tipos de estructura.


La tabla resultante es la siguiente:

			Camino			Banquetas	
	Bajante	Arqueta de	no		Carretera	a los dos	Banquetas
	escalonada	sedimentación	asfaltado	Ferrocarril	asfaltada	lados	a un lado
PSM	0	0	19	0	22	0	0
VIA	4	0	178	11	100	1	0
PIM	0	0	182	0	23	1	5
ODF	43	9	2	0	0	10	33
TUN	0	0	14	1	13	0	0

Sobre la que se va a realizar un análisis de correspondencias múltiple (ACM).

Resultados

Por parte del análisis se obtiene el mapa perceptual siguiente.

Con el 88% de la variabilidad explicada, tenemos que las estructuras asociadas al drenaje (ODF), tienen una relación muy fuerte con la existencia de banquetas, ya sea a un lado u a otro y con la presencia de arquetas y bajantes.

Por otro lado, con una fiabilidad algo menor, con un 11% de la variabilidad explicada, tanto el ferrocarril como la carretera asfaltada están asociadas a los túneles (TUN) y algo menos con los viaductos (VIA), mientras por otro lado lo están los pasos inferiores multifuncionales (PIM) con los caminos.

Con respecto a la *redundancia*, podemos observar:

- En cuanto a los tipos de estructura cierta similitud entre la superior multifuncional (PSM) y el túnel (TUN).
- En los accesos observamos una similitud en las distribuciones de las banquetas, arquetas y bajantes por las que, si tomamos sólo una de estas opciones las demás estarían también representadas en una proporción alta.

ESTUDIO DE LA RELACIÓN ENTRE LAS *MEDIDAS FAVORECEDORAS DEL PASO DE FAUNA EN LAS ESTRUCTURAS* Y LOS DIFERENTES *TIPOS DE ESTRUCTURAS*.

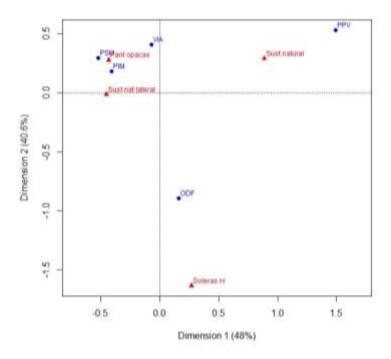
Objetivo

Analizar si la tipología de las construcciones discrimina grupos de estructuras según las medidas realizadas para el favorecimiento del paso de fauna en la infraestructura y localizar posibles redundancias entre las categorías.

Métodos

Las variables y sus categorías que entran en el estudio se muestran en la siguiente tabla.

Medidas favorecedoras al paso de fauna										
		Sustrato								
	Sustrato	natural en	Pantallas	Soleras de						
	natural en la	franjas	laterales	hormigón en						
	base	laterales	opacas	ODT						
ECO	0	0	0	0						
PSF	0	0	0	0						
PSM	1	4	5	0						
VIA	3	2	5	0						
PGM	0	0	0	0						
PPV	6	0	0	0						
PIM	2	8	3	0						
ODF	3	4	2	5						
TUN	0	0	0	0						


Como en el estudio anterior, se reorganiza la tabla eliminando las categorías que no tienen datos.

	Sustrato natural en la base	Sustrato natural en franjas laterales	Pantallas laterales opacas	Soleras de hormigón en ODT
PSM	1	4	5	0
VIA	3	2	5	0
PPV	6	0	0	0
PIM	2	8	3	0
ODF	3	4	2	5

Sobre la que se va a realizar un análisis de correspondencias múltiple (ACM).

Resultados

Por parte del análisis se obtiene el mapa perceptual siguiente.

Las dos dimensiones (que pueden considerarse como los factores del análisis factorial), explican casi el 50% (dimensión 1) y el 40% (dimensión 2), lo que les da a ambos casi la misma proporción para explicar la variabilidad.

Se puede ver que las estructuras para pequeños vertebrados están muy relacionadas con el sustrato natural de la base. También que, con menos fuerza en la relación, las multifuncionales (PIM y PSM) son los que están mejor relacionadas con la presencia de sustrato natural en las franjas y con las pantallas laterales opacas.

Por otro lado, los drenajes están relacionados únicamente con las soleras de hormigón (que sólo se encuentran en este tipo de estructuras).

Los viaductos estarían relacionados muy débilmente con la presencia de pantallas opacas.

Para terminar, no es posible encontrar algo de redundancia.

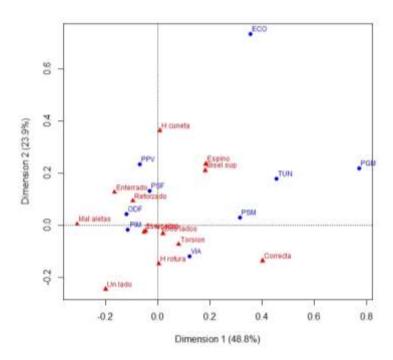
ESTUDIO DE LA RELACIÓN ENTRE LAS CARACTERISTICAS DE LOS CERRAMIENTOS EN LAS VIAS Y LOS DIFERENTES TIPOS DE ESTRUCTURAS.

Objetivo

Analizar si la tipología de las construcciones discrimina grupos de estructuras según las características de los cerramientos perimetrales en sus embocaduras y localizar posibles redundancias entre las categorías.

Métodos

Las variables y sus categorías que entran en el estudio se muestran en las siguientes tablas.


Caract	Características de los cerramiento perimetrales										
	Acabado bisel superior	Acabado Hilo de espino	Acabado enterrado en suelo	Acabado reforzado inferior con malla luz menor	Instalación correcta	Mal ajustado a las aletas del paso	Huecos por rotura o caída de la malla				
ECO	4	4	0	0	1	0	1				
PSF	2	1	2	3	1	1	2				
PSM	10	10	3	4	17	10	6				
VIA	48	44	16	41	82	77	68				
PGM	2	2	0	2	3	0	0				
PPV	11	10	7	12	5	19	7				
PIM	39	31	20	45	40	113	37				
ODF	55	58	25	64	44	151	58				
TUN	12	11	2	7	13	2	3				

	Huecos por	Huecos por		Cerramiento		
	erosión	cruce de	Cerramiento	en ambos		Cerramiento
	bajo la	cuneta bajo	a un lado de	lados de la	Cerramiento	simple o doble
	malla	la malla	la vía	vía	cinegético	torsión
ECO	3	4	0	6	5	1
PSF	5	1	0	7	5	2
PSM	9	3	0	30	17	13
VIA	97	19	15	225	123	117
PGM	0	0	0	3	1	2
PPV	10	5	1	27	11	17
PIM	68	18	13	177	109	81
ODF	117	29	14	235	147	99
TUN	10	3	0	26	10	15

Sobre la que se va a realizar un análisis de correspondencias múltiple (ACM).

Resultados

Con el mapa perceptual siguiente.

Lo más característico del mapa es la situación muy dispersa de todas las situaciones de los cerramientos y de los tipos de estructuras.

Dentro de tal disociación podemos establecer ciertas semejanzas (dimensión 1) entre los tipos de paso PGM, TUN y PSM con la instalación correcta de los cerramientos y

diferencias respecto al mal estado de las aletas y algo menos con el acabado enterrado en suelo.

Por otro lado, completamente diferente a los anteriores (dimensión 2), podemos ver relaciones entre ciertas estructuras adaptadas, inferiores para pequeños vertebrados (PPV) y superiores específicas para la fauna (PSF), y la aparición de huecos por cruce de cuneta bajo la malla y algo menos a los acabados reforzados y enterrados. Al contrario de los viaductos (VIA) en relación con los huecos por rotura o caída de la malla.

En el tema de las *redundancias*, tampoco se puede observar ninguna situación clara en la que compartan la misma información. Si acaso algo entre los acabados en espino y bisel superior, pero poco significativos.

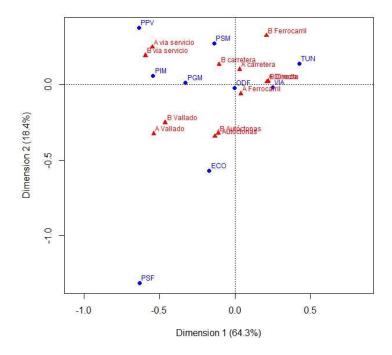
ESTUDIO DE LA RELACIÓN ENTRE LAS CARACTERISTICAS DEL HABITAT Y EL ENTORNO DE LAS ESTRUCTURAS Y LOS DIFERENTES TIPOS DE ESTRUCTURAS.

Objetivo

Analizar si la tipología de las construcciones discrimina grupos de estructuras según las características de los modos de conexión indirecta con el entorno en ambas embocaduras (A y B) y localizar posibles redundancias entre las categorías.

Métodos

Las variables y sus categorías que entran en el estudio se muestran en la siguiente tabla.


Características del hábitat y el entorno										
	Plantación		A: cruce de		A: cruce de					
	autóctonas		vía de	A: cruce de	vía de					
	Α	A. Directa	servicio	carretera	ferrocarril	A: Vallado				
ECO	4	5	1	1	1	2				
PSF	6	3	0	0	0	4				
PSM	4	19	9	5	0	2				
VIA	54	333	34	38	14	17				
PGM	0	2	1	0	0	1				
PPV	3	9	9	1	0	0				
PIM	25	82	58	19	7	31				
ODF	46	287	61	39	8	38				
TUN	3	59	3	8	2	1				

	Plantación autóctonas		B: cruce de vía de	B: cruce de	B: cruce de vía de		
	В	B. Directa	servicio	carretera	ferrocarril	B: Vallado	
ECO	4	6	2	0	0	0	
PSF	5	2	1	1	0	4	
PSM	4	21	8	7	5	2	
VIA	46	334	34	42	13	20	
PGM	0	2	0	2	0	1	
PPV	3	8	11	3	0	1	
PIM	20	79	67	23	3	27	
ODF	47	285	69	31	5	37	
TUN	3	56	4	6	2	1	

Sobre la que se va a realizar un análisis de correspondencias múltiple (ACM).

Resultados

Con el mapa perceptual siguiente.

Aunque no muy fuertes se pueden distinguir relaciones entre las estructuras inferiores multifuncionales (PIM) y algunas específicas para el paso de fauna (PPV y PGM) con un entorno en los que hay cruces con vías de servicio.

Por otro lado, se puede establecer cierta relación entre los ecoductos (ECO) y las plantaciones autóctonas como continuación del hábitat del entorno, y algo menos con la existencia de vallado. Con aun menos certeza se puede asociar a las estructuras superiores multifuncionales (PSM) con la presencia de carreteras asfaltadas.

Respecto a la *redundancia*, es muy evidente que aportan casi la misma información en ambos lados de las embocaduras A y B, salvo para el caso del ferrocarril. Una posible opción en futuros muestreos sería tomar sólo los datos de una las embocaduras, con varias propuestas:

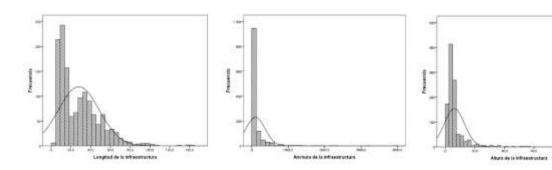
- Definir previamente la embocadura de forma aleatoria, preservando ciertas propiedades estadísticas.
- Evaluar sólo la embocadura que está situada en la parte por la que llegue el vehículo de los técnicos, donde se puede ahorrar en tiempo pero puede producir sesgos (por ejemplo, en zonas de montaña con propensión a una vertiente en concreto).

-	Decidir por el equipo técnico a la llegada a la estructura la embocadura a evaluar, que puede ser la que visualmente ofrezca menores posibilidades de cumplir las prescripciones del documento 1).							

ESTUDIO DE LA RELACIÓN ENTRE LAS *DIMENSIONES (MEDIDAS METRICAS)* DE LAS *ESTRUCTURAS* Y LOS DIFERENTES *TIPOS DE ESTRUCTURA*.

Objetivo

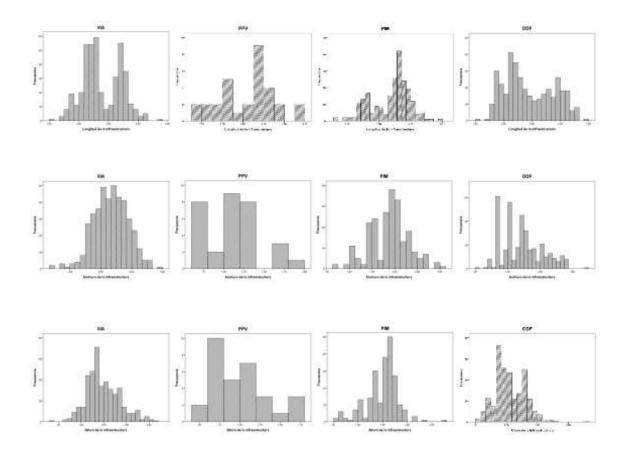
- Por un lado, encontrar las relaciones lineales entre las variables continuas (dimensiones) que mejor discriminen en los grupos dados por los objetos (estructuras).
- Construir una regla de decisión que asigne un objeto nuevo con un cierto grado de riesgo, cuya clasificación previa se desconoce, a uno de los grupos prefijados.


Método 1

Se han eliminado del análisis las estructuras superiores por no disponer de la altura:

- Ecoducto (ECO).
- Paso superior adaptado para la fauna (PSF).
- Paso superior multifuncional (PSM).
- Túnel (TUN).

Previo al análisis multivariante se han realizado estudios de las distribuciones que siguen tanto la longitud, la anchura y la altura.


Primero, se puede ver que su comportamiento no sigue una distribución normal, requisito previo para hacer la mayoría de los análisis estadísticos. Estas distribuciones se pueden ver en los histogramas siguientes.

Para conseguir normalidad se ha optado por trasformar las variables, optando finalmente por el logaritmo neperiano como el más adecuado.

Además de los histogramas se han realizado los test de Kolmogorov-Smirnov, que son pruebas no paramétricas que permiten la comprobación de si una variable sigue cierta distribución, en este caso la normal.

Los histogramas de las tres variables por cada tipo de paso, quedan como sigue.

Se va a considerar que son la mejor transformación posible para acercarnos a la normalidad. De hecho es así salvo por la presencia generalizada de distribuciones bimodales, que indican la presencia de al menos dos grupos de casos con un comportamiento diferente en su distribución.

Por tanto, las variables del estudio serán:

- Para la longitud: Ln(longitud).
- Para la anchura: Ln(anchura).
- Para la altura: Ln(altura).

Sobre la que se va a realizar un *Análisis Discriminante*.

El objetivo esencial del análisis discriminante es utilizar los valores previamente conocidos de las variables independientes para predecir en qué categoría de la variable dependiente corresponde.

Los dos grandes propósitos perseguidos con esta técnica son:

- La descripción de diferencias entre grupos, para determinar en qué medida un conjunto de características observadas en las estructuras permite extraer dimensiones que diferencian a los grupos, y cuáles de éstas características son

las que en mayor medida contribuyen a tales dimensiones, es decir, cuales presentan mayor poder de *discriminación*.

 La predicción de pertenencia a los grupos, permitiendo una clasificación de nuevos casos a partir de la información que aportan las funciones discriminantes (ecuaciones matemáticas), en lo que se podría definir como un análisis discriminante predictivo.

Método 2

Complementariamente se va a realizar otro tipo de análisis con todos los tipos de estructuras incluidos, aunque con la trasformación de las variables comentada en el método 1 incluida.

El otro tipo de análisis multivariable va a consistir en un Árbol de Clasificación.

Los Arboles de Clasificación crean un modelo de clasificación basado en diagramas de flujo y clasifican los casos en grupos o pronostican valores de una variable dependiente (criterio) basada en valores de variables independientes (predictoras).

Resultados sobre el Método 1

Al aplicar el análisis discriminante sobre las variables métricas trasformadas de longitud, anchura y altura sobre el grupo reducido de tipos de estructuras elegidos obtenemos los siguientes resultados.

Las ecuaciones de las funciones de discriminación serían:

```
Y1 = -2,41 -0,24Ln(longitud) +1,27Ln(anchura) -0,47Ln(altura)
```

Y1 = -4,59 + 1,12 Ln(longitud) - 0,17 Ln(anchura) - 4,59 Ln(altura)

Y1 = -1,17 + 0,79 Ln(longitud) + 0,49 Ln(anchura) - 1,69 Ln(altura)

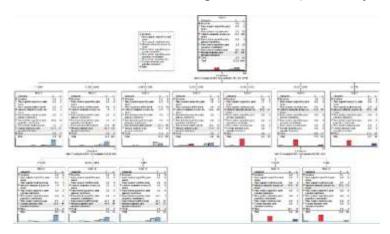
Basándonos en estas funciones discriminantes podríamos asignar una nueva estructura al tipo de estructura que corresponde. Sin embargo, la correlación canónica sobre la capacidad de explicación da toda la variabilidad a la primera función (97%) y muy poco al resto de funciones, lo que dificulta su interpretación.

Esto se ve claramente en la matriz de clasificaciones siguiente.

Resultados de clasificación

		Tipos de Pertenencia a grupos estructuras pronosticada					
		inferiores más	VIA	PPV	PIM	ODF	Total
Original	Recuento	VIA	393	0	13	12	418
Ongina		PPV	0	0	5	26	31
		PIM	1	0	126	98	225
		ODF	2	0	49	316	367
		Casos sin agrupar	0	0	3	1	4
	%	MA	94,0	,0	3,1	2,9	100,0
		PPV	,0	,0	16,1	83,9	100,0
		PIM	,4	,0	56,0	43,6	100,0
		ODF	,5	,0	13,4	86,1	100,0
		Casos sin agrupar	,0	,0	75,0	25,0	100,0

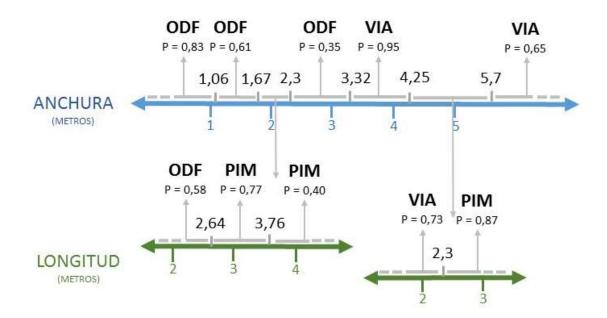
a. 80,2% de casos agrupados originales clasificados correctamente.


Se encuentra una clasificación correcta confirmada por el valor del 80,2%. Corresponde alosdos tipos de estructuras más frecuentes, por lo que sólo se puede hablar de un gran poder de clasificación para los viaductos (VIA) y los drenajes (ODF).

La asignación se puede considerar correcta en un 56% para estructuras multifuncionales, mientras que para las adaptadas a pequeños vertebrados la asignación no es válida.

Resultados sobre el Método 2

En la técnica del árbol de clasificación se utilizan algoritmos para identificar los casos en su grupo más probable de tipo de estructuras, según las dimensiones de las mismas.


El árbol calculado tendrá la siguiente forma (véase mejor en el anexo).

Donde el modelo nos muestra tres clases de estructuras muy bien representadas solo por el ancho y el largo.

Además, el método permite generar unas reglas de selección o clasificación/predicción. Estas reglas se expresan como un conjunto de sentencias lógicas "Si…entonces" que describen las clasificaciones o predicciones del modelo para cada nodo.

En la figura siguiente se han recopilado las reglas de forma visual, donde se muestran los intervalos de las medidas obtenidos con el algoritmo y el tipo de estructura con mayor probabilidad de ser asignado a esos intervalos, con su valor de la probabilidad.

Donde:

ODF: Drenajes

PIM: Paso inferior multifuncional

VIA: viaducto

Conviene recordar que las cantidades representadas tanto en anchura como en longitud son la transformada de la medida original (Ln), aunque la medida siga siendo en metros.

Podemos concluir que, en cuanto a la discriminación de las medidas por los diferentes tipos de estructuras, y con el sesgo que representa la muestra presente, la anchura es la primera variable métrica que está asociada a las estructuras, seguida de la longitud. Mientras que la altura no está asociada a diferencias entre tipos de estructura.

Los tres tipos de estructuras más representados por las dimensiones ancho y largo, son:

- Los drenajes (ODF), con una probabilidad de éxito entre el 86% y el 92,4%.
- Los viaductos (VIA), con probabilidades entre el 88% y el 92%.
- Y los pasos inferiores multifuncionales (PIM), con una probabilidad de éxitoentre el 41% y el 53,6%.

ESTUDIO DEL CUMPLIMIENTO DE LAS PRESCRIPCIONES MÉTRICAS

OBJETO

Las dimensiones de las estructuras son determinantes a la hora de funcionar como paso de fauna efectivo. Por ello, en este capítulo se estudia el comportamiento de las variables métricas, dimensiones: ancho, alto y longitud, e índice de apertura de las estructuras, con respecto al cumplimiento de las prescripciones del Documento 1.

Dado que en dicho documento se diferencia el ancho y el índice de apertura mínimos en las estructuras inferiores para mamíferos de gran tamaño, dependiendo de que se sitúen en áreas de distribución del ciervo (y también del oso), se ha tomado el ciervo como referencia para contrastar el cumplimiento de las dimensiones mínimas mayores en su área, por su amplia distribución.

METODOS

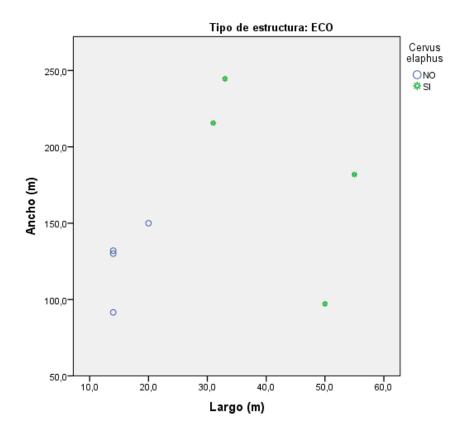
La tabla 3.3 y 3.4 del mencionado documento establecen unas dimensiones obligatorias para algunos tipos de estructura como sigue:

Tipo de estructura	Dimensiones mínimas
Paso superior - Ecoducto	A = 80 m
Paso superior – Paso superior específico para	A = 20 m; A/L > 0,8
grandes mamíferos	
Paso superior – Paso superior multifuncional	A = 10 m; A/L > 0,8
Paso inferior – Viaducto	(ninguna)
Paso inferior – Paso inferior específico para	AxH = 2x2 m
pequeños vertebrados	
Paso inferior – Drenaje	AxH = 2x2 m
Paso inferior – Paso inferior específico para	- Jabalí y corzo:
grandes mamíferos	AxH = 7x3'5 m e IA > 0'75
	- Ciervo:
	AxH = 12x3'5 m e IA > 1'5
Paso inferior – Paso inferior multifuncional	- Jabalí y corzo:
	AxH = 7x3′5 m e IA > 0′75
	- Ciervo:
	AxH = 12x3'5 m e IA > 1'5

A: Anchura; L=Longitud; H: Altura; IA: Índice de apertura (AxH/L)

Aunque para VIADUCTO no se dan unas dimensiones mínimas que se pudieran comprobar en este trabajo, se ha optado por estudiar H = 3'5 m como dimensión mínima, al igual que se considera para los pasos inferiores para grandes mamíferos.

Para los Drenajes (ODF) se distinguen las estructuras de sección circular de las demás.

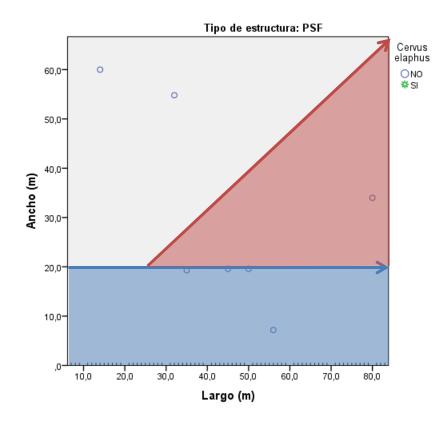

En color verde o rojo se identifican las estructuras situadas en el área de distribución del ciervo.

RESULTADOS

PASOS SUPERIORES - ECODUCTO (ECO)

Dimensiones TABLA 3.3 Doc1
Mínimas (A)
A = 80 m

A: Ancho



Todas las estructuras cumplen la condición.

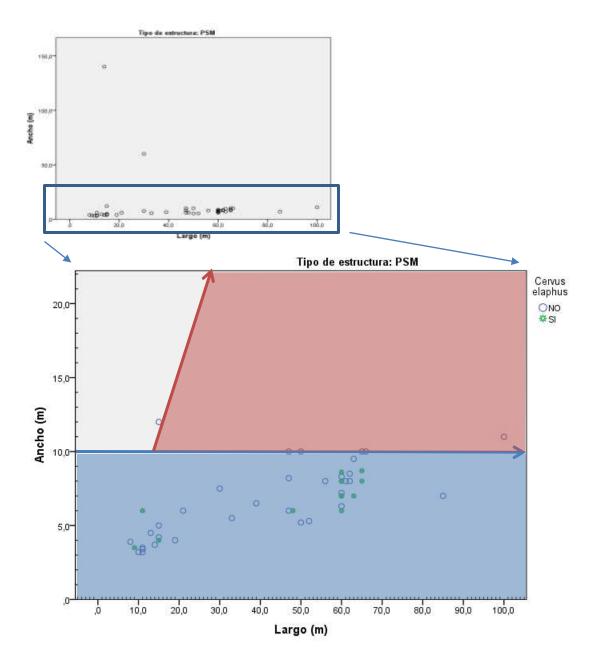
PASOS SUPERIORES - PASO SUPERIOR DE FAUNA (PSF)

Dimensiones TABLA 3.3 Doc1
Mínimas (A; A/L)
A = 20 m Y A/L > 0,8

A: Ancho; L: Largo

Ecuaciones explícitas de las rectas:

$$\begin{cases} A = 20 \ \forall \ L \in [0,25) \\ A = 0.8xL \ \forall \ L \in [25, +\infty) \end{cases}$$


PSF							
			Ancho				
		Menor de 10 m	Menor Entre 10 Entre 20 Entre 40 Entre 60 Mas de de 10 m y 20 m y 40 m y 60 m y 80 m 80 m				
Ancho/	<= 0,8	1	7 = 0	1	0	, 55	00
-		Т	3	Т	U	U	U
Largo	> 0,8	0	0	0	2	0	0

Solo incumple una de las condiciones
Incumple las dos condiciones

PASOS SUPERIORES - PASO SUPERIOR MULTIFUNCIONAL (PSM)

Dimensiones TABLA 3.3 Doc1
Mínimas (A; A/L)
A = 10 m Y A/L > 0,8

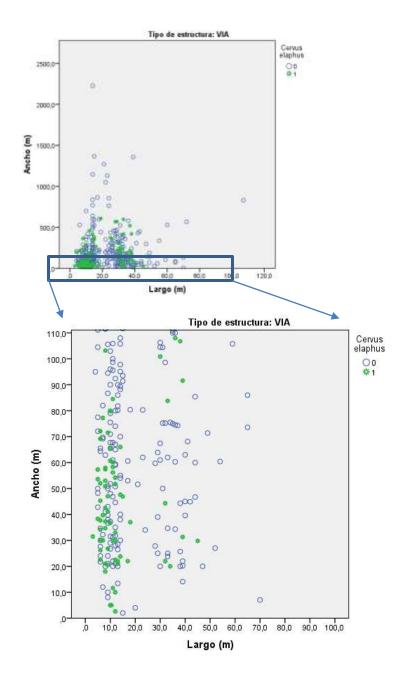
A: Ancho; L: Largo

Ecuaciones explícitas de las rectas:

$$A = 10 \ \forall L \in [0,12'5)$$

 $A = 0'8xL \ \forall L \in [12'5, +\infty)$

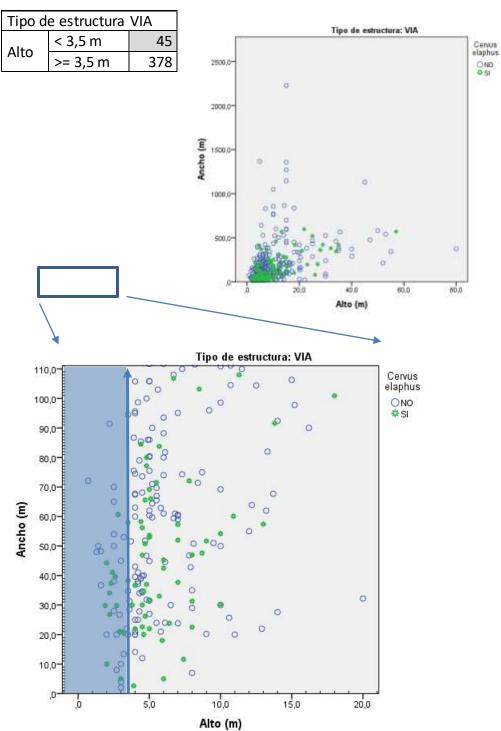
La última ecuación es la misma recta que en PSF, pero en la figura se muestra con más pendiente por la desproporción entre las medidas.

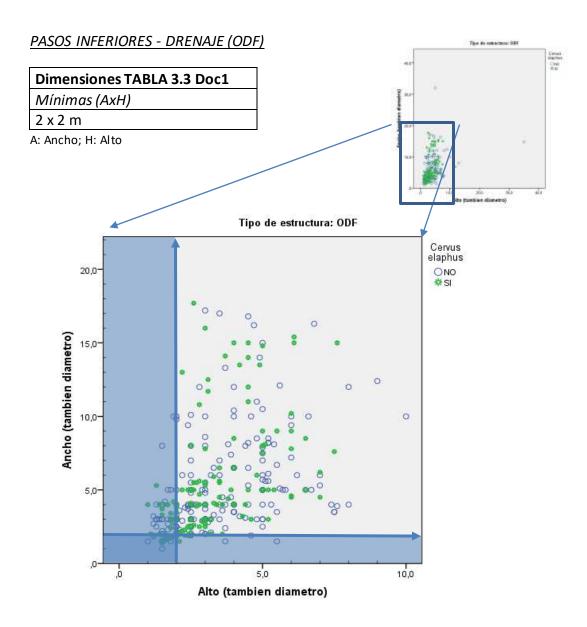

PSM							
			Ancho				
		Menor	Menor Entre 10 Entre 20 Entre 40 Entre 60 Mas de				
		de 10 m y 20 m y 40 m y 60 m y 80 m 80 m					
Ancho/	<= 0,8	44	2	0	0	0	0
Largo	> 0,8	0	0	0	1	0	1

Solo incumple una de las condiciones
Incumple las dos condiciones

PASOS INFERIORES - VIADUCTO (VIA)

Dimensiones TABLA 3.3 Doc1		
Mínimas (H)		
- (DOC 1)		
H ≥ 3′5 m (No DOC 1)		


H: Alto



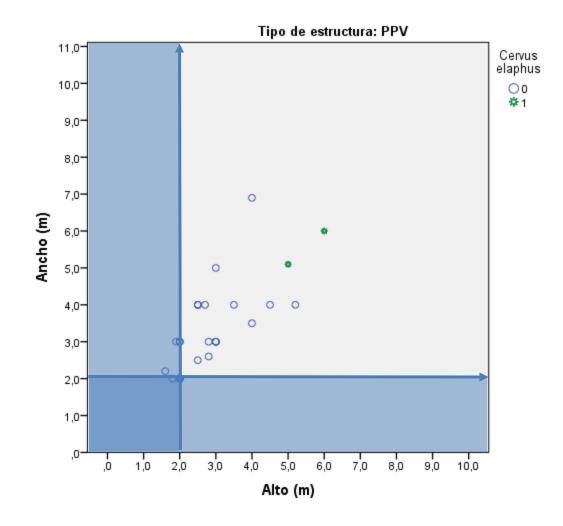
Todas las estructuras cumplen la condición.

Se introduce la condición de que la dimensión mínima de *Altura (H)* ha de ser de **3,5 metros** (que no se encuentra en las condiciones iniciales del DOC 1).

Las gráficas de dispersión entre el ancho y el alto de la estructura son las siguientes:

En este caso se diferencian las estructuras cuya sección es circular (donde se toma el diámetro en vez de altura y anchura) o no.

Tipo de e	structura OD)F			
Estruc			as sin incluir Estructuras incluyendo		is incluyendo
sección circular (diámetro) sección circular (diám			ular (diámetro)		
		Anchura		Anchura	
		< 2 m	>= 2 m	< 2 m	>= 2 m
Altura	< 2 m	9	42	104	42
Altura	>= 2 m	8	308	8	355

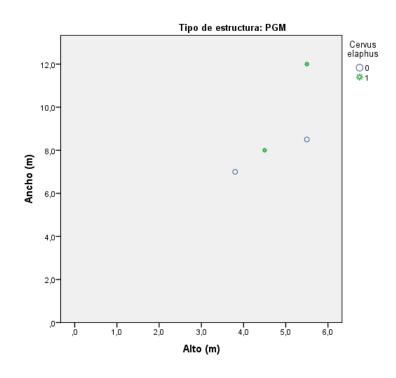

Nota.- Hay 13 casos sin algún dato de anchura, altura o diámetro.

Solo incumple una de las condiciones
Incumple las dos condiciones

PASOS INFERIORES - PASO ESPECIFICO PEQUEÑOS VERTEBRADOS (PPV)

Dimensiones TABLA 3.3 Doc1		
Mínimas (AxH)		
2 x 2 m		

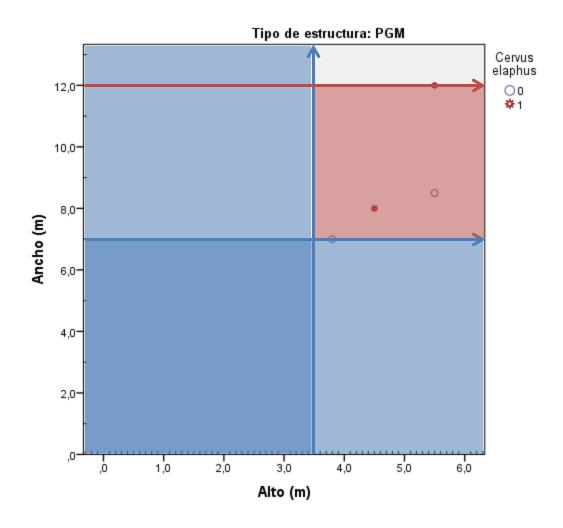
A: Ancho; H: Alto


Tipo de estructura PPV						
		Ancho_Rec2x2				
		< 2 m	>= 2 m			
Alto_Rec2x2	< 2 m	0	3			
	>= 2 m	0	28			

Solo incumple una de las condiciones
Incumple las dos condiciones

PASOS INFERIORES - PASO INFERIOR ESPECÍFICO PARA GRANDES MAMIFEROS (PGM)

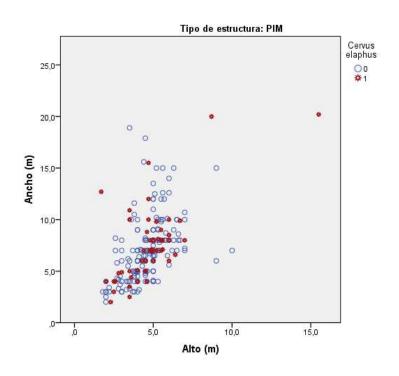
Dimensiones TABLA 3.3 Doc1			
Mínimas (AxH; IA)			
Jabalí y corzo: 7 x 3,5 m e IA > 0,75			
Ciervo: 12 x 3,5 m e IA > 1,5			


A: Ancho; H: Alto; IA: Índice de apertura (AxH/L)

Cervus elaphus = NO. Tipo de estructura PGM								
		Ancho						
		<7 m De 7 a 11,99 m De 12 a 20 m > 20 m						
Altura	<3,5 m	0	0	0	0			
	De 3,5 a 5 m	0	1	0	0			
	> 5 m	0	1	0	0			

Cervus elaphus = SI. Tipo de estructura PGM							
		Ancho					
		<7 m De 7 a 11,99 m De 12 a 20 m > 20 m					
Altura	<3,5 m	0	0	0	0		
	De 3,5 a 5 m	0	1	0	0		
	> 5 m	0	0	1	0		

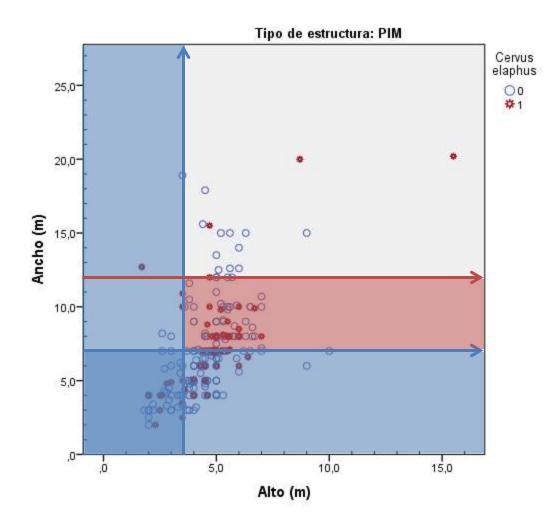
Gráfica de restricciones (AxH):



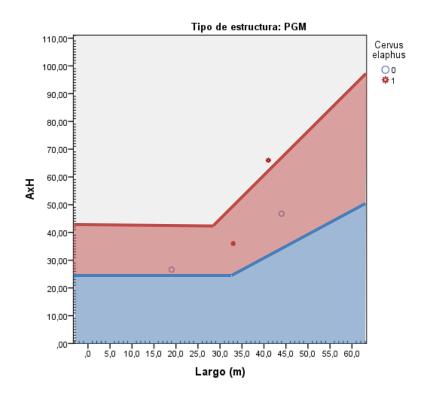
Tipo de estructura PGM							
		Cie	rvo				
		No	Si				
Cumplen	No	0	1				
con DOC 1	Si	2	1				

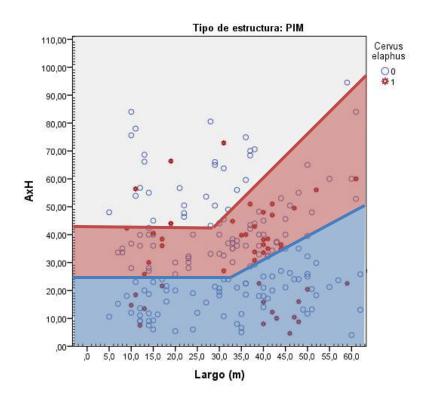
PASOS INFERIORES - PASO INFERIOR MULTIFUNCIONAL (PIM)

Dimensiones TABLA 3.3 Doc1		
Mínimas (AxH; IA)		
Jabalí y corzo: 7 x 3,5 m e IA > 0,75		
Ciervo: 12 x 3,5 m e IA > 1,5		


A: Ancho; H: Alto; IA: Índice de apertura (AxH/L)

Cervus elaphus 0 Tipo de estructura PIM								
		Ancho						
		<7 m De 7 a 11,99 m De 12 a 20 m > 20 m						
Altura	<3,5 m	24	4	0	0			
	De 3,5 a 5 m	52	40	6	0			
	> 5 m	5	34	10	0			
					175			


Cervus elaphus 1 Tipo de estructura PIM							
		Ancho					
		<7 m De 7 a 11,99 m De 12 a 20 m > 20 m					
Altura	<3,5 m	7	0	1	0		
	De 3,5 a 5 m	13	9	2	0		
	> 5 m	2	14	1	1		


Gráfica de restricciones (AxH):

Tipo de estructura PIM							
		Ciervo					
		No	Si				
Cumplen con	No	92	46				
DOC 1	Si	83	4				

Restricciones totales para PGM y PIM

Ecuaciones explícitas de las rectas:

En zonas sin ciervos:

$$AxH = 24'5 \ \forall L \in [0,32'6)$$

 $AxH = 0'75xL \ \forall L \in [32'6, +\infty)$

En zonas con ciervos:

$$AxH = 42 \quad \forall L \in [0,28)$$
$$AxH = 1'5xL \quad \forall L \in [28, +\infty)$$

En ambos casos y en ambos tipos de estructura, las zonas coloreadas por debajo de las rectas significan que cualquier caso que caiga en esas zonas no cumple con las condiciones del DOC 1.

Sin embargo, el estar en la misma recta o por encima de ella no significa que sí lo cumplan, ya que existe la posibilidad de que AxH sea mayor a 24'5 (en el caso de zonas sin ciervos) o de 42 (en zonas de ciervos), y que uno de los multiplicadores no cumpla la condición.

Por ejemplo, para una zona sin ciervos, podemos tener una estructura con un IA igual a 1,13 (cumpliría al ser IA>0'75) y una longitud de 40 (L=40).

Como IA = AxH/L, entonces AxH es 45'2, que puede presentarse de multiplicar:

```
A = 15 (cumple al ser >7)
```

H = 3 (NO cumple al ser < 3'5)

La probabilidad puede ser obtenida calculando las frecuencias relativas de los diferentes pares de A y H donde el múltiplo sea mayor que 24,5 (en el caso de zonas sin ciervo) y que 42 (en el caso de zonas con ciervos).

En el Apéndice 3 se muestran las estructuras que cumplen dimensiones dentro y fuera del área de distribución del ciervo.

ESTUDIO DEL CUMPLIMIENTO DE LAS PRESCRIPCIONES NO MÉTRICAS DE ACONDICIONAMIENTO DE PASOS DE FAUNA

OBJETO

En esta parte del estudio se identifican tanto las estructuras que cumplen con un conjunto de prescripciones técnicas del documento 1, como las que no lo hacen. Estas últimas serán clasificadas conforme al esfuerzo de adaptación que debería realizarse para conseguir, en la medida de lo posible, ajustarse a ellas.

Se da respuesta también a la agrupación de estructuras o modelos que responden a las características de adecuación de la estructura o del entorno.

METODO

Se han utilizado las características que, habiéndose recogido en la ficha de campo para la caracterización de las estructuras, coinciden con prescripciones para el cumplimiento de acondicionamientos adecuados. En la siguiente tabla se indican las que corresponden a cada tipo de estructura.

En el caso de no cumplimiento, se valora el esfuerzo que conllevaría su adaptación como:

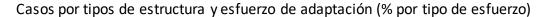
- Esfuerzo de adaptación bajo
- Esfuerzo de adaptación medio
- Esfuerzo de adaptación alto

En todo caso, la asignación de las características a un tipo de esfuerzo u otro tiene un carácter lógico, pero subjetivo, por lo que podrían reagruparse de otra forma. El cálculo del coste real no entra en el objeto de este estudio.

Otras características que no pueden ser analizadas con la información disponible, pero que son importantes a efectos de cumplir las condiciones del documento 1 serian:

Para el Ecoducto (ECO), la presencia de una heterogeneidad de hábitats y microhábitats en su superficie similar a la de su entorno; y también para el Paso superior de fauna (PSF), la existencia de plantaciones en superficie con un diseño heterogéneo con espacios abiertos en el centro y franjas longitudinales de árboles y arbustos junto márgenes, ninguna presencia de barreras de seguridad tipo biondas para separar usos y el impedimento al acceso de vehículos.

- Para el Paso superior multifuncional (PSM), la existencia de una anchura mínima de un metro en las bandas laterales revegetadas o con sustrato natural, ninguna presencia de barreras de seguridad tipo biondas o similares para separar usos, altura mínima de pantallas de dos metros y el impedimento al acceso de vehículos.
- Para el Viaducto (VIA), La anchura debe permitir cubrir por vegetación de ribera toda la franja ocupada, la distancia entre la vegetación de ribera y las pilas o estribos del viaducto será de cinco metros como mínimo, la altura mínima de las pilas del viaducto será de cinco metros sobre arbustos o herbáceas y de diez metros sobre árboles, ningún cerramiento perimetral bajo el viaducto, compatibilidad con otras infraestructuras viarias y acondicionamiento de pantallas vegetales con desbrozamiento de márgenes y exigencia de diseños del documento 1 en las pantallas laterales.
- Y en el resto de tipos de estructuras, sobre todo el impedimento de acceso a los vehículos.

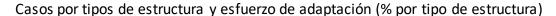

El tipo Túnel no se ha analizado ya que para él no se establecen prescripciones en el documento 1.

	Descripción	Variable	Condición cumplimiento	ECO	PSF	PSM	VIA	PGM	PPV	PIM	ODF
	- Capa de tierra vegetal.	030	= Natural	٧	٠,						
		062_1	= SI	٧	٧						
	- Material de la estructura: nada de acero	028	<> Chapa corrugada								
	corrugado a menos que la base esté aplanada	Υ	Υ								٧
	con hormigón.	062_8	= SI								
	- Accesos al mismo nivel que los terrenos	037	= NO	-,	.,						
	adyacentes			٧	٧						
	- Ninguna arqueta o pozos en uno o ambos	046	= NO								.,
0	extremos.										٧
ESFUERZO BAJO	- Si puede inundarse, dispondrá de bandas	052	= dos lados								
0.6	laterales secas de mínimo 50 cm de anchura	Υ	Υ								
\Z	cada una.	055	≥ 50 cm					٧	٧	٧	٧
当		Υ	Υ								
ヿ゙		032	= NO								
ES	- SI la estructura está pavimentada o no tiene	062_1P	= SI								
	sustrato natural, se dejarán dos franjas					٧				٧	
	laterales cubiertas con sustrato natural.										
	- Apantallamientos opacos o plantaciones	062_6	= SI	٧	٠,	./					
	densas de arbustos en los laterales.			V	٧	٧					
	- Cerramiento perimetral que guíe la fauna	073_1	= NO								
	hacia las entradas del paso.	073_2	= NO	٧	v	V	v	V	v	v	v
		073_3	= NO	V	ľ	V	l v	V	v	V	V
		073_4	= NO								
	- Pendiente máxima de rampa de un 15%, o	047P2	< 15 (en montaña <25)	٧	V	٧					
0	hasta un 25% en zonas montañosas.			٧	٧	٧					
	- Cerramiento perimetral que guíe la fauna	067	= a ambos lados	V	V	٧	v	٧	V	٧	٧
ESFUERZO MEDIO	hacia las entradas del paso.	071	= simple o doble torsión	٧	, v	٧	Ľ	v	v	٧	٧
_	- Revegetación sólo con especies autóctonas,	095_1	= SI								
Z	características de hábitats del entorno.	Υ	Υ								
8	- Continuidad de las formaciones vegetales	102_1	= SI	٧	٧	٧					
□ ⊡	entre la superficie de la estructura y los										
ES	hábitats de las zonas adyacentes.										
	- Continuidad entre los accesos de la	132	= SI								٧
	estructura y la vegetación de ribera.	147	= SI								_
	- Otra infraestructura de transito próxima o	133_4	= NO								
	perpendicular a las entradas del paso.	133_5	= NO								
		133_6	= NO								
0		133_13	= NO	٧	V	٧		V		٧	
<u> </u>		148_4	= NO	•	-	-		-			
4		148_5	= NO								
Z		148_6	= NO								
ESFUERZO ALTO	No tondué comine no esfette de mifera	148_13	= NO	-				-			
E	- No tendrá camino no asfaltado, ni ferrocarril	060P	= NO	١.,	ļ ,			l _,	.,		
ES	ni carretera asfaltada.	060P2	= NO	٧	٧			٧	٧		
	Douglante de remande de conse e la conse	060P3	= NO								
	- Pendiente de rampas de acceso a banquetas laterales.	041 045	≤ 45								.,
	laterales.		≤ 45								٧
		047P2	≤ 45								

RESULTADOS

Los resultados de porcentajes de cumplimiento de cada característica para cada tipo de estructura se muestran en el Anexo 2.

Las siguientes figuras comparan los diferentes tipos de estructuras conforme al cumplimiento y el tipo de esfuerzo de adaptación que vendría asociado, en caso de no cumplir.



La figura muestra como los viaductos son los únicos que cumplen las condiciones del documento 1 según las características escogidas.

El grado de incumplimiento se da por tipo de esfuerzo. Con esfuerzo bajo también los viaductos (VIA) tienen mayor proporción, seguidos por los pasos inferiores multifuncionales (PIM).

Dentro del esfuerzo medio, son los drenajes (ODF) los que presentan mayor proporción bastante por delante del resto.

Los que requieren un esfuerzo alto para su adaptación son fundamentalmente las estructuras inferiores multifuncionales (PIM).

Dado que una estructura puede requerir distinto esfuerzo según la característica a adaptar, se han priorizado las que suponen mayor esfuerzo para su clasificación. Por ejemplo, si la estructura presenta esfuerzo medio para unas características y alto para otras, se contabiliza todo como esfuerzo alto.

La gráfica muestra que el viaducto es el único tipo de estructura (VIA) que cumple las prescripciones, pero además que requiere sólo esfuerzos de adaptación bajos y medios, al igual que el tipo para pequeños vertebrados (PPV).

Los drenajes (ODF) muestran que con sólo un esfuerzo medio conseguiría cumplir casi al completo con las condiciones establecidas para pasos de fauna.

Los demás tipos de estructuras requieren importantes esfuerzos de adaptación.

Por último, se comparan los resultados obtenidos en este estudio con los de cumplimiento obtenido en el trabajo "MAGRAMA 2016. Encomienda de gestión al CEDEX para la realización de trabajos de asistencia técnica de la Dirección General de Calidad y Evaluación Ambiental y Medio Natural (2014-2016). Actuación nº 8. Localización y descripción de las medidas correctoras de la desfragmentación de hábitats en las cuadrículas UTM 1x1Km seleccionadas". Para ello se utiliza la variable (025P), que se encuentra en la base de datos de la muestra y que indica si cumple las dimensiones según la ficha de campo, contrastando con las prescripciones MMA 2006, antes de la segunda revisión que hemos tomado como referencia para este trabajo.

La tabla cruzada con los datos sería la siguiente:

		Cumple MMA 2006 (variable 025P)						
		No	٨		Si			
Cumplen	0	0,0%	38	100,0%	0	0,0%		
Esfuerzo Bajo	345	34,6%	158	15,8%	495	49,6%		
Esfuerzo Medio	312	29,2%	334	31,2%	423	39,6%		
Esfuerzo Alto	90	55,2%	0	0,0%	73	44,8%		

La columna No Aplica se refiere a la categoría del campo (025P) para las tipologías de estructuras para las que no se ha dado dimensiones mínimas en el documento de prescripciones técnicas referido. Este es el caso de túneles y de los viaductos. El 100% de cumplimiento obtenido en este estudio se refiere precisamente a la tipología Viaducto.

Así pues, las estructuras que cumplen las dimensiones mínimas, de acuerdo con la variable 025P, requieren algún tipo de esfuerzo para su adaptación al paso de fauna. Un 50% requerirían un esfuerzo de adaptación bajo y el resto entre medio y alto.

Por su parte, las estructuras que no cumplen las dimensiones mínimas (variable 025P) tampoco cumplen las características no métricas que se han analizado en este estudio.

INCORPORACION A LA BASE DE DATOS

Todos los datos generados se incorporan a la base de datos relacional generada por el trabajo "MAGRAMA 2016. Encomienda de gestión al CEDEX para la realización de trabajos de asistencia técnica de la Dirección General de Calidad y Evaluación Ambiental y Medio Natural (2014-2016). Actuación nº 8. Localización y descripción de las medidas correctoras de la desfragmentación de hábitats en las cuadrículas UTM 1x1Km seleccionadas" (ANEXO VI, INFORME A8T2). En ella aparecen en la tabla de nombre 'Cumplimiento_DOC1_2018' cuenta con los siguientes campos:

Nombre del campo	Descripción
Id	Clave primaria. Referencia a la tabla Estructura_01_Basicos
Codigo_FB	Identificación de la infraestructura
TipoPaso	Referencia al Tipo de paso
Cumplen	Cumplen las prescripciones técnicas del DOC1 (1=SI, 0=NO)
EsfuerzoBajo	No cumple, pero con un esfuerzo bajo se puede alcanzar las exigencias técnicas del DOC1 (1=SI, 0=NO)
EsfuerzoMedio	No cumple, pero con un esfuerzo medio se puede alcanzar las exigencias técnicas del DOC1 (1=SI, 0=NO)
EsfuerzoAlto	No cumple, pero con un esfuerzo alto se puede alcanzar las exigencias técnicas del DOC1 (1=SI, 0=NO)

ANALISIS CON SISTEMAS DE INFORMACIÓN GEOGRAFICA (SIG) LOCALIZACION EN GOOGLE EARTH

OBJETO

Se han obtenido las coberturas o capas del Sistema de Información Geográfica para los siguientes **temas**:

- Las propias elaboradas por este trabajo sobre el cumplimiento de las prescripciones técnicas no métricas del documento 1.
- El cruce de las capas sobre el cumplimiento de prescripciones no métricas del documento 1 y las capas SIG elaboradas en el marco del documento Identificación de áreas a desfragmentar para reducir los impactos de las infraestructuras de transporte en la biodiversidad (documento 6).
- El cruce de las capas sobre el cumplimiento de prescripciones no métricas del documento 1 y las capas SIG de las áreas de distribución de las especies siguientes¹:
 - o Canis lupus.
 - o Chamaeleo chamaeleon.
 - Coronella austriaca.
 - o Lutra lutra.
 - Lynx pardinus.
 - o Microtus cabrerae.
 - Mustela lutreola.
 - Mustela putorius.
 - Ursus arctos.
 - o Vipera seoanei.
 - o Cervus elaphus.
- El cruce de las capas sobre el cumplimiento de prescripciones no métricas del documento 1 y las capas SIG de los espacios naturales o áreas siguientes:
 - Áreas de Alto Valor Agrícola (MARM 2011. Modelización de las áreas agrarias y forestales de alto valor natural en España. Informe inédito).
 - Espacios Naturales Protegidos (EENNPP).
 - o Lugares de Interés Comunitario (LIC).
 - Zonas de Especial Protección para las Aves (ZEPAS).

¹ Suministrados por el Banco de Datos de la Naturaleza del Ministerio para la Transición Ecológica.

METODO

Se han extraído las capas para su utilización tanto en un Sistema de Información Geográfica (SIG), en formato *Shapefile* (SHP), como para su inclusión en la aplicación Google Earth, en formato *Keyhole Markup Language* (KML).

En *SHP* se ha creado un único archivo con toda la información general referente al cruce de capas específica para cada tema comentado en el objeto del análisis.

En KML se han creado tantos archivos como combinaciones de casos entre zonas de España, cumplimiento o no las prescripciones no métricas del documento 1, los tipos de estructuras existentes y los datos correspondientes a cada tema.

Para que los nombres de los archivos no fueran muy extensos, en alguno se han codificado ciertas características. La siguiente codificación permite identificar que cruce de coberturas se han utilizado para su creación:

- PyB, para las coberturas de la Península y Baleares.
- Can, para las coberturas de Canarias.
- DOC1, se refiere a la capa de cumplimentación de prescripciones no métricas del documento 1, que puede ser:
 - o CumplenDOC1 o CDOC1, en caso de cumplimiento.
 - NC (No cumple) con sus variantes²:
 - EB: esfuerzo de adaptación bajo.
 - EM: esfuerzo de adaptación medio.
 - EA: esfuerzo de adaptación alto.
- Los diferentes tipos de estructuras³:
 - o ECO, Ecoducto.
 - o PSF, Paso superior de fauna.
 - o PSM, Paso superior multifuncional.
 - VIA, viaducto.
 - o PGM, paso inferior para grandes mamíferos.
 - o PPV, Paso inferior para pequeños vertebrados.
 - o PIM, Paso inferior multifuncional.
 - o ODF, Drenaje.

_

² Hay que tener en cuenta que los casos que no cumplen pueden estar tanto en un grupo de esfuerzo como en otro a la vez, por lo que, al subir dos capas diferentes pueden ocupar la misma estructura.

³ Los tipos de estructuras que no se encuentran en esta lista o no tienen ningún caso representado en la muestra o no se han establecido prescripciones técnicas en el documento 1 para su caso (caso del Túnel).

Para otras definiciones se puede consultar la **Documentación específica del trabajo cartográfico**, en la parte del informe sobre garantía de calidad del estudio.

Las coberturas tienen distinta proyección:

- UTM ETRS89 (Huso 30), en el caso de la Península y Baleares.
- WGS84 (Huso 28), en el caso de Canarias.

RESULTADOS

Los archivos están dispuestos en carpetas por las áreas que componen los cruces de las capas, que son:

- 1 SIG DOC1, con las capas de cumplimiento o no de las prescripciones técnicas no métricas del documento 1.
- 2 SIG Fragmentación hábitat, con el cruce entre las capas de DOC1 y las de fragmentación del hábitat.
- *3 SIG Especies*, con el cruce entre las capas del DOC1 y las diferentes áreas de distribución de algunas especies.
- 4 SIG Espacios Naturales, con el cruce de las capas del DOC1 y diferentes tipos de espacios naturales o áreas.

Dentro de cada área se disponen los archivos según correspondan a:

- La Península y Baleares
- Canarias

Se ha proyectado la capa de Canarias sobre la de Península y Baleares, de manera que finalmente aparecen en la misma.

A su vez se dividen en dos carpetas que diferencian los tipos de archivos:

- KML
- SHP

Para los KML, se dividen en:

- Cumplen
- No cumplen, Esfuerzo de adaptación bajo.
- No cumplen, Esfuerzo de adaptación medio.
- No cumplen, Esfuerzo de adaptación alto.

Y por último, se dividen en tantas carpetas como tipos de estructuras se presenten en el cruce de las capas.

CONCLUSIONES

La participación de varios equipos de campo para la recogida de los datos de caracterización de las estructuras transversales en carreteras y vías de ferrocarril, identificación de tipología, mediciones y acondicionamientos para el paso de fauna requiere de la homogeneización de criterios y una gran coordinación. De lo contrario, los resultados pierden fiabilidad y parte de ellos pueden ser incorrectos, lo que repercute en la eficiencia del trabajo.

La inspección de la base de datos original creada con el trabajo que se realizó entre los años 2015 y 2016, y de las fichas asociadas, ha supuesto la modificación de la base de datos para información de 107 estructuras, de las 1.358, lo que implica cambios en algún campo en el 8% de las estructuras. La composición múltiple de estructuras inferiores ha dado origen a la mayor parte de las correcciones. No ha habido un criterio homogéneo a la hora de tomar la medida de anchura de este tipo de estructuras, por lo que en este trabajo se ha seguido la indicación de "MAGRAMA 2015. Prescripciones técnicas para el diseño de pasos de fauna y vallados perimetrales (segunda edición, revisada y ampliada)", de "medir la anchura de cada hueco (vano o marco)". Como se ha tenido que trabajar con los datos existentes, la premisa anterior se ha traducido en utilizar la anchura de uno de los vanos que permitía el paso de fauna (cuando todos eran iguales) o de aquel que mejor condiciones presentaba para el paso de fauna, cuando los vanos eran diferentes. A su vez, se ha modificado el campo de la composición de este tipo de estructuras (en la base de datos) para informar si alguno de los vanos está inundado permanentemente o no.

Por otra parte, algunos de los criterios por los que se designan las tipologías de estructuras solapan y, aunque en principio la tipología responde a funciones diferentes, a veces se presentan más de una de forma simultánea. Es por ello, que en un futuro sería conveniente revisar dichos criterios y estandarizar una tipología más precisa.

A pesar de los inconvenientes mencionados, la tipología que clasifica las estructuras sí discrimina éstas claramente entre las dedicadas específicamente al paso de fauna (ya sea paso superior o inferior) y el resto, con excepción de los ecoductos, dado que en la pequeña muestra obtenida alguno presentaba un camino o carretera, lo que ha desviado al conjunto de ellos de la función específica. Esto indica, por una parte, la necesidad de adaptar adecuadamente los ecoductos al paso específico de fauna, dado que son obras de muy alto coste, y por otra, la de mantener la función de paso específico para diferenciar correctamente este tipo de estructuras. Los resultados no quieren decir que por las otras tipologías de estructuras no pueda pasar la fauna; esta pasará dependiendo de las dimensiones y los acondicionamientos que dispongan para dicho uso. De forma más extrema que en el caso de los ecoductos, el terreno por encima de los túneles es utilizado también por otros usos que pueden dificultar el paso de la fauna si no se acondiciona convenientemente.

Los drenajes quedan completamente diferenciados del paso de fauna por la amplia variación de dimensiones que presentan y la combinación de otras funciones en bastantes casos. La tipología "drenaje" es importante para localizar este tipo de estructuras, pero podría quedar como una subtipología dentro de la de paso de fauna específico, en el caso de drenajes que no tengan otra función adicional, o de estructuras multifuncionales, cuando sí la tuvieran.

Viaductos, drenajes y pasos para pequeños vertebrados son los tipos de estructuras que en su mayor parte cumplen las dimensiones mínimas del documento mencionado anteriormente. Aunque para viaductos las prescripciones no indican una altura mínima que se pudiera comprobar con la información tomada en campo, si se ha encontrado que un 11 por ciento tienen una altura inferior a 3,5 m, que es la altura mínima de pasos inferiores para grandes mamíferos. Los drenajes son muy heterogéneos en dimensiones. La mayor parte cumplen las dimensiones mínimas, pero un 30% son menores de 2x2 m y circulares. Las estructuras multifuncionales, tanto inferiores como superiores, por lo general, no alcanzan las dimensiones mínimas. Y los pasos específicos para fauna son muy escasos en la muestra y excepcional el cumplimiento de dimensiones mínimas, particularmente para el ciervo, dentro de su área de distriución.

Entre las características no métricas, el sustrato de la base de las estructuras fue considerado "natural" en los viaductos y túneles. Se observa un esfuerzo de naturalización en los ecoductos y pasos específicos superiores, sin llegar a reproducir las condiciones necesarias para considerarlos de base "natural". Muchos de los drenajes, los puentes, tendrán una base natural, pero la gran variación de estructuras, con una mayor parte de hormigón, los sitúa más próximos a este otro tipo de base. Y lo mismo ocurre con los pasos inferiores para grandes mamíferos y para los de pequeños vertebrados, aunque estos presentan principalmente bases de tierra.

Así pues, sería conveniente renaturalizar en la medida de lo posible las estructuras para facilitar el paso de fauna. Un dato positivo que se desprende del análisis es el escaso uso de la chapa corrugada; material nada adecuado para los animales.

Las banquetas laterales constituyen una forma segura de adecuación de las estructuras inferiores al paso de fauna cuando el terreno se inunda temporal o permanentemente. Estas banquetas solo aparecen en algunas estructuras de drenaje, pero no así en estructuras inferiores específicas para el paso de fauna. Por ello, sería muy recomendable invertir esfuerzo en dotar de bandejas laterales a la mayor cantidad de estructuras inferiores específicas en terrenos inundables.

Algunas de las estructuras superiores multifuncionales se han adecuado con pantallas laterales opacas y franjas laterales naturalizadas; si bien el paso dependerá también de las perturbaciones humanas y de sus dimensiones.

El vallado perimetral es uno de los aspectos más importantes de revisar, ya que se presentan huecos por cunetas o roturas e incorrectas fijaciones del mismo a las aletas de la estructura en todas las tipologías. Estos defectos reducen la eficacia del paso y facilitan la mortalidad de fauna en las vías, produciendo una disminución de la seguridad vial.

Las únicas estructuras que se muestran claramente seguras para la fauna por no hallarse vías próximas a los accesos, son las superiores específicas para el paso de fauna. Estas estructuras se construyen en mucho menor número que las inferiores específicas, por lo que estas últimas deberían adaptarse con las garantías de seguridad necesarias.

Algunos viaductos son las únicas estructuras que cumplen con el conjunto de características no métricas elegidas de las prescripciones técnicas para el diseño de pasos de fauna o vallados perimetrales. Podría parecer que estas grandes estructuras tendrían que permitir el paso sin ninguna dificultad y, sin embargo, a pesar de sus dimensiones, hay rasgos importantes que pueden facilitar o dificultar el tránsito de la fauna. Pero también es este tipo de estructura el que requeriría un menor esfuerzo de adaptación.

De las estructuras específicas para el paso de fauna, los ecoductos y pasos superiores de la muestra requerirían esfuerzos medios o altos, pero dado el coste de estas tipologías y la importancia para la fauna, sería importante acondicionarlas adecuadamente. Los pasos inferiores para grandes mamíferos requieren esfuerzos bajos o altos y los de pequeños vertebrados, bajos y medios, así que estos últimos se prestan a su acondicionamiento, si bien también sería importante mejorar el paso inferior de los de mayor tamaño.

La selección de las estructuras que pueden beneficiarse de una mejora de adaptación puede orientarse mediante su visualización y localización superpuesta a las áreas prioritarias para la desfragmentación, los espacios protegidos y de la Red Natura 2000, las áreas de alto valor agrícola y la distribución de algunas especies de la fauna, como se muestra en Google Earth y el GIS realizado.

Para próximos estudios sería conveniente reducir las variables a tomar en la ficha de campo, en función de las que posteriormente puedan ser analizadas, de los objetivos del estudio y considerando, si se quiere, los resultados de redundancias obtenidos en este trabajo. La anchura y la longitud son las variables métricas más importantes para discriminar entre algunas tipologías de estructuras, pero la altura es fundamental también para cumplir con las dimensiones que pueden optimizar el uso de las estructuras por la fauna silvestre.

ANEXO 1. RELACIÓN DE LOS CAMBIOS REALIZADOS EN ALGUNAS VARIABLES O CAMPOS EN LA FASE DE REVISIÓN E INSPECCIÓN

Codigo_FB	Correciones2018
29SPB7032_002	Composición: de Otra a Inaccesible; Ancho mal
29SPB8630_001	Ancho de 21 a 3; IA de 0,63 a 0,09; Composición: de Otra a Otra paso
29SPB8630_002	Ancho de 31 a 3; IA de 0,96 a 0,09; Composición: de Otra a Otra paso
29SPB8630_006	Ancho de 9,5 a 4,5: IA de 0,81 a 0,38
29SPD7709_N011	Intercambiar ancho y largo; IA nuevo de 26,6
29TPH0401_002	IA nuevo 37,79; Composición de Otra a No aplica
29TPH0401_005	Composición: Simple; Ancho mal
29TPJ3408_001	Calculo del IA
29TQE5453_002	Composición: de Triple a Triple paso
29TQF1402_001	Composición: de Doble a Doble paso
29TQF2414_002	Composición: Simple
29TQG3054_004	Calculo del IA
29TQG3054_005	Calculo del IA
29TQG3254_002	Composición: De Otra a Simple
30STF5039_002	Ancho de 36,9 a 18; IA de 27,21 a 13,28
30STF6719_001	Composición: de Otra a Inaccesible; Ancho mal
30STF6719_002	Ancho de 5,1 a 2; IA de 0,19 a 0,07; Composición: de Doble a Doble paso
30STF7011_002	Composición: de Otra a Inaccesible; Ancho mal
30STF7806_001	Composición: de Otra a Inaccesible; Ancho mal
30STF7806_002	Composición: de Otra a Inaccesible; Ancho mal
30SUH7000_001	Alto mal: 0,8; IA: 0,19
30SUH7000_002	Ancho de 5,4 a 2; IA de 0,4 a 0,15; Composición: de Doble a Doble paso
30SVF2568_003	Composición: de Otra a Inaccesible; Ancho mal
30SVF2967_005	Composición: de Doble a Doble paso
30SVF6788_001	Composición: de No Aplica a Simple
30SVH5654_002	Ancho de 18,1 a 9; IA de 1,93 a 0,95; Composición: de Doble a Doble paso

30SVH5654_004	Ancho de 19,7 a 9; IA de 2,57 a 1,17; Composición: de Doble a Doble paso		
30SVK1413_002	Composición: de Otra a Otra paso		
30SXG1372_N001	Composición: de Doble a Doble paso		
30SXG2475_002	Composición: de Triple a Triple paso		
30SXH4726_002	Ancho de 11,4 a 5; IA de 5,09 a 2,23; Composición: de Doble a Doble paso		
30SYH0012_001	Composición: de Otra a Otra paso		
30TTK5972_N003	Ancho de 4 a 2; IA de 0,17 a 0,08; Composición: de Doble a Doble paso		
30TTL9898_001	Composición: de Triple a Triple paso		
30TTN7083_002	Composición: de Doble a Doble paso		
30TTN8117_004	Composición: de Doble a Doble paso		
30TTN8117_005	Diámetro mal: 1,80; IA:_ 0,04; Composición: de Doble a Doble paso		
30TUL2590_003	Composición: de Triple a Triple paso		
30TUL5473_004	Ancho mal		
30TUN2542_001	Calculo del IA		
30TVN6301_001	Ancho mal		
30TVN7005_001	Ancho de 30 a 8; IA de 9 a 2,54		
30TVN9120_N005	Ancho de 50 a 2; Alto de 4 a 3; IA de 13 a 0,4		
30TWN0631_003	Ancho mal		
30TWN0848_003	Composición: de Doble a Doble paso		
30TWN0848_006	Ancho de 31 a 5; IA de 18,6 a 3		
30TWN1233_004	Ancho mal		
30TWN4943_004	Composición: de Doble a Doble paso		
30TWN5191_002	Ancho de 85 a 51; IA de 89,72 a 52,13		
30TWN6648_004	Ancho de 48 a 21; IA de 16 a 7		
30TXM4627_N001	Ancho de 4 a 2; IA de 0,15 a 0,08; Composición: de Doble a Doble paso		
30TXN0639_002	Ancho de 60,3 a 12; IA de 38,76 a 7,71		
30TXN0639 003	Ancho de 32 a 20; IA de 16 a 10		
30TXN0938 003	Ancho de 44,1 a 10; IA de 14,7 a 3,33		
30TXN1113_003	Ancho de 10 a 1,5; IA de 6,88 a 1,03		
30TYM1598_002	Composición: de Triple a Triple paso		
30TYM1698_002	Composición: de Doble a Doble paso		
30TYN1403_004	Ancho de 12 a 5; IA de 2,34 a 0,98; Composición: de Doble a Doble paso		
30TYN1608_003	Ancho de 26,04 a 11,6; IA de 17,76 a 7,80		
30TYN1908_003	Composición: de Otra a Simple		
30TYN2133_001	Composición: de Otra a Doble		
30TYN3422_001	Composición: de Otra a Inaccesible; Ancho mal		
30TYN4506 001	Composición: de Otra a Simple		
	•		

31SDD7686_N003	Ancho de 10 a 4; IA de 2,31 a 0,92; Composición: de Doble a Doble paso		
31TBG8177_002	Composición: de Otra a Inaccesible; Ancho mal		
31TBG8178_001	Ancho de 18,5 a 5; IA de 9,75 a 4,21; Composición: de Doble a Doble paso		
31TBH7223_001	Ancho de 98,8 a 2,6; IA de 32,11 a 0,85		
31TBH8806_004	Composición: de Otra a Simple		
31TBH9209_001	Ancho de 16,5 a 5; IA de 3,63 a 1,1; Composición: de Otra a Triple		
31TBH9217 001	Composición: de Otra a Simple		
31TBH9509_002	Composición: de Otra a Simple		
31TCF6055_003	Ancho de 16,5 a 8; IA de 1,83 a 0,88; Composición: de Doble a Doble paso		
31TCG1796_001	Composición: de Otra a Simple		
31TCG2790_003	Composición: de Doble a No aplica		
31TCG3189_001	Ancho de 9,6 a 4,4; IA de 5,21 a 2,38; Composición: de Doble a Doble paso		
31TCG3380_002	Composición: de Otra a Simple		
31TCG3782_001	Composición: de Otra a Simple		
31TCG4191_001	Composición: de Otra a Doble paso		
31TCG5393_001	Ancho de 19,4 a 5,6; IA de 6,04 a 1,74; Composición: de Otra a Triple paso		
31TCG7509_002	Ancho de 19,4 a 7; IA de 60,4 a 0,91; Composición: de Otra a Doble paso		
31TCG8222_003	Composición: de Otra a Doble paso		
31TCG8721_004	Ancho de 19,1 a 6,1; IA de 9,93 a 3,17; Composición: de Triple a Triple paso		
31TCG9021_003	Ancho de 10,8 a 5; IA de 2,3 a 1,06; Composición: de Doble a Doble paso		
31TCH0005_002	Ancho de 10 a 2; IA de 4 a 0,8; Composición: de Otra a Otra paso		
31TCH0703_001	Composición: de Otra a Simple		
31TCH1102_001	Composición: de Otra a Simple		
31TCH2110_002	Composición: de Otra a Simple		
31TCH2212_001	Composición: de Otra a Simple		
31TCH2329_001	Composición: de Otra a Simple		
31TCH4600_001	Composición: de Otra a Simple		
31TCH4715_001	Composición: de Otra a Simple		
31TCH5109_008	Ancho de 22,1 a 10; IA de 3,68 a 1,67; Composición: de Doble a Doble paso		
31TCH5207_007	Composición: de Doble a Doble paso		
31TDF1690_001	Composición: de Otra a Inaccesible; Ancho mal		
31TDG6118_009	Composición: de Doble a Doble paso		
31TDG8036_004	Ancho de 9,5 a 4,5; IA de 0,88 a 0,42; Composición: de Doble a Doble paso		

31TDG8443_002	Ancho de 10 a 5; IA de 0,95 a 1,48; Composición: de Doble a Doble paso
31TDG8754_N004	Ancho de 6 a 3; IA de 1,85 a 1,58
31TDG8955_002	Ancho de 21 a 10; IA de 4,85 a 2,3
31TDG9189_N005	Cerramiento perimetral en embocaduras: de NO a SI
31TDG9190_004	Composición: de Doble a Doble paso
31TDG9289_001	Composición: de Otra a Otra paso
31TDG9289_004	Composición: de Doble a Doble paso
31TDG9289_005	Ancho mal
31TDG9368_004	Composición: de Otra a Inaccesible; Ancho mal
31TDG9387_003	Composición: de Doble a Doble paso

ANEXO 2. GRADO DE CUMPLIMIENTO POR CARACTERÍSTICAS NO MÉTRICAS Y TIPO DE ESTRUCTURA

Las siguientes tablas muestran el **grado de incumplimiento** en porcentaje de las diferentes características analizadas, por cada tipo de estructura por separado y según el tipo de esfuerzo de adaptación que llevaría asociado.

ECODUCTO (ECO)

	DESCRIPCIÓN	VARIABLE Y REGLAS DE CUMPLIMIENTO	PORCENTAJE DE INCUMPLIMIENTO
ESFUERZO BAJO	- Capa de tierra vegetal	030 = natural 062_1 = SI	0% 0%
	- Accesos al mismo nivel que los terrenos adyacentes	037 = NO	0%
	- Apantallamientos opacos o plantaciones densas de arbustos en laterales	062_6 = SI	0%
	- El cerramiento de los márgenes dará continuidad al cerramiento perimetral - Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	073_1 = NO 073_2 = NO 073_3 = NO 073_4 = NO	0% 13% 38% 50%
ESFUERZO MEDIO	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	071 = simple o doble torsión 067 = a ambos lados	87% 25%
	- Pendiente máxima de rampa de un 15% o hasta 25% en zonas montañosas	047P2 menos de 15%	?
	-Revegetaciones solo con especies autóctonas, características de hábitats del entorno - Continuidad de las formaciones vegetales entre la superficie de la estructura y los hábitats de las zonas adyacentes	095_1 = SI Y 102_1 = SI	50%

	- Otra infraestructura de transito	133_4 = NO	13%
	próxima o perpendicular a las entradas	133_5 = NO	13%
	del paso.	133_6 = NO	13%
ALTO		133_13 = NO	25%
		148_4 = NO	25%
20		148_5 = NO	0%
ESFUERZO		148_6 = NO	0%
		148_13 = NO	0%
Ш	- Tienen camino, vía de ferrocarril y	060 = NO	13%
	camino asfaltado	060P2 = NO	0%
		060P3 = NO	0%

PASO SUPERIOR ESPECIFICO PARA FAUNA (PSF)

	DESCRIPCIÓN	VARIABLE Y REGLAS DE CUMPLIMIENTO	PORCENTAJE DE INCUMPLIMIENTO
ESFUERZO BAJO	- Capa de tierra vegetal	030 = natural 062_1 = SI	57% 100%
	- Accesos al mismo nivel que los terrenos adyacentes	037 = NO	0%
	- Apantallamientos opacos o plantaciones densas de arbustos en laterales	062_6 = SI	100%
	- El cerramiento de los márgenes dará continuidad al cerramiento perimetral - Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	073_1 = NO 073_2 = NO 073_3 = NO 073_4 = NO	14% 29% 71% 14%
ESFUERZO MEDIO	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	071 = simple o doble torsión 067 = a ambos lados	71% 0%
	- Pendiente máxima de rampa de un 15% o hasta 25% en zonas montañosas	047P2 menos de 15%	?
	-Revegetaciones solo con especies autóctonas, características de hábitats del entorno Continuidad de las formaciones vegetales entre la superficie de la estructura y los hábitats de las zonas adyacentes.	095_1 = SI Y 102_1 = SI	29%

ESFUERZO ALTO	- Otra infraestructura de transito próxima o perpendicular a las entradas del paso.	133_4 = NO 133_5 = NO 133_6 = NO 133_13 = NO 148_4 = NO 148_5 = NO 148_6 = NO 148_13 = NO	0% 0% 0% 57% 14% 14% 0% 57%
	- Tienen camino, via de ferrocarril y camino asfaltado	060 = NO 060P2 = NO 060P3 = NO	0% 0% 0%

PASO SUPERIOR MULTIFUNCIONAL (PSM)

	DESCRIPCIÓN	VARIABLE Y REGLAS DE CUMPLIMIENTO	PORCENTAJE DE INCUMPLIMIENTO
ESFUERZO BAJO	- SI la estructura está pavimentada o no tiene sustrato natural, se dejarán dos franjas laterales cubiertas con sustrato natural.	062_P1 = SI	92%
	- Apantallamientos opacos o plantaciones densas de arbustos en los laterales.	062_6 = SI	90%
	- El cerramiento de los márgenes dará continuidad al cerramiento perimetral - Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	073_1 = NO 073_2 = NO 073_3 = NO 073_4 = NO	21% 13% 19% 6%
	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	071 = simple o doble torsión 067 = a ambos lados	73% 38%
ESFUERZO MEDIO	- Pendiente máxima de rampa de un 15% o hasta 25% en zonas montañosas	047P2 menos de 15%	?
	 Revegetaciones solo con especies autóctonas, características de hábitats del entorno. Continuidad de las formaciones vegetales entre la superficie de la estructura y los hábitats de las zonas adyacentes. 	095_1 = SI Y 102_1 = SI	92%
ESFUERZO ALTO	- Otra infraestructura de transito próxima o perpendicular a las entradas del paso.	133_4 = NO 133_5 = NO 133_6 = NO 133_13 = NO 148_4 = NO 148_5 = NO 148_6 = NO 148_13 = NO	19% 10% 0% 4% 17% 15% 10% 4%

[?] Se desconoce el dato por faltar mucha información.

VIADUCTO ADAPTADO AL PASO DE FAUNA (VIA)

	DESCRIPCIÓN	VARIABLE Y REGLAS DE CUMPLIMIENTO	PORCENTAJE DE INCUMPLIMIENTO
ESFUERZO BAJO	- El cerramiento de los márgenes dará continuidad al cerramiento perimetral - Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	073_1 = NO 073_2 = NO 073_3 = NO 073_4 = NO	17% 15% 22% 4%
ESFUERZO MEDIO	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	071 = simple o doble torsión 067 = a ambos lados	73% 49%
ESFUERZO ALTO			

PASO INFERIOR ESPECIFICO PARA GRANDES MAMIFEROS (PGM)

	DESCRIPCIÓN	VARIABLE Y REGLAS DE CUMPLIMIENTO	PORCENTAJE DE INCUMPLIMIENTO
ESFUERZO BAJO	- Si puede inundarse, dispondrá de bandas laterales secas de mínimo 50 cm de anchura cada una.	052 = dos lados Y 055 ≥ 50 cm Y 032 = NO	100%
ESFUE	- El cerramiento de los márgenes dará continuidad al cerramiento perimetral - Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	073_1 = NO 073_2 = NO 073_3 = NO 073_4 = NO	0% 0% 0% 0%
ESFUERZO MEDIO	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	071 = simple o doble torsión 067 = a ambos lados	50% 25%
ESFUERZO ALTO	- Otra infraestructura de transito próxima o perpendicular a las entradas del paso.	133_4 = NO 133_5 = NO 133_6 = NO 133_13 = NO 148_4 = NO 148_5 = NO 148_6 = NO 148_13 = NO	25% 0% 0% 25% 0% 50% 0% 25%
_	- Tienen camino, vía de ferrocarril y camino asfaltado	060 = NO 060P2 = NO 060P3 = NO	0% 0% 0%

PASO INFERIOR ESPECIFICO PARA PEQUEÑOS VERTEBRADOS (PPV)

	DESCRIPCIÓN	VARIABLE Y REGLAS DE CUMPLIMIENTO	PORCENTAJE DE INCUMPLIMIENTO
ESFUERZO BAJO	- Si puede inundarse, dispondrá de bandas laterales secas de mínimo 50 cm de anchura cada una.	052 = dos lados Y 055 ≥ 50 cm Y 032 = NO	100%
ESFUE	- El cerramiento de los márgenes dará continuidad al cerramiento perimetral - Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	073_1 = NO 073_2 = NO 073_3 = NO 073_4 = NO	61% 23% 32% 16%
ESFUERZO MEDIO	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	071 = simple o doble torsión 067 = a ambos lados	45% 13%
ESFUERZO ALTO	- Tienen camino, via de ferrocarril y camino asfaltado	060 = NO 060P2 = NO 060P3 = NO	0% 0% 0%

PASO INFERIOR MULTIFUNCIONAL (PIM)

	DESCRIPCIÓN	VARIABLE Y REGLAS DE CUMPLIMIENTO	PORCENTAJE DE INCUMPLIMIENTO
0	- Si puede inundarse, dispondrá de bandas laterales secas de mínimo 50 cm de anchura cada una.	052 = dos lados Y 055 ≥ 50 cm Y 032 = NO	100%
ESFUERZO BAJO	- SI la estructura está pavimentada o no tiene sustrato natural, se dejarán dos franjas laterales cubiertas con sustrato natural.	062_1P = SI	96%
	- El cerramiento de los márgenes dará continuidad al cerramiento perimetral - Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	073_1 = NO 073_2 = NO 073_3 = NO 073_4 = NO	50% 16% 30% 8%
ESFUERZO MEDIO	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	071 = simple o doble torsión 067 = a ambos lados	64% 21%
ESFUERZO ALTO	- Otra infraestructura de transito próxima o perpendicular a las entradas del paso.	133_4 = NO 133_5 = NO 133_6 = NO 133_13 = NO 148_4 = NO 148_5 = NO 148_6 = NO 148_13 = NO	26% 8% 3% 14% 30% 10% 1% 12%

DRENAJE ADAPTADO PARA ANIMALES TERRESTRES (ODF)

	DESCRIPCIÓN	VARIABLE Y REGLAS DE CUMPLIMIENTO	PORCENTAJE DE INCUMPLIMIENTO
	- Material de la estructura: nada de acero corrugado a menos que la base esté aplanada con hormigón.	028 <> Chapa corrugada Y 062_8 = SI	5%
	- Ninguna arqueta o pozos en uno o ambos extremos.	046 = NO	2%
ESFUERZO BAJO	- Si puede inundarse, dispondrá de bandas laterales secas de mínimo 50 cm de anchura cada una.	052 = dos lados Y 055 ≥ 50 cm Y 032 = NO	100%
	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso	073_1 = NO 073_2 = NO 073_3 = NO 073_4 = NO	29% 11% 23% 6%
OIG	- Cerramiento perimetral que guíe a la fauna hacia las entradas del paso.	071 = simple o doble torsión 067 = a ambos lados	81% 55%
ESFUERZO MEDIO	- Continuidad entre los accesos de la estructura y la vegetación de ribera.	132 = SI 147 = SI	55% 54%
ESFUERZO ALTO	- Pendiente de rampas de acceso a banquetas laterales.	041 ≤ 45 045 ≤ 45 047P2 ≤ 45	0,4 ? ?

[?] Se desconoce el dato por faltar mucha información.

ANEXO 3. INCORPORACION DE LA INFORMACION GENERADA A UNA BASE DE DATOS

Todos los datos generados se incorporan a la base de datos relacional generada por el estudio MAGRAMA 2016. Encomienda de gestión al CEDEX para la realización de trabajos de asistencia técnica de la Dirección General de Calidad y Evaluación Ambiental y Medio Natural (2014-2016). Actuación nº 8. Localización y descripción de las medidas correctoras de la desfragmentación de hábitats en las cuadrículas UTM 1x1Km seleccionadas, en su INFORME A8T2.

La base de datos relacional consiste en un archivo de Access denominado *BBDD* muestreo estructuras reformada 2018.

La información generada en el estudio consta de:

- Las **correcciones** sobre los datos, realizados en el apartado de *Control de Calidad* del estudio, se incorporan a la base de datos relacional que se presenta junto al estudio como una tabla denominada *correcciones 2018*, donde se encuentran localizadas las infraestructuras con una variable o campo *Correciones2018* con la descripción de la corrección realizada.
- El **grado de cumplimiento/no cumplimiento** de las prescripciones técnicas no métricas del documento 1, en una tabla de nombre 'Cumplimiento_DOC1_2018', obtenidos en el apartado *Estudio del cumplimiento de las prescripciones técnicas no métricas de acondicionamiento de pasos de fauna'*.

APÉNDICE 1. ESTUDIO DE VARIABLES METRICAS

Objetivo

- Por un lado, encontrar las relaciones lineales entre las variables continuas (dimensiones) que mejor discriminen en los grupos dados por los objetos (estructuras).
- Construir una regla de decisión que asigne un objeto nuevo con un cierto grado de riesgo, cuya clasificación previa se desconoce, a uno de los grupos prefijados.

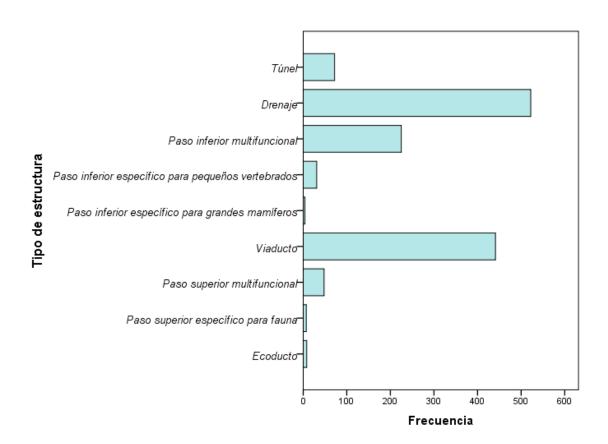
Las variables del estudio son:

- Los tipos de estructuras (variable 002).
- La longitud (variable 023).
- La anchura (variable 024).
- La altura (variable 025), que sólo se toma para los pasos inferiores.
- El índice de apertura (variable 027), donde se toman en cuenta las tres medidas.
- El índice adimensional (variable 027P), calculado para los pasos superiores.

Donde los dos últimos índices son combinaciones lineales de las anteriores, por lo que no deben incorporarse a los estudios junto con éstas porque incurrimos en redundancia.

Distribución de la variable cuantitativa Tipo de paso

Comprobamos la distribución de la variable tipo de paso, que vamos a utilizar como variable de control o factor.

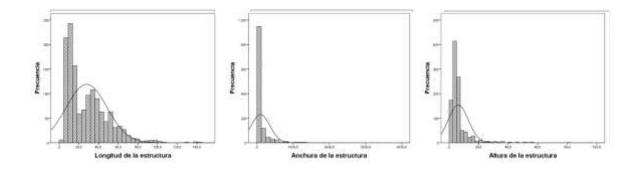

Tipo de estructura	Frecuencia	Porcentaje
Ecoducto	8	0,6
Paso superior específico para fauna	7	0,5
Paso superior multifuncional	48	3,5
Viaducto	441	32,5
Paso inferior específico para grandes mamíferos	4	0,3
Paso inferior específico para pequeños vertebrados	31	2,3
Paso inferior multifuncional	225	16,6
Drenaje	522	38,4
Túnel	72	5,3
Total	1358	100,0

El primer problema que tenemos, como se ve en la tabla, es que el sistema no está balanceado en absoluto, es decir, tiene un número muy desigual de casos entre los diferentes tipos, lo que dificulta la validez de muchos tipos de análisis.

Esto se puede corregir aumentando la muestra, que en nuestro caso no es posible, al ser un estudio ya realizado.

Otra posibilidad es aplicando técnicas de remuestreo, submuestreo, etc., que estabilicen los casos entre tipos de estructuras; sin embargo, la diferencia en algunos casos es tan grande que influiría en el comportamiento de las distribución general.

Por ahora, no se va a realizar ninguna de éstas opciones, sino que se va a acudir a la reestructuración de las categorías para intentar conseguir que las pruebas no se encuentren muy comprometidas.



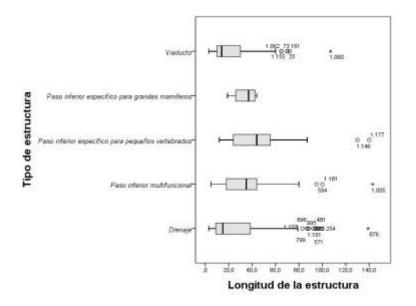
Distribución de las variables continuas que miden las estructuras: longitud, anchura y altura.

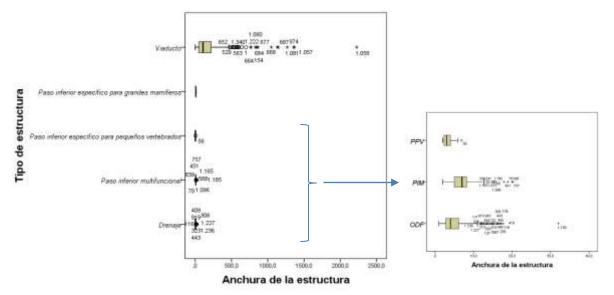
Estadísticos		Longitud de la estructura	Anchura de la estructura	Altura de la estructura
N	Válido	1358	1199	1051
	Perdidos	0	159	307
Media		27,952	103,599	6,197
Mediana		22,500	10,000	4,500
Moda		14,0	3,0	2,0ª
Desviación estándar		20,6867	258,9629	6,8198
Varianza		427,941	67061,768	46,509
Mínimo		3,0	1,0	0,7
Máximo		143,0	3885,4	80,0
Percentiles	25	11,000	4,300	3,000
	50	22,500	10,000	4,500
	75	39,000	98,700	6,000
a. Existen múltiples m	odos. Se m	uestra el valor más	pequeño.	

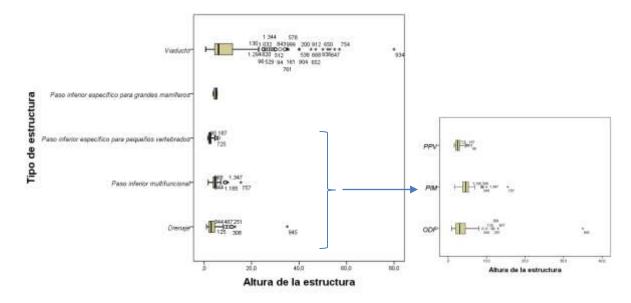
Las distribuciones generales de las tres variables son semejantes en cuanto están desplazados todos los datos hacia las mediciones más bajas (la mediana y la moda son, en general, mucho más pequeñas que la media), con una dispersión bastante grande sobre todo para la anchura (ver la desviación estándar).

En las figuras siguientes se puede ver su distribución desviada a la izquierda.

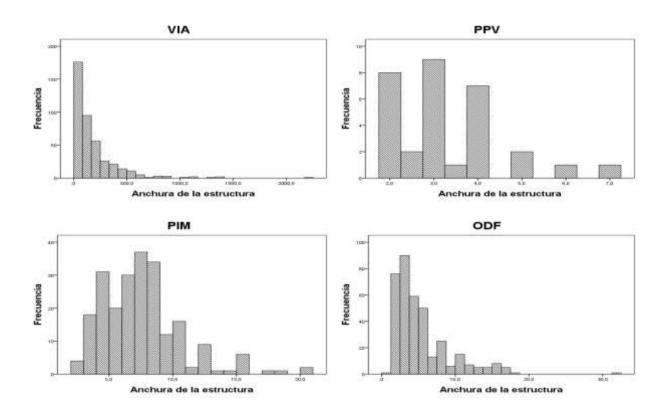
Vemos si siguen las mismas propiedades en los grupos formados por los tipos de estructuras.

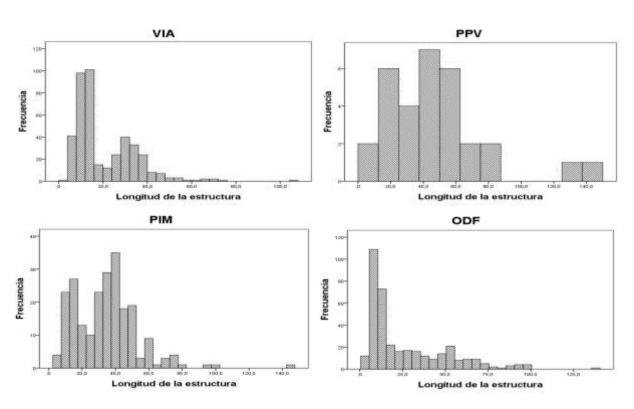

	Longitu	ud de la esti	ructura	Anchu	ra de la est	la estructura Altura de la e			tura
			Desv.			Desv.			Desv.
	Media	Mediana	estándar	Media	Mediana	est.	Media	Mediana	est.
ECO	28,9	25,5	16,4	155,4	141,0	54,7			
PSF	44,6	45,0	20,8	30,6	19,6	19,9			
PSM	42,5	49,0	23,8	10,6	7,0	20,7			
VIA	20,0	14,0	13,6	181,1	108,0	225,4	9,7	6,1	9,4
PGM	34,3	37,0	11,2	8,9	8,3	2,2	4,8	5,0	0,8
PPV	46,4	44,0	30,9	3,3	3,0	1,2	2,9	2,5	1,1
PIM	34,4	35,0	18,9	7,2	7,0	3,2	4,7	4,6	1,5
ODF	30,5	25,0	22,8	5,2	4,0	3,9	3,5	3,0	2,4
TUN	18,5	11,0	16,1	552,4	347,6	698,5			


Se han eliminado algunos tipos de estructuras por no tener los datos de todas las dimensiones, como son:


- Ecoducto (ECO).
- Paso superior adaptado para la fauna (PSF).
- Paso superior multifuncional (SM).
- Túnel (TUN).

También vamos a eliminar de los análisis al tipo de *Paso inferior específico para grandes mamíferos* (PGM), que sólo tiene 4 casos.


		Tipo de paso	N
Longitud de	la	Viaducto	418
estructura		Paso inferior específico para grandes mamíferos	4
		Paso inferior específico para pequeños vertebrados	31
		Paso inferior multifuncional	225
		Drenaje	367
Anchura de	la	Viaducto	418
estructura		Paso inferior específico para grandes mamíferos	4
		Paso inferior específico para pequeños vertebrados	31
		Paso inferior multifuncional	225
		Drenaje	367
Altura de	la	Viaducto	418
estructura		Paso inferior específico para grandes mamíferos	4
		Paso inferior específico para pequeños vertebrados	31
		Paso inferior multifuncional	225
		Drenaje adaptado	367



Histogramas para la anchura:

Histogramas para la longitud

Histogramas para la altura:

Estudio de las correlaciones entre las variables métricas

Correlaciones					
		Longitud	Anchura	Altura	
Longitud de la	Correlación de Pearson	1	-0,042	-,072*	
estructura	Sig. (bilateral)		0,149	0,019	
	N	1358	1199	1051	
Anchura de la	Correlación de Pearson	-0,042	1	<mark>,515**</mark>	
estructura	Sig. (bilateral)	0,149		0,000	
	N	1199	1199	1045	
Altura de la	Correlación de Pearson	-,072*	,515**	1	
estructura	Sig. (bilateral)	0,019	0,000		
	N	1051	1045	1051	
*. La correlación es significativa en el nivel 0,05 (bilateral).					
**. La correlació	n es significativa en el nivel 0,	01 (bilater	al).		

Vemos cierta relación entre la altura y la anchura, que pueden indicar una redundancia de la información aportada por ambas variables.

NORMALIZACION DE LAS VARIABLES INDEPENDIENTES

El supuesto fundamental del análisis multivariante es la normalidad de los datos, en referencia al perfila de la distribución de los datos para una variable métrica y su correspondencia con la distribución normal, punto de referencia de los métodos estadísticos.

Si la variación respecto de la distribución normal es suficientemente amplia, todas las pruebas estadísticas no son válidas, dado que se requiere la normalidad para el uso de varios los estadísticos (t, F, etc.).

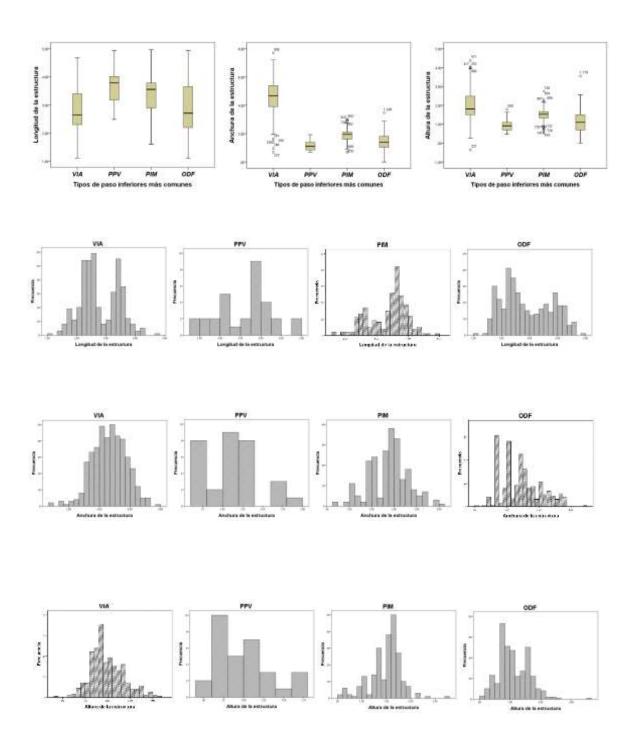
Tanto los estadísticos univariantes como multivariantes se basan en el supuesto de la normalidad univariante, es decir, si una o más variables son normales univariantes, también la combinación de éstas lo será.

La forma más simple para diagnosticar la normalidad es una comprobación visual del histograma que compare los valores de los datos observados con una distribución aproximada a la distribución normal.

Otras posibilidades más fiables de comprobar la normalidad son los gráficos de distribución normal o los test estadísticos de normalidad (Shapiro-Wilks y Kolmogorov-Smirnov).

En el caso de nuestras tres variables métricas (longitud, anchura y altura), no podemos decir que sigan la distribución normal en vista a los histogramas del punto anterior

Si obtenemos el test de normalidad de Kolmogorov-Smirnov (K-S) tendremos los resultados siguientes:


Prueba de Kolmogorov-Smirnov para una muestra						
		Longitud de la	Anchura de la	Altura d	e la	
		estructura	estructura	estructur	a	
N		1358	1199	1051		
Parámetros	Media	27,952	103,599	6,197		
normales ^{a,b}	Desviación estándar	esviación estándar 20,6867 258,9629		6,8198		
Máximas	Absoluta	0,160	0,346	0,262		
diferencias	Positivo	0,160	0,262	0,262		
extremas	Negativo	-0,129	-0,346	-0,228		
Estadístico d	le prueba	0,160	0,346	0,262		
Sig. asintótio	ca (bilateral)	,000°	,000°	,000°		
a. La distribu	a. La distribución de prueba es normal.					
b. Se calcula a partir de datos.						
c. Correcciór	n de significación de Lilliefors	S.				

Prue	Prueba de Kolmogorov-Smirnov para una muestra					
	ipos de paso inferiores más comunes		Longitud de la estructura	Anchura de la estructura	Altura de la estructura	
VIA	N		441	435	423	
	Parámetros normales	Media	20,010	181,127	9,652	
		Desv. St.	13,5871	225,3557	9,4174	
	Estadístico de prueba		0,215	0,213	0,202	
	Sig. Asintótica (Bilat.)		,000°	,000°	,000°	
PPV	N		31	31	31	
	Parámetros normales	Media	46,419	3,316	2,865	
		Desv. St.	30,9352	1,2223	1,1038	
	Estadístico de prueba		0,145	0,215	0,225	
	Sig. Asintótica (Bilat.)		,095 ^c	,001 ^c	,000°	
PIM	N		225	225	225	
	Parámetros normales	Media	34,378	7,220	4,662	
		Desv. St.	18,8690	3,2248	1,4913	
	Estadístico de prueba		0,072	0,147	0,113	
	Sig. Asintótica (Bilat.)		,007 ^c	,000°	,000°	
ODF	N		522	369	368	
	Parámetros normales	Media	30,475	5,198	3,459	
		Desv. St.	22,8284	3,8640	2,4373	
	Estadístico de prueba		0,140	0,201	0,169	
	Sig. Asintótica (Bilat.)		,000°	,000°	,000°	

Podemos solucionar este problema de diferentes maneras:

- Aumentar la muestra, pero no nos asegura la posterior normalidad.
- Recodificar los grupos, pero no nos interesa por ahora.
- Transformar las variables en busca de esa normalidad.

Nos vamos a decidir por la transformación a través del logaritmo neperiano, que se ha mostrado como el más adecuado para acercarse a la normalidad. Podemos ver la ganancia en normalidad a través de los siguientes gráficos y el test de K-S.

Prueb	Prueba de Kolmogorov-Smirnov para una muestra								
			LN	LN	LN				
			longitud	anchura	altura				
VIA	N		441	435	423				
	Parámetros normales	Media	2,7867	4,6502	1,9690				
		Desv. St.	0,64905	1,08715	0,73258				
	Estadístico de prueba		0,134	0,032	0,093				
	Sig. asintótica (bilatera	<i>I)</i>	,000°	,200 ^{c,d}	,000°				
PPV	N		31	31	31				
	Parámetros normales	Media	3,6355	1,1393	0,9912				
		Desv. St.	0,65919	0,34492	0,34342				
	Estadístico de prueba	Estadístico de prueba							
	Sig. asintótica (bilateral)		,197 ^c	,042 ^c	,004 ^c				
PIM	N		225	225	225				
	Parámetros normales	Media	3,3747	1,8840	1,4919				
		Desv. St.	0,60664	0,43521	0,31360				
	Estadístico de prueba	0,144	0,099	0,124					
	Sig. asintótica (bilatera	,000°	,000°	,000c					
ODF	N		522	369	368				
	Parámetros normales	Media	3,1077	1,4388	1,1013				
		Desv. St.	0,82540	0,62271	0,50005				
	Estadístico de prueba		0,094	0,111	0,101				
	Sig. asintótica (bilatera	<i></i>	,000°	,000c	,000c				

Aunque no se ha logrado una completa normalidad de las variables, se acerca mucho más a esta distribución que cuando no estaba transformada.

ESTUDIO DE LA RELACIÓN ENTRE LAS DIMENSIONES (MEDIDAS) DE LAS ESTRUCTURAS Y LOS TIPOS DE ESTRUCTURAS

Análisis discriminante

Comenzamos con una exploración inicial de los datos mediante los estadísticos descriptivos de la media y la desviación estándar, claves para la discriminación de los grupos.

La finalidad es conocer el comportamiento de las variables en cada uno de los cuatro grupos y comprobar si tales variables son adecuadas para establecer diferencias entre grupos.

Estadísticas de grupo

Tipos de paso inferiores	más comunes			N válido (por lista)
y medidas transformada	s por tipos de		Desviación	No	
paso		Media	estándar	ponderados	Ponderados
Viaducto	LN longitud	2,7898	,64603	418	418,000
	LN anchura	4,6477	1,09610	418	418,000
	LN altura	1,9749	,72874	418	418,000
Paso inferior específico	LN longitud	3,6355	,65919	31	31,000
para pequeños	LN anchura	1,1393	,34492	31	31,000
vertebrados	LN altura	,9912	,34342	31	31,000
Paso inferior	LN longitud	3,3747	,60664	225	225,000
multifuncional	LN anchura	1,8840	,43521	225	225,000
	LN altura	1,4919	,31360	225	225,000
Drenaje	LN longitud	2,9004	,85587	367	367,000
	LN anchura	1,4385	,62433	367	367,000
	LN altura	1,1025	,50015	367	367,000
Total	LN longitud	2,9804	,76172	1041	1041,000
	LN anchura	2,8145	1,71841	1041	1041,000
	LN altura	1,5337	,69177	1041	1041,000

Un primer examen de las medias alcanzadas por las variables en cada uno de los grupos no permite apreciar muchas diferencias, salvo en la anchura para el viaducto y la longitud en el paso inferior multifuncional.

Para determinar si existen diferencias estadísticamente significativas entre los valores de las medias se lleva a cabo una prueba basada en el estadístico Lambda de Wilks.

Prueba de igualdad de medias de grupos

	Lambda de				
	Wilks	F	gl1	gl2	Sig.
LN longitud	,891	42,321	3	1037	,000
LN anchura	,225	1193,589	3	1037	,000
LN altura	,680	162,445	3	1037	,000

El Grado de significación asociado a los valores de F permite rechazar la hipótesis nula de igualdad de medias. De acuerdo con los resultados de la prueba, confirmamos que todas las variables presentan valores medios diferentes en los grupos, por lo que pueden ser consideradas en un análisis discriminante.

Resultados de prueba

M de	Box	618,891
F	Aprox.	33,849
	gl1	18
	gl2	49315,478
	Sig.	,000

Prueba la hipótesis nula de las matrices de covarianzas de población iguales.

En este caso, la prueba M de Box confirma el rechazo de la hipótesis sobre igualdad de varianzas, por lo que la distribución de los grupos también es diferente.

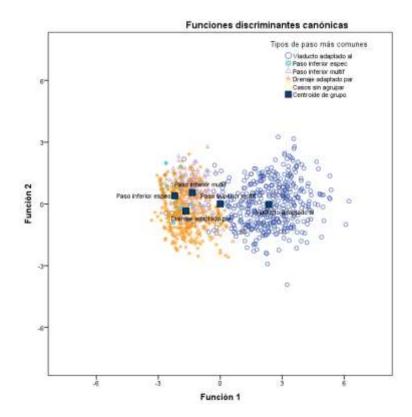
Autovalores

Función	Autovalor	% de varianza	% acumulado	Correlación canónica
1	3,746a	96,8	96,8	,888,
2	,113ª	2,9	99,7	,319
3	,012ª	,3	100,0	,111

a. Se utilizaron las primeras 3 funciones discriminantes canónicas en el análisis.

En la anterior tabla se muestra los resultados del proceso de inclusión de variables para crear las funciones discriminantes, de las que se han extraído tres.

Para determinar si las tres funciones resultan útiles para discriminar entre grupos se comparan su importancia atendiendo al porcentaje de la discriminación total lograda que puede ser atribuido a cada función.


Los autovalores para las tres funciones son 3,7, 0,11 y 0,01, poniendo de manifiesto la importancia de la primera respecto al resto. En términos relativos, la primera es responsable del 96,8% de la varianza entre los tipos de estruturas.

Los resultados apuntan a que la primera función representa una dimensión mucho más relevante de cara a la discriminación entre los cuatro tipos de pasos, apoyada por la correlación canónica con un valor de 0,88 frente a los otros de 0,32 y 0,11.

Los coeficientes para las tres funciones vienen recogidos en la siguiente tabla

Coeficientes de función discriminante								
canónica estandarizados								
		Función						
	1	2	3					
LN longitud	-,176	,804	,572					
LN anchura	1,118	-,137	,403					
LN altura	-,269	,649	-,965					

Para interpretar las funciones obtenidas el diagrama de dispersión siguiente permite apreciar la situación, donde los centroides se distancian a lo largo del primer eje.

Matriz de estructuras

Función 1 2 3 ,959* LN anchura ,271 -,086 ,811* LN longitud -,108 ,576 -,731^{*} ,336 ,593 LN altura

Correlaciones dentro de grupos combinados entre las variables discriminantes y las funciones discriminantes canónicas estandarizadas

Variables ordenadas por el tamaño absoluto de la correlación dentro de la función.

Atendiendo a los coeficientes de estructura de la tabla anterior, la primera función discriminante se correspondería con la anchura, la segunda con la longitud y en menor medida con la altura, y la tercera función con la altura y algo con la longitud.

En la relación entre las dos últimas funciones sobre la anchura y la altura se ven semejanzas que nos puede dar idea de cierta *redundancia* entre ambas.

Coeficientes de la función discriminante canónica

	Función					
	1	2	3			
LN longitud	-,244	1,117	,794			
LN anchura	1,370	-,168	,494			
LN altura	-,472	1,136	-1,688			
(Constante)	-2,406	-4,599	-1,168			

Coeficientes no estandarizados

Coeficientes de las funciones de discriminación que serían:

Y1 = -2,41 -0,24Ln(longitud) +1,27Ln(anchura) -0,47Ln(altura)

Y1 = -4,59 + 1,12 Ln(longitud) - 0,17 Ln(anchura) - 4,59 Ln(altura)

Y1 = -1,17 + 0,79 Ln(longitud) + 0,49 Ln(anchura) - 1,69 Ln(altura)

^{*.} La mayor correlación absoluta entre cada variable y cualquier función discriminante.

Basándonos en estas funciones discriminantes podríamos asignar una nueva organización al tipo de estructura que corresponde.

Sin embargo, hay que tener en cuenta lo que nos dice la correlación canónica sobre la capacidad de explicación de toda la variabilidad la primera función (97%).

La tabla siguiente es la matriz de confusión, en la que se recoge el porcentaje de flores que han sido bien clasificadas en cada uno de los cuatro tipos de estructuras.

Resultados de clasificación

		Tipos de paso inferiores más	Per	Pertenencia a grupos pronosticada			
		comunes	VIA	PPV	PIM	ODF	Total
Original	Recuento	VIA	393	0	13	12	418
		PPV	0	0	5	26	31
		PIM	1	0	126	98	225
		ODF	2	0	49	316	367
		Casos sin	0	0	3	1	4
		agrupar					
	%	VIA	94,0	,0	3,1	2,9	100,0
		PPV	,0	,0	16,1	83,9	100,0
		PIM	,4	,0	56,0	43,6	100,0
		ODF	,5	,0	13,4	86,1	100,0
		Casos sin agrupar	,0	,0	75,0	25,0	100,0

a. 80,2% de casos agrupados originales clasificados correctamente.

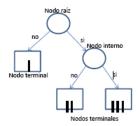
Aunque el valor del 80,2% que nos confirma la proporción de clasificación correcta, como vemos casi toda esa clasificación ha sido en los dos tipos de estructuras más frecuentes, por lo que el sesgo del que hemos hablado hace que se pueda hablar de un gran poder de clasificación, pero sólo para los viaductos (VIA) y los drenajes (ODF).

Tanto para los adaptados a pequeños vertebrados como la los multifuncionales, la asignación correcta a su grupo no es válida para el primero y sólo coincide en un 56% para el segundo.

MAPA TERRITORIAL

Representación gráfica de los resultados de la clasificación que indica las zonas que ocuparían los sujetos que son clasificados en cada grupo (tipo de estructura).

	-6,0 								
B,0 +	3					2			
I		34			42	2			
I		34			42	2			
I		34			42	2			
I		34			42	2			
I		34			42				
,0 +	+	34 +	+	+	42	+	+	+	
I		34			42				
I		34			42				
I		34			42				
I		34			42				
I		34			42				
,0 +	+		+	+	42	+	+	+	
I		34			42				
I		34			42				
I		34			42				
I		34			42				
I	545	34	50.53		42	5545	59.50	55.65	
,0 +	+	34 +	+	+	42	+	+	+	
I		3444 33555544	111		42				
I		33355 55		4					
I			5555544*						
I	3355			5554444 4					
	33355+			5555444		+ *	+	+	
	33555		*						
	3355			5					
135	55			5	2				
15				5	2				
I				5	2				
,0 +	+	+	+	+ 5	2	+	+	+	
I				5	2				
I					52				
I					52				
I					52				
I					52				
,0+	+	+	+	+		+	+	+	
1					52				
I					52				
I					52				
I					52				
,0 +			+	+	52 52	50.55	+		
,0 +	+	7		т.	52	+			
I					52				
I					52				
I					52				
I					52				
,0 +					52				


Árbol de clasificación

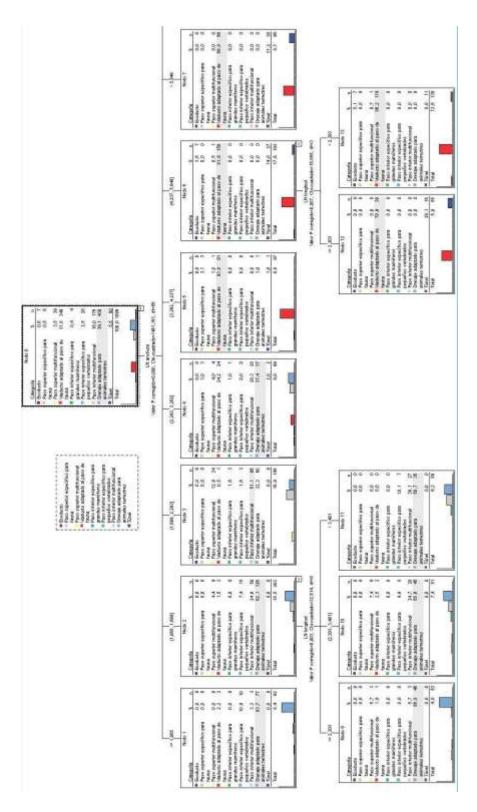
Los árboles de decisión son una técnica estadística para la discriminación, la predicción, la reducción de datos y el filtrado de variables, la identificación de interacciones y la discretización de variables continuas. Crean un modelo de clasificación basado en diagramas de flujo. Clasifican casos en grupos o pronostican valores de una variable dependiente (criterio) basada en valores de variables independientes (predictoras).

El método de división para los árboles CHAID (Chi-square automatic interaction detector) consiste en un rápido algoritmo de árbol estadístico y multidireccional que explora datos de forma rápida y eficaz, y crea segmentos y perfiles con respecto al resultado deseado. Permite la detección automática de interacciones mediante Chicuadrado. En cada paso, CHAID elige la variable independiente (predictora) que presenta la interacción más fuerte con la variable dependiente. Las categorías de cada predictor se funden si no son significativamente distintas respecto a la variable dependiente.

Una de las ventajas de los árboles de clasificación en relación con las técnicas tradicionales de análisis de datos multivariantes, especialmente con el Análisis Discriminante, es su comportamiento considerablemente mejor (más eficiente) ante situaciones de estructura discriminante muy alejadas de la linealidad.

Ejemplo de árbol de clasificación

Diseño del análisis


Nuestro interés reside en comprobar cómo se comportan las medidas de las estructuras y si están asociadas a los distintos tipos de estructuras.

Por tanto, elegiremos como variable dependiente el tipo de estructuras, inicialmente con todas sus categorías; y como variables independientes las correspondientes a las medidas, previamente transformadas para conseguir normalidad de grupo: LN(longitud), LN(anchura) y LN(altura).

La validación del análisis la vamos a realizar a través de la división de la muestra: un 80% de los datos los utilizaremos para los algoritmos de creación del modelo y un 20% se quedará como muestra de comprobación.

Resultados

El árbol y otros resultados se muestran a continuación.

Se comentan los resultados antes que describir las características del árbol.

Resumen del mod	Resumen del modelo							
Especificaciones	Método de crecimiento	CHAID						
	Variable dependiente	Tipo de paso						
	Variables independientes	LN longitud, LN anchura, LN altura						
	Validación	Muestra de división						
	Máxima profundidad del árbol	3						
	Casos mínimos en nodo padre	100						
	Casos mínimos en nodo hijo	50						
Resultados	Variables independientes incluidas	LN anchura, LN longitud						
	Número de nodos	17						
	Número de nodos terminales	12						
		3						
	Profundidad							

El modelo establecido indica que la variable altura no ha sido incorporada, ya que su distribución no afecta al comportamiento de cualquiera de las otras variables del modelo. Sin embargo, vemos que si están tanto la longitud como la anchura.

En este caso se ha optado por utilizar un 80% de la muestra como generadora del algoritmo (entrenamiento), y un 20% como muestra de prueba para comprobar los resultados.

Riesgo									
Muestra	Estimación	Desv. Error							
Entrenamiento	0,289	0,014							
Prueba	0,255	0,027							
Método de	crecimiento: CHAID								
Variable dependiente: Tipo de paso									

La estimación del riesgo y su error estándar son una medida de la precisión predictiva del árbol. Para variables dependientes categóricas, la estimación de riesgo es la proporción de casos clasificados incorrectamente después de corregidos.

En nuestro caso, lo que tenemos es una estimación de riesgo baja, tanto para el modelo obtenido por el algoritmo (0,289) como por la prueba realizada a la muestra de comprobación (0,255).

Lo siguiente que tenemos es la tabla de clasificación. Para variables dependientes categóricas (no métricas), esta tabla muestra el número de casos clasificados correcta e incorrectamente para cada categoría de la variable dependiente.

Clasificación

ECO	Muestra Pronosticado											
PSF O O O O O O O O O												Porcentaje
PSF												
PSM 0 0 0 0 2 0 0 22 15 0 0,0% VIA 0 0 0 0 315 0 0 0 22 1 0 0,0% PGM 0 0 0 0 0 0 0 0 2 1 0 0,0% PPV 0 0 0 0 0 0 0 0 2 19 0 0,0% PIM 0 0 0 0 0 0 0 0 105 91 0 53,6% ODF 0 0 0 0 0 0 0 59 358 0 85,9% TUN 0 0 0 61 0 0 0 1 0 0 0 0 59 358 Porcentaje global ECO 0 0 0 1 0 0 0 0 0 0 0 0 0 0,0% PSF 0 0 0 1 0 0 0 0 0 0 0 0,0% PSF 0 0 0 0 1 0 0 0 0 0 0 0 0,0% PSM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PSM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PSM 0 0 0 0 0 0 0 0 0 0 0 0,0% PSM 0 0 0 0 0 0 0 0 0 0 0 0,0% PPV 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PPV 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ECO	0	0	0	7	0	0	0	0	0	0,0%
VIA		PSF	0	0	0	2	0	0	1	3	0	0,0%
PGM 0 0 0 0 0 0 0 2 1 0 0,0% PPV 0 0 0 0 0 0 0 0 2 19 0 0,0% PIM 0 0 0 0 0 0 0 105 91 0 53,6% ODF 0 0 0 0 0 0 59 358 0 85,9% TUN 0 0 0 0 61 0 0 0 1 0 0 0,0% Porcentaje global 0,0% 0,0% 0,0% 35,3% 0,0% 0,0% 17,4% 47,2% 0,0% 71,1% ECO 0 0 0 1 0 0 0 0 0 0 0 0,0% PSF 0 0 0 1 0 0 0 0 0 0 0 0,0% PSM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% VIA 0 0 0 0 87 0 0 0 2 8 0 89,7% PGM 0 0 0 0 0 0 0 0 0 0 0 0,0% PPV 0 0 0 0 0 0 0 0 1 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PSM	0	0	0	2	0	0	22	15	0	0,0%
PPV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 105 91 0 53,6% ODF 0 0 0 0 0 0 0 59 358 0 85,9% TUN 0 0 0 61 0 0 0 1 0 0 0,0% Porcentaje 0,0% 0,0% 0,0% 35,3% 0,0% 0,0% 17,4% 47,2% 0,0% 71,1% global ECO 0 0 0 1 0 0 0 0 0 0 0 0,0% PSF 0 0 0 0 1 0 0 0 0 0 0 0,0% PSM 0 0 0 0 0 0 0 0 4 5 0 0,0% VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 0 0 0 0 0 0 0,0% PPV 0 0 0 0 0 0 0 0 1 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		VIA	0	0	0	315	0	0	0	29	0	91,6%
PIM 0 0 0 0 0 0 0 105 91 0 53,6% ODF 0 0 0 0 0 0 0 59 358 0 85,9% TUN 0 0 0 0 61 0 0 0 1 0 0,0% Porcentaje global 0,0% 0,0% 0,0% 35,3% 0,0% 0,0% 17,4% 47,2% 0,0% 71,1% ECO 0 0 0 1 0 0 0 0 0 0 0,0% PSF 0 0 0 1 0 0 0 0 0 0 0 0,0% PSM 0 0 0 0 0 0 0 0 4 5 0 0,0% VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 0 0 0 0 0 0 0,0% PPV 0 0 0 0 0 0 0 0 1 0 0 0,0% PIM 0 0 0 0 0 0 0 1 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% PIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0% TUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0%		PGM	0	0	0	0	0	0	2	1	0	0,0%
ECO 0 0 0 1 0 0 0 0 0,0% PSF 0 0 0 1 0 0 0 0 0,0% PSM 0 0 0 0 0 4 5 0 0,0% VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 1 0 0 0,0% PPV 0 0 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 0 12 17 0 41,4% ODF 0 <td></td> <td>PPV</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>19</td> <td>0</td> <td>0,0%</td>		PPV	0	0	0	0	0	0	2	19	0	0,0%
ECO	nto	PIM	0	0	0	0	0	0	105	91	0	53,6%
ECO 0 0 0 1 0 0 0 0 0,0% PSF 0 0 0 1 0 0 0 0 0,0% PSM 0 0 0 0 0 4 5 0 0,0% VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 1 0 0 0,0% PPV 0 0 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 0 12 17 0 41,4% ODF 0 <td>nie</td> <td>ODF</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>59</td> <td>358</td> <td>0</td> <td>85,9%</td>	nie	ODF	0	0	0	0	0	0	59	358	0	85,9%
ECO 0 0 0 1 0 0 0 0 0,0% PSF 0 0 0 1 0 0 0 0 0,0% PSM 0 0 0 0 0 4 5 0 0,0% VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 1 0 0 0,0% PPV 0 0 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 0 12 17 0 41,4% ODF 0 <td>nar</td> <td>TUN</td> <td>0</td> <td>0</td> <td>0</td> <td>61</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0,0%</td>	nar	TUN	0	0	0	61	0	0	0	1	0	0,0%
ECO 0 0 0 1 0 0 0 0 0,0% PSF 0 0 0 1 0 0 0 0 0,0% PSM 0 0 0 0 0 4 5 0 0,0% VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 1 0 0 0,0% PPV 0 0 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 0 12 17 0 41,4% ODF 0 <td>ıtre</td> <td>Porcentaje</td> <td>0,0%</td> <td>0,0%</td> <td>0,0%</td> <td>35,3%</td> <td>0,0%</td> <td>0,0%</td> <td>17,4%</td> <td>47,2%</td> <td>0,0%</td> <td>71,1%</td>	ıtre	Porcentaje	0,0%	0,0%	0,0%	35,3%	0,0%	0,0%	17,4%	47,2%	0,0%	71,1%
PSF 0 0 0 1 0 0 0 0 0,0% PSM 0 0 0 0 0 4 5 0 0,0% VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 1 0 0 0,0% PPV 0 0 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 0 12 17 0 41,4% ODF 0 0 1 0 0 7 97 0 92,4%	Er	global										
PSM 0 0 0 0 0 4 5 0 0,0% VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 1 0 0 0,0% PPV 0 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 12 17 0 41,4% ODF 0 0 1 0 0 7 97 0 92,4%		ECO	0	0	0	1	0	0	0	0	0	0,0%
VIA 0 0 0 87 0 0 2 8 0 89,7% PGM 0 0 0 0 0 1 0 0 0,0% PPV 0 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 12 17 0 41,4% ODF 0 0 0 1 0 0 7 97 0 92,4%		PSF	0	0	0	1	0	0	0	0	0	0,0%
PGM 0 0 0 0 0 1 0 0 0,0% PPV 0 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 12 17 0 41,4% ODF 0 0 0 1 0 0 7 97 0 92,4%		PSM	0	0	0	0	0	0	4	5	0	0,0%
PPV 0 0 0 0 0 10 0 0,0% PIM 0 0 0 0 0 12 17 0 41,4% ODF 0 0 0 1 0 0 7 97 0 92,4%		VIA	0	0	0	87	0	0	2	8	0	89,7%
PIM 0 0 0 0 0 12 17 0 41,4% ODF 0 0 0 1 0 0 7 97 0 92,4%		PGM	0	0	0	0	0	0	1	0	0	0,0%
ODF 0 0 1 0 0 7 97 0 92,4%		PPV	0	0	0	0	0	0	0	10	0	0,0%
TIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Prueba	PIM	0	0	0	0	0	0	12	17	0	41,4%
TUN 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ODF	0	0	0	1	0	0	7	97	0	92,4%
		TUN	0	0	0	10	0	0	0	0	0	0,0%
Porcentaje 0,0% 0,0% 0,0% 0,0% 0,0% 9,9% 52,1% 0,0% 74,5% global		_	0,0%	0,0%	0,0%	38,0%	0,0%	0,0%	9,9%	52,1%	0,0%	74,5%
Método de crecimiento: CHAID; Variable dependiente: Tipo de paso	Máta		niento:		 	hle den	andiar	nta: Tir	no de na			

El modelo nos muestra que tenemos 3 tipos de estructuras muy bien clasificados, con aciertos del orden entorno al 90% para los Viaductos, tanto en el modelo de entrenamiento del algoritmo como en la muestra de prueba y algo menos para los Drenajes, un 86% para el modelo pero un 92,4% para la prueba. Menos probabilidad de acertar tenemos en los Pasos inferiores multifuncionales, con solo un 53,6% de casos acertados (un 41% para la prueba).

Para el resto de las estructuras, la capacidad de predicción del modelo utilizando las medidas en totalmente negativo, no pudiendo asignar ninguno de los casos.

Con toda seguridad, la poca representatividad de algunas de estas estructuras, motivado por el sesgo, no ha permitido incorporarlas en el modelo, y los que tuvieran más casos han quedado ocultos por los de mayor representatividad.

La capacidad del análisis mediante el árbol de clasificación permite generar reglas de selección o clasificación/predicción en forma de texto. Las reglas se expresan como un conjunto de sentencias lógicas "Si...entonces" que describen las clasificaciones o predicciones del modelo para cada nodo.

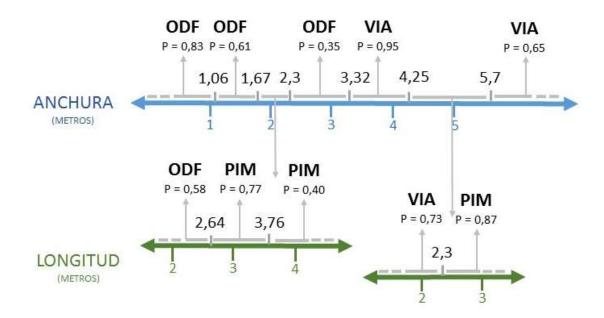
```
/* Node 1 */.
IF (LN anchura NOT MISSING AND (LN anchura <= 1.064710736992428))
THEN
Node = 1
Prediction = 8
Probability = 0.829787
/* Node 2 */.
IF (LN anchura NOT MISSING AND (LN anchura > 1.064710736992428 AND LN anchura
<= 1.667706820558076))
THEN
Node = 2
Prediction = 8
Probability = 0.614213
/* Node 9 */.
IF (LN anchura NOT MISSING AND (LN anchura > 1.667706820558076 AND LN anchura
<= 2.302585092994046)) AND (LN longitud NOT MISSING AND (LN longitud <=
2.639057329615258))
THEN
Node = 9
Prediction = 8
Probability = 0.580000
/* Node 10 */.
IF (LN anchura NOT MISSING AND (LN anchura > 1.667706820558076 AND LN anchura
<= 2.302585092994046)) AND (LN longitud IS MISSING OR (LN longitud >
2.639057329615258 AND LN longitud <= 3.761200115693562))
THEN
Node = 10
Prediction = 7
Probability = 0.768293
/* Node 11 */.
IF (LN anchura NOT MISSING AND (LN anchura > 1.667706820558076 AND LN anchura
<= 2.302585092994046)) AND (LN longitud NOT MISSING AND (LN longitud >
3.761200115693562))
THEN
Node = 11
Prediction = 7
Probability = 0.396825
```

```
/* Node 4 */.
IF (LN anchura NOT MISSING AND (LN anchura > 2.302585092994046 AND LN anchura
<= 3.317815772723105))
THEN
Node = 4
Prediction = 8
Probability = 0.347368
/* Node 5 */.
IF (LN anchura NOT MISSING AND (LN anchura > 3.317815772723105 AND LN anchura
<= 4.248495242049359))
THEN
Node = 5
Prediction = 4
Probability = 0.948454
/* Node 12 */.
IF (LN anchura NOT MISSING AND (LN anchura > 4.248495242049359 AND LN anchura
<= 5.698769932832657)) AND (LN longitud NOT MISSING AND (LN longitud <=
2.302585092994046))
THEN
Node = 12
Prediction = 4
Probability = 0.728814
/* Node 13 */.
IF (LN anchura NOT MISSING AND (LN anchura > 4.248495242049359 AND LN anchura
<= 5.698769932832657)) AND (LN longitud IS MISSING OR (LN longitud >
2.302585092994046))
THEN
Node = 13
Prediction = 4
Probability = 0.867647
/* Node 7 */.
IF (LN anchura NOT MISSING AND (LN anchura > 5.698769932832657))
THEN
Node = 7
Prediction = 4
Probability = 0.656250
/* Node 8 */.
IF LN anchura IS MISSING
THEN
Node = 8
Prediction = 8
Probability = 0.954887
```

Análisis del árbol

Vamos a comentar algunas características del árbol por segmentos de éste.

Vemos que al principio del árbol, nodo 0, aparece la tabla de porcentajes de cada tipo de estructuras, donde se encuentra marcado el que mayor proporción tiene (ODF).


La primera segmentación la encuentra con la variable anchura (recordar que es una transformada mediante el logaritmo neperiano de la anchura original), con un chicuadrado que tiene asociado un p-valor menor al 0,05, es decir, con un nivel de confianza del 95% sobre la hipótesis que rechazamos de independencia. Por lo tanto, la anchura es la variable que mejor explica la variabilidad para cada tipo de estructura en todo el modelo.

El árbol tiene la propiedad de buscar los puntos de corte en las variables cuantitativas, de tal forma que, como vemos en el árbol, ha establecido diferencias en la distribución de la anchura donde:

- Para anchuras menores a 1,065 metros, asigna una posibilidad del 82% (ver reglas) de ocurrencia al tipo ODF frente al resto, mucho menores.
- Para anchuras desde 1,065 a 1,609, sigue dando la mayor proporción de ocurrencia al ODF, aunque algo menos, bajando al 61%.
- Para ancho de 1,6 a casi 2,3 es el PIM quien se impone a los demás, con una ocurrencia del 51%. En este caso no da la probabilidad en las reglas porque en este intervalo de ancho, ha encontrado que hay asociación con la variable longitud (con un nivel de confianza al 95%), que a su vez se divide en tres nodos, porque, aunque asigne la mayor ocurrencia sólo al ODF, lo hace con diferentes probabilidades:

- o Para el intervalo de longitud entre 1,66 y 2.3 metros es de 0,58.
- o Para el intervalo de longitud entre 2,3 y 3,76 metros es de 0,77.
- o Para el intervalo de longitud mayor de 3,76 metros es de 0,39.

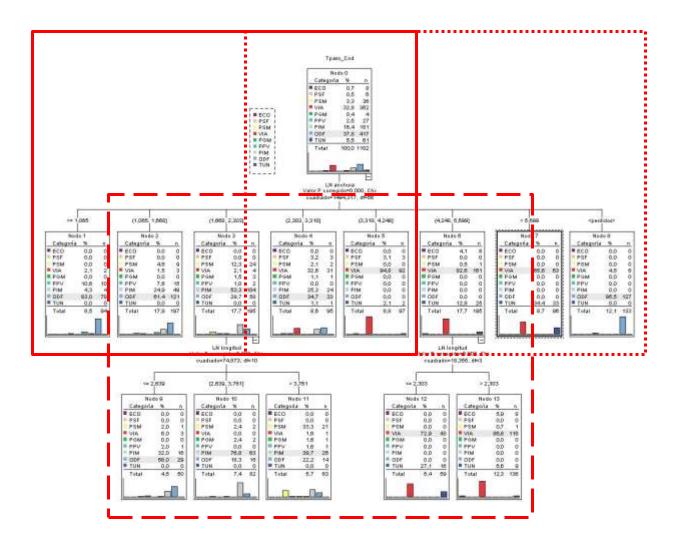
Estas reglas se pueden visualizar en la siguiente gráfica.

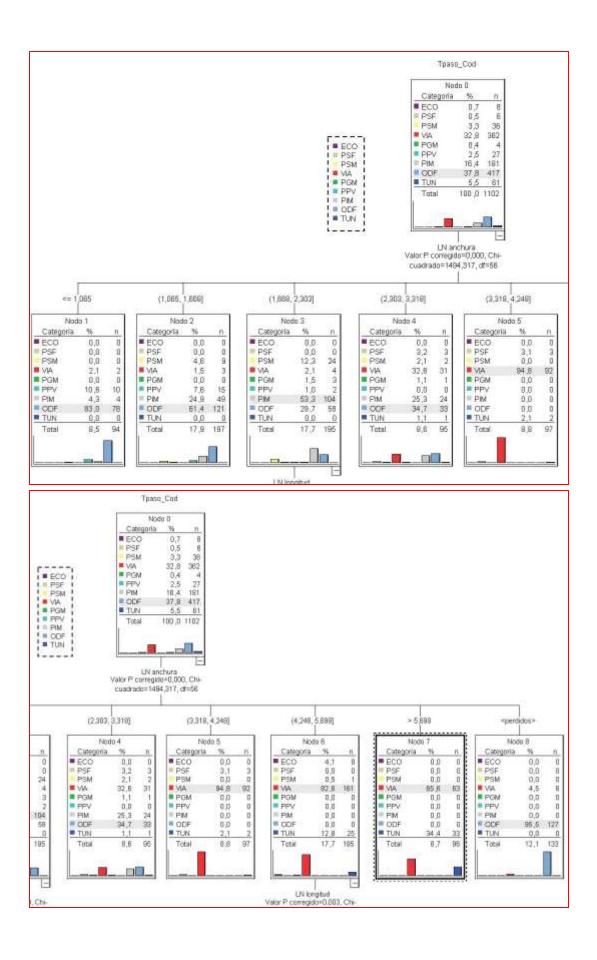
Donde:

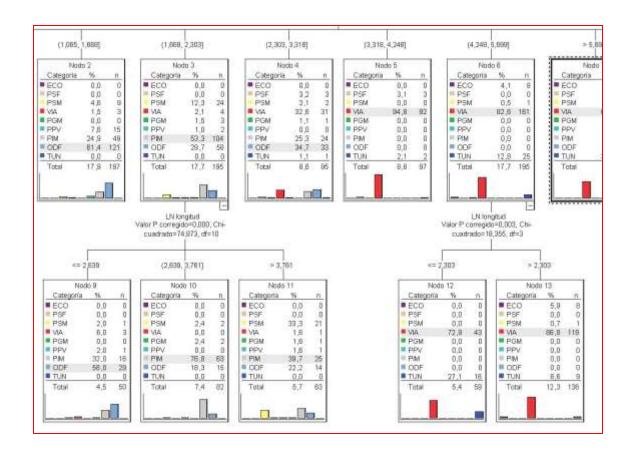
ODF: Drenajes

- PIM: Paso inferior multifuncional

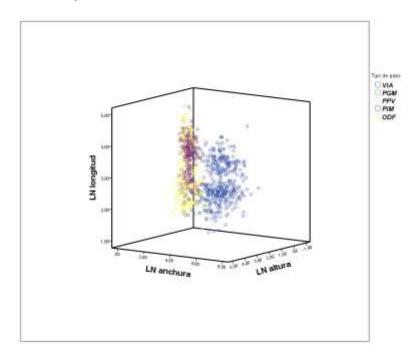
VIA: viaducto


Conviene recordar que las cantidades representadas tanto en anchura como en longitud son la transformada de la medida original (el logaritmo neperiano Ln), aunque la medida siga siendo en metros.


Podemos concluir que, en cuanto a la discriminación de las medidas por los diferentes tipos de estructuras, y con el sesgo que representa la muestra presente, la anchura es la primera variable métrica que está asociada a las estructuras, seguida de la longitud. Mientras que la altura no está asociada a diferencias entre tipos de estructuras.


Los tres tipos de paso más representados por las dimensiones ancho y largo, son:

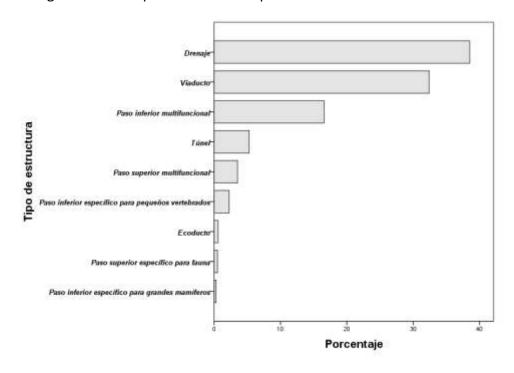
- Los drenajes (ODF), con una probabilidad de éxito entre el 86% y el 92,4%.
- Los viaductos (VIA), con probabilidades entre el 88% y el 92%.
- Y los pasos inferiores multifuncionales (PIM), con una probabilidad de éxito entre el 41% y el 53,6%.


Los nodos por partes se muestran a continuación a mayor tamaño para facilitar su observación.

Gráfica en tres dimensiones de la dispersión en las tres variable métricas longitud, anchura y altura

APÉNDICE 2. ESTUDIOS VARIABLES NO METRICAS

ESTUDIO DESCRIPTIVO DEL TIPO DE ESTRUCTURA (002)


Variable dependiente o de interés, sobre la que se va a centrar los análisis.

Ya se ve en la tabla que la distribución de la variable no es balanceada (similar número de casos por categorías).

Tabla X. frecuencia y porcentaje de los tipos de estructura

Tipo de paso	Frecuencia	Porcentaje
Ecoducto	8	0,6
Paso superior específico para fauna	7	0,5
Paso superior multifuncional	48	3,5
Viaducto	441	32,5
Paso inferior específico para grandes mamíferos	4	0,3
Paso inferior específico para pequeños vertebrados	31	2,3
Paso inferior multifuncional	225	16,6
Drenaje	522	38,4
Túnel	72	5,3
Total	1358	100,0

Histograma de los tipos de estructura por orden decreciente

ESTUDIO DESCRIPTIVO DE LA FUNCION DE LA ESTRUCTURA

Característica formada por las variables:

- Especifica de paso de fauna (018_1).
- Tráfico (018_2).
- Drenaje (018_3).
- Otra (018_4).
- Peatonal (018_5).

Función: Especifica de paso de fauna

	-	-	Porcentaje	Porcentaje
	Frecuencia	Porcentaje	válido	acumulado
SI	1358	100,0	100,0	100,0

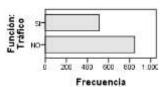
Función: Tráfico

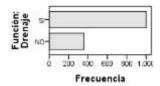
			Porcentaje	Porcentaje
	Frecuencia	Porcentaje	válido	acumulado
NO	847	62,4	62,4	62,4
SI	511	37,6	37,6	100,0
Total	1358	100,0	100,0	

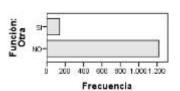
Función: Drenaje

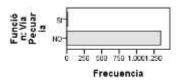
	•		Porcentaje	Porcentaje
	Frecuencia	Porcentaje	válido	acumulado
NO	358	26,4	26,4	26,4
SI	1000	73,6	73,6	100,0
Total	1358	100,0	100,0	

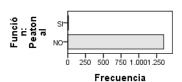
Función: Otra

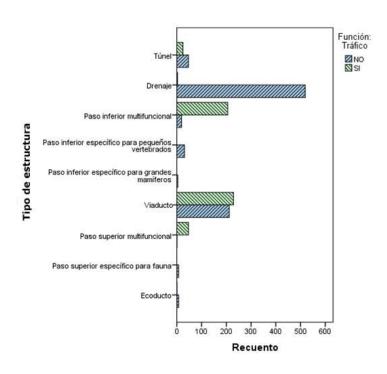

			Porcentaje	Porcentaje
	Frecuencia	Porcentaje	válido	acumulado
NO	1219	89,8	89,8	89,8
SI	139	10,2	10,2	100,0
Total	1358	100,0	100,0	

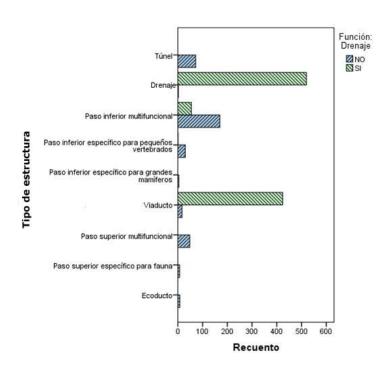

Función: Vía Pecuaria


			Porcentaje	Porcentaje
	Frecuencia	Porcentaje	válido	acumulado
NO	1344	99,0	99,0	99,0
SI	14	1,0	1,0	100,0
Total	1358	100,0	100,0	

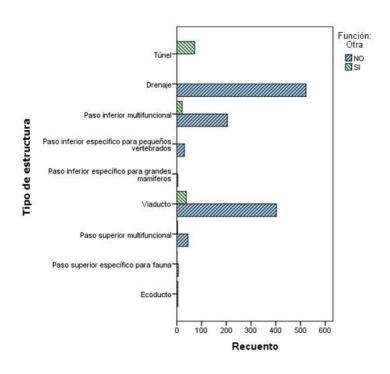

Función: Peatonal

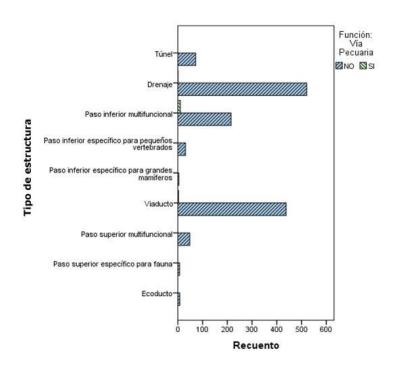

	Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
NO	1350	99,4	99,4	99,4
SI	8	0,6	0,6	100,0
Total	1358	100,0	100,0	

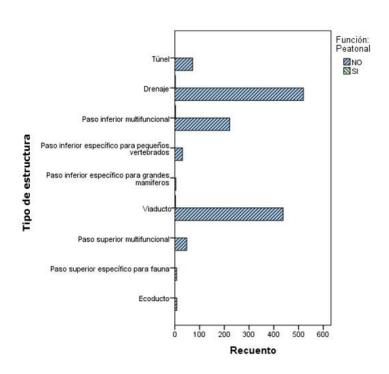




Función Vs Tipo de estructura


-	Función	Tráfico	
	NO	SI	Total
Ecoducto	7	1	8
Paso superior específico para fauna	7	0	7
Paso superior multifuncional	1	47	48
Viaducto	212	229	441
Paso inferior específico para grandes	4	0	4
mamíferos			
Paso inferior específico para pequeños	31	0	31
vertebrados			
Paso inferior multifuncional	19	206	225
Drenaje	519	3	522
Túnel	47	25	72
Total	847	511	1358
Pruebas de chi-	cuadrado		
			Significación
			asintótica
	Valor	df	(bilateral)
Chi-cuadrado de Pearson	724,677ª	8	0,000
Razón de verosimilitud	911,943	8	0,000
N de casos válidos	1358		
a. 6 casillas (33,3%) han esperado un recuento menor o	que 5. El recuen	to mínimo espe	erado es 1,51.


	Función: Dr					
	NO	SI	Total			
Ecoducto	8	0	8			
Paso superior específico para fauna	7	0	7			
Paso superior multifuncional	48	0	48			
Viaducto	17	424	441			
Paso inferior específico para grandes mamíferos	4	0	4			
Paso inferior específico para pequeños vertebrados	30	1	31			
Paso inferior multifuncional	170	55	225			
Drenaje	2	520	522			
Túnel	72	0	72			
Total	358	1000	1358			
Pruebas de chi-cuadrado	_					
			Significación			
			asintótica			
	Valor	df	(bilateral)			
Chi-cuadrado de Pearson	1044,491 ^a	8	0,000			
Razón de verosimilitud	1137,235	8	0,000			
N de casos válidos	1358					
a. 4 casillas (22,2%) han esperado un recuento menor que 5. El recuento mínimo esperado es 1,05.						


	Función: O					
	NO	SI	Total			
Ecoducto	4	4	8			
Paso superior específico para fauna	6	1	7			
Paso superior multifuncional	45	3	48			
Viaducto	403	38	441			
Paso inferior específico para grandes mamíferos	4	0	4			
Paso inferior específico para pequeños vertebrados	31	0	31			
Paso inferior multifuncional	204	21	225			
Drenaje	522	0	522			
Túnel	0	72	72			
Total	1219	139	1358			
Pruebas de chi-cuadrado						
	Valor	df	Significación asintótica			
Chi-cuadrado de Pearson	711,118 ^a	8	(bilateral) 0,000			
	· · · · · ·		<u> </u>			
Razón de verosimilitud	459,108	8	0,000			
N de casos válidos	1358					
a. 6 casillas (33,3%) han esperado un recuento menor que 5. El recuento mínimo esperado es ,41.						

	Función: Vía	Pecuaria				
	NO	SI	Total			
Ecoducto	8	0	8			
Paso superior específico para fauna	7	0	7			
Paso superior multifuncional	48	0	48			
Viaducto	438	3	441			
Paso inferior específico para grandes mamíferos	4	0	4			
Paso inferior específico para pequeños vertebrados	31	0	31			
Paso inferior multifuncional	215	10	225			
Drenaje	521	1	522			
Túnel	72	0	72			
Total	1344	14	1358			
Pruebas de chi-cuadrado		1				
			Significación			
			asintótica			
	Valor	df	(bilateral)			
Chi-cuadrado de Pearson	31,602 ^a	8	0,000			
Razón de verosimilitud	23,692	8	0,003			
N de casos válidos	1358					
a. 9 casillas (50,0%) han esperado un recuento menor que 5. El recuento mínimo esperado es ,04.						

	Función: Pe	atonal				
	NO	SI	Total			
Ecoducto	8	0	8			
Paso superior específico para fauna	7	0	7			
Paso superior multifuncional	48	0	48			
Viaducto	438	3	441			
Paso inferior específico para grandes mamíferos	4	0	4			
Paso inferior específico para pequeños vertebrados	31	0	31			
Paso inferior multifuncional	222	3	225			
Drenaje	520	2	522			
Túnel	72	0	72			
Total	1350	8	1358			
Pruebas de chi-cuadrado						
	Valor	df	Significación asintótica (bilateral)			
Chi-cuadrado de Pearson	3,576 ^a	8	0,893			
Razón de verosimilitud	4,065	8	0,851			
N de casos válidos	1358					
a. 10 casillas (55,6%) han esperado un recuento menor que 5. El recuento mínimo esperado es ,02.						

ACM para la relación de la Función de las estructuras en todos los tipos de estructuras.

El Análisis de Correspondencias Múltiple se lleva a cabo aplicando el algoritmo de AC a la matriz de indicadores (también llamada tabla disyuntiva completa – TDC), la diferencia se encuentra en que puede haber más de una variable dispuesta en las filas o columnas, mientras cada categoría esté representada por la dicotomía ausencia/presencia de ese valor.

Semejante al AC, el ACM tiene la siguiente interpretación:

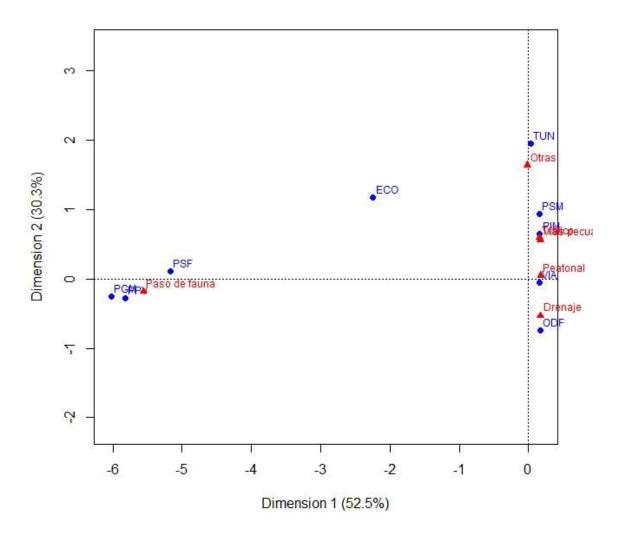
- Proximidad entre individuos en términos de parecido: dos individuos se parecen si tienen casi las mismas modalidades.
- Proximidad entre modalidades de variables diferentes en términos de asociación: son cercanos puesto que globalmente están presentes en los mismos individuos.
- Proximidad entre modalidades de una misma variable en términos de parecido: son excluyentes por construcción, si son cercanas es porque los individuos que las poseen presentan casi el mismo comportamiento en las otras variables (REDUNDANCIA).

Comenzando con el análisis, tenemos la TDC siguiente:

	Paso de				Vías	
	fauna	Tráfico	Drenaje	Otras	pecuarias	Peatonal
ECO	3	1	0	4	0	0
PSF	6	0	0	1	0	0
PSM	0	47	0	3	0	0
VIA	2	229	424	38	3	3
PGM	4	0	0	0	0	0
PPV	30	0	1	0	0	0
PIM	0	206	55	21	10	3
ODF	1	3	520	0	1	2
TUN	0	25	0	72	0	0

Aunque tenemos varias celdas sin ningún caso, seguimos con la prueba.

Principal inertias (eigenvalues):							
	1	2	3	4	5		
Value	0.85188	0.491701	0.269217	0.008373	0.000037		
Percentage	<mark>52.55%</mark>	<mark>30.33%</mark>	16.61%	0.52%	0%		

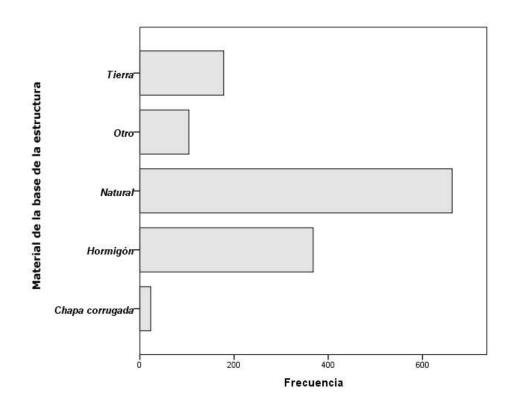

Rows	ECO	PSF	PSM	VIA	PGM	
Mass	0.004657	0.004075	0.029104	0.406868	0.002328	
ChiDist	2.719283	5.166378	1.419574	0.189774	6.028916	
Inertia	0.034433	0.108754	0.058649	0.014653	0.084628	
Dim. 1	-2.432400	<mark>-5.593280</mark>	0.174951	<mark>0.166253</mark>	<mark>-6.522155</mark>	
Dim. 2	1.685.605	0.165273	1.336003	-0.074560	-0.364250	
Rows:						
	PPV	PIM	ODF	TUN		
Mass	0.018044	0.171711	0.306752	0.056461		
ChiDist	5.829146	0.961769	0.822461	2.456228		
Inertia	0.613124	0.158833	0.207500	0.340632		
Dim. 1	<mark>-6.305230</mark>	0.176257	0.189689	0.033428		
Dim. 2	-0.387405	<mark>0.919761</mark>	<mark>-1.058899</mark>	<mark>2.792291</mark>		
Columns:						
	Paso de				Vías	
	fauna	Tráfico	Drenaje	Otras	pecuarias	Peatonal
Mass	0.026775	0.297439	0.582072	0.080908	0.008149	0.004657
ChiDist	5.560064	0.879797	0.583968	2.067674	1.449407	0.606908
Inertia	0.827741	0.230231	0.198498	0.345904	0.017119	0.001715
Dim. 1	<mark>-6.019.775</mark>	0.172963	0.186916	-0.018491	0.189684	<mark>0.190540</mark>
Dim. 2	-0.255418	<mark>0.847021</mark>	<mark>-0.758743</mark>	<mark>2.343.749</mark>	0.806258	0.074479

En el cuadro de inercias principales al principio ya se muestra que la dimensión 1 concentra la mayor proporción de variabilidad explicada con un 52%, seguida de la

dimensión 2 con un 30%. Las demás dimensiones no son importantes ya que explican poco por lo que no se tratan.

Como vemos en la salida por filas (Tipo de estructura), las categorías más semejantes son los tipos de paso PGM, ECO y PSF, seguido algo apartado por ECO. En otro grupo distinto estarían TUN, PSM, PIM y ODF (este en un sentido de asociación negativo dentro del grupo). Sin ninguna asociación con el resto estaría VIA.

Por columnas (Función), por un lado el Paso de fauna no se comporta de igual forma al resto, donde se ve cierta asociación entre Otras, Tráfico y Vías pecuarias por un lado, y Drenaje con un comportamiento contrario a las anteriores. Peatonal no tiene relación con ninguna.


Ya en el mapa perceptual, podemos ver claramente una relación entre los tipos de estructuras PGM, ECO y PSF con la función de Paso de fauna, donde ECO podría pasar a tomar parte de esa asociación, pero en menor magnitud. Hay que considerar que este grupo explica algo más del 50% de toda la distribución conjunta (una proporción fuerte).

En la otra dimensión (con menos fuerza pero importante al explicar un 30%), formando otro grupo estarían el resto de las categorías, comportándose de similar forma los tipos de estructuras TUN, PSM y PIM en las funciones Otras, Vías pecuarias y Tráfico; al contrario que los ODF junto con el Drenaje.

Sin asociar a ningún grupo se hallarían tanto el tipo de paso VIA como la función peatonal.

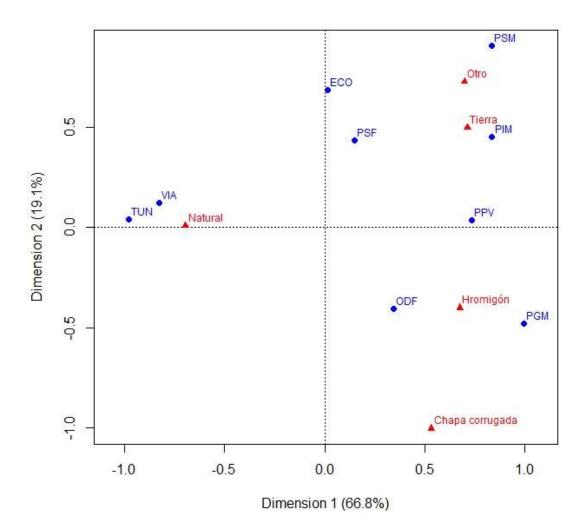
AC PARA LA RELACIÓN DEL MATERIAL DE BASE (030) DE LAS ESTRUCTURAS EN TODOS LOS TIPOS DE ESTRUCTURAS.

			Porcentaje	Porcentaje
	Frecuencia	Porcentaje	válido	acumulado
Chapa corrugada	23	1,7	1,7	1,7
Hormigón	368	27,1	27,5	29,3
Natural	663	48,8	49,6	78,9
Otro	104	7,7	7,8	86,7
Tierra	178	13,1	13,3	100,0
Subtotal	1336	98,4	100,0	
Perdidos	22	1,6		
Total	1358	100,0		

	Material de la base de la estructura							
	Chapa							
	corrugada	Hormigón	Natural	Otro	Tierra	Total		
ECO	0	0	4	0	4	8		
PSF	0	1	3	0	3	7		
PSM	0	13	4	26	4	47		
VIA	0	7	396	13	19	435		
PGM	0	3	0	0	1	4		
PPV	0	14	4	0	12	30		
PIM	1	79	19	34	90	223		
ODF	22	251	162	31	44	510		
TUN	0	0	71	0	1	72		
Total	23	368	663	104	178	1336		

Pruebas de chi-cuadrado						
Valor df Significación asintótic (bilateral)						
Chi-cuadrado de Pearson	951,309ª	32	0,000			
Razón de verosimilitud	953,184	32	0,000			
N de casos válidos	1336					

a. 22 casillas (48,9%) han esperado un recuento menor que 5. El recuento mínimo esperado es ,07.


Principal inertias (eigenvalues):

1		2	3		4
0.47571		0.136116 0.09		906	0.001326
66.81%	, 0	19.12%	13.89	%	0.19%
ECO	PSF	PSM	VIA	PGM	
0.005988	0.005240	0.035180	0.325599	0.002994	
1.174809	0.907078	1.810496	0.834678	1.229317	
0.008265	0.004311	0.115315	0.226841	0.004525	
0.019251	0.219416	1.208563	-1.196851	1.439913	
1.865797	1.178475	2.463693	0.333884	-1.293025	
	66.81% ECO 0.005988 1.174809 0.008265 0.019251	66.81% ECO PSF 0.005988 0.005240 1.174809 0.907078 0.008265 0.004311 0.019251 0.219416	66.81%19.12%ECOPSFPSM0.0059880.0052400.0351801.1748090.9070781.8104960.0082650.0043110.1153150.0192510.2194161.208563	0.47571 0.136116 0.098 66.81% 19.12% 13.89 ECO PSF PSM VIA 0.005988 0.005240 0.035180 0.325599 1.174809 0.907078 1.810496 0.834678 0.008265 0.004311 0.115315 0.226841 0.019251 0.219416 1.208563 -1.196851	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Rows:

	PPV	PIM	ODF	TUN
Mass	0.022455	0.166916	0.381737	0.053892
ChiDist	1.013583	0.996280	0.542308	0.980278
Inertia	0.023069	0.165677	0.112268	0.051787
Dim. 1	1.067573	1.212489	0.502201	-1.418848
Dim. 2	0.100139	1.224107	-1.104825	0.117275

	Chapa corrugada	Hormigón	Natural	Otro	Tierra
Mass	0.017216	0.275449	0.496257	0.077844	0.133234
ChiDist	1.186631	0.787030	0.694573	1.302939	1.045510
Inertia	0.024241	0.170617	0.239410	0.132152	0.145636
Dim. 1	0.772902	0.979678	-1.006943	1.012908	1.033498
Dim. 2	-2.720143	-1.086694	0.024836	1.974649	1.351895

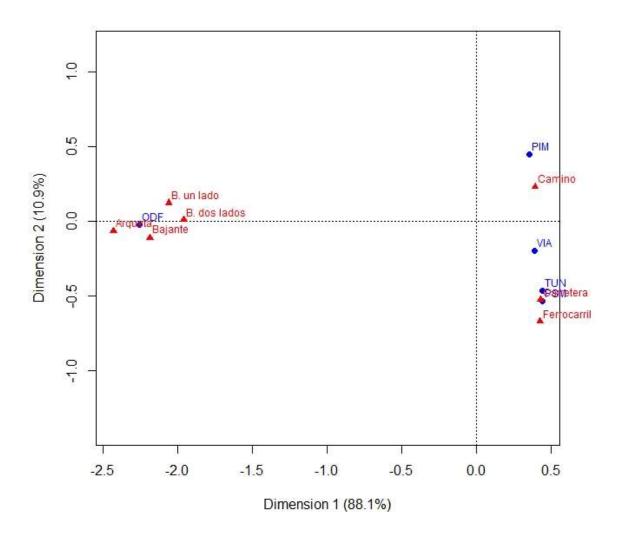
ACM PARA LA RELACIÓN DE LAS CARACTERISTICAS DE LOS ACCESOS DE LAS ESTRUCTURAS EN TODOS LOS TIPOS DE ESTRUCTURAS.

			Camino			Banquetas	
	bajante	arqueta de	no		Carretera	a los dos	Banquetas
	escalonada	sedimentación	asfaltado	Ferrocarril	asfaltada	lados	a un lado
ECO	0	0	1	0	0	0	0
PSF	0	0	0	0	0	0	0
PSM	0	0	19	0	22	0	0
VIA	4	0	178	11	100	1	0
PGM	0	0	0	0	0	0	2
PPV	0	0	0	0	0	0	1
PIM	0	0	182	0	23	1	5
ODF	43	9	2	0	0	10	33
TUN	0	0	14	1	13	0	0

Hay que reorganizar la tabla eliminando tipos de paso.

			Camino			Banquetas	
	Bajante	Arqueta de	no		Carretera	a los dos	Banquetas
	escalonada	sedimentación	asfaltado	Ferrocarril	asfaltada	lados	a un lado
PSM	0	0	19	0	22	0	0
VIA	4	0	178	11	100	1	0
PIM	0	0	182	0	23	1	5
ODF	43	9	2	0	0	10	33
TUN	0	0	14	1	13	0	0

Principal inertias (eigenvalues):


1 2 3 4

Value 0.860112 0.106612 0.009558 9.4e-05 Percentage 88.09% 10.92% 0.98% 0.01%

Rows:

	PSM	VIA	PIM	ODF	TUN
Mass	0.061103	0.438152	0.314456	0.144560	0.041729
ChiDist	0.766534	0.442246	0.570531	2.255244	0.641451
Inertia	0.035902	0.085695	0.102357	0.735252	0.017170
Dim. 1	0.476065	0.419376	0.378041	-2.431624	0.474492
Dim. 2	-1.630634	-0.602304	1.374295	-0.064968	-1.419326

						B. dos	B. un
	Bajante	Arqueta	Camino	Ferrocarril	Carretera	lados	lado
Mass	0.070045	0.013413	0.588674	0.017884	0.235469	0.017884	0.056632
ChiDist	2.192421	2.432597	0.454697	1.041247	0.679089	1.960044	2.066868
Inertia	0.336685	0.079371	0.121708	0.019389	0.108589	0.068705	0.241928
	-						-
Dim. 1	2.360290	-2.621916	0.421141	0.457148	0.459108	-2.113279	2.223293
	-				-		
Dim. 2	0.339030	-0.198973	0.712776	-2.053166	1.607828	0.031217	0.381021

ACM PARA LA RELACIÓN DE LAS CARACTERISTICAS DE LAS MEDIDAS FAVORECEDORAS DEL PASO DE FAUNA EN LAS ESTRUCTURAS PARA TODOS LOS TIPOS DE ESTRUCTURAS.

Medidas favorecedoras al paso de fauna							
		Sustrato					
	Sustrato	natural en	Pantallas	Soleras de			
	natural en la	franjas	laterales	hormigón en			
	base	laterales	opacas	ODT			
ECO	0	0	0	0			
PSF	0	0	0	0			
PSM	1	4	5	0			
VIA	3	2	5	0			
PGM	0	0	0	0			
PPV	6	0	0	0			
PIM	2	8	3	0			
ODF	3	4	2	5			
TUN	0	0	0	0			

	Sustrato natural en la base	Sustrato natural en franjas laterales	Pantallas laterales opacas	Soleras de hormigón en ODT
PSM	1	4	5	0
VIA	3	2	5	0
PPV	6	0	0	0
PIM	2	8	3	0
ODF	3	4	2	5

Principal inertias (eigenvalues):

1 2 3

Value 0.352501 0.297936 0.083385 Percentage 48.04% 40.6% 11.36%

Rows:					
	PSM	VIA	PPV	PIM	ODF
Mass	0.188679	0.188679	0.113208	0.245283	0.264151
ChiDist	0.624322	0.564899	1.591645	0.621973	0.909262
Inertia	0.073543	0.060210	0.286792	0.094888	0.218389
Dim. 1	-0.876497	-0.115612	2.517422	-0.687831	0.268454
Dim 2	0 537178	0 7/1572	0 071772	U 33U022	-1 627183

	Sust	Sust nat	Pant	
	natural	lateral	opacas	Soleras H
Mass	0.283019	0.339623	0.283019	0.094340
ChiDist	0.934236	0.565179	0.638871	1.669046
Inertia	0.247018	0.108485	0.115516	0.262803
Dim. 1	1.494638	-0.764115	-0.728419	0.452158
Dim. 2	0.530427	-0.027403	0.502259	-2.999408

ACM PARA LA RELACIÓN DE LAS CARACTERISTICAS DE LOS CERRAMIENTOS EN LAS VÍAS PARA TODOS LOS TIPOS DE ESTRUCTURA.

Carac	Características de los cerramiento perimetrales							
				Acabado				
				reforzado		Mal	Huecos	
	Acabado	Acabado	Acabado	inferior		ajustado a	por rotura	
	bisel	Hilo de	enterrado	con malla	Instalación	las aletas	o caída de	
	superior	espino	en suelo	luz menor	correcta	del paso	la malla	
ECO	4	4	0	0	1	0	1	
PSF	2	1	2	3	1	1	2	
PSM	10	10	3	4	17	10	6	
VIA	48	44	16	41	82	77	68	
PGM	2	2	0	2	3	0	0	
PPV	11	10	7	12	5	19	7	
PIM	39	31	20	45	40	113	37	
ODF	55	58	25	64	44	151	58	
TUN	12	11	2	7	13	2	3	

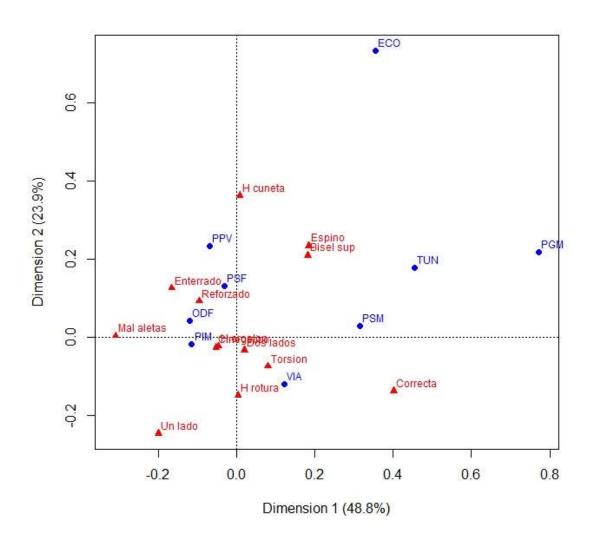
	Huecos	Huecos				
	por	por cruce		Cerramiento		
	erosión	de cuneta	Cerramiento	en ambos		Cerramiento
	bajo la	bajo la	a un lado de	lados de la	Cerramiento	simple o
	malla	malla	la vía	vía	cinegético	doble torsión
ECO	3	4	0	6	5	1
PSF	5	1	0	7	5	2
PSM	9	3	0	30	17	13
VIA	97	19	15	225	123	117
PGM	0	0	0	3	1	2
PPV	10	5	1	27	11	17
PIM	68	18	13	177	109	81
ODF	117	29	14	235	147	99
TUN	10	3	0	26	10	15

Principal inertias (eigenvalues):

	1	2	3	4	5	6	7	8
Value	0.0272	0.013	0.0074	0.0035	0.0016	0.0013	0.0008	0.00034
Percentage	48.75%	23.92%	13.39%	6.26%	3.03%	2.43%	1.61%	0.61%

R	\sim	۱,		c	•
11	v	V	v	3	•

	ECO	PSF	PSM	VIA	PGM
Mass	0.008727	0.009630	0.039723	0.292507	0.004514
ChiDist	1.036324	0.509642	0.369336	0.178974	1.015267
Inertia	0.009373	0.002501	0.005419	0.009369	0.004653
Dim. 1	2.145148	-0.188255	1.909345	0.735876	4.675372
Dim. 2	6.334515	1.121611	0.245074	-1.040812	1.888309


Rows:

	PPV	PIM	ODF	TUN
Mass	0.042732	0.238038	0.329822	0.034306
ChiDist	0.350720	0.136062	0.134771	0.509820
Inertia	0.005256	0.004407	0.005991	0.008917
Dim. 1	-0.421739	-0.697079	-0.726572	2.754195
Dim. 2	2.016390	-0.152529	0.356104	1.538914

Columns:

	Bisel sup	Espino	Enterrado	Reforzado	Correcta	Mal aletas	H rotura
Mass	0.055071	0.051460	0.022570	0.053566	0.061992	0.112248	0.054770
ChiDist	0.280261	0.310670	0.360436	0.251893	0.438018	0.329445	0.211381
Inertia	0.004326	0.004967	0.002932	0.003399	0.011894	0.012183	0.002447
Dim. 1	1.100240	1.117547	-1.003598	-0.580527	2.430031	-1.874672	0.021358
Dim. 2	1.802161	2.018394	1.080468	0.794109	-1.192466	0.031415	-1.282290

	H erosion	H cuneta	Un lado	Dos lados	Cinegetico	Torsion
Mass	0.095998	0.024676	0.012940	0.221487	0.128799	0.104424
ChiDist	0.148926	0.461535	0.366118	0.044183	0.120758	0.148655
Inertia	0.002129	0.005256	0.001735	0.000432	0.001878	0.002308
Dim. 1	-0.285398	0.047130	-1.214158	0.119574	-0.317829	0.485154
Dim. 2	-0.197809	3.132348	-2.130553	-0.283965	-0.230226	-0.647329

ACM PARA LA RELACIÓN DE LAS CARACTERISTICAS DEL HABITAT Y EL ENTORNO DE LAS ESTRUCTURAS PARA TODOS LOS TIPOS DE ESTRUCTURAS.

Características del hábitat y el entorno								
	Plantación autóctonas		A: cruce de vía de	A: cruce de	A: cruce de vía de			
	Α	A. Directa	servicio	carretera	ferrocarril	A: Vallado		
ECO	4	5	1	1	1	2		
PSF	6	3	0	0	0	4		
PSM	4	19	9	5	0	2		
VIA	54	333	34	38	14	17		
PGM	0	2	1	0	0	1		
PPV	3	9	9	1	0	0		
PIM	25	82	58	19	7	31		
ODF	46	287	61	39	8	38		
TUN	3	59	3	8	2	1		

	Plantación		B: cruce de		B: cruce de	
	autóctonas		vía de	B: cruce de	vía de	
	В	B. Directa	servicio	carretera	ferrocarril	B: Vallado
ECO	4	6	2	0	0	0
PSF	5	2	1	1	0	4
PSM	4	21	8	7	5	2
VIA	46	334	34	42	13	20
PGM	0	2	0	2	0	1
PPV	3	8	11	3	0	1
PIM	20	79	67	23	3	27
ODF	47	285	69	31	5	37
TUN	3	56	4	6	2	1

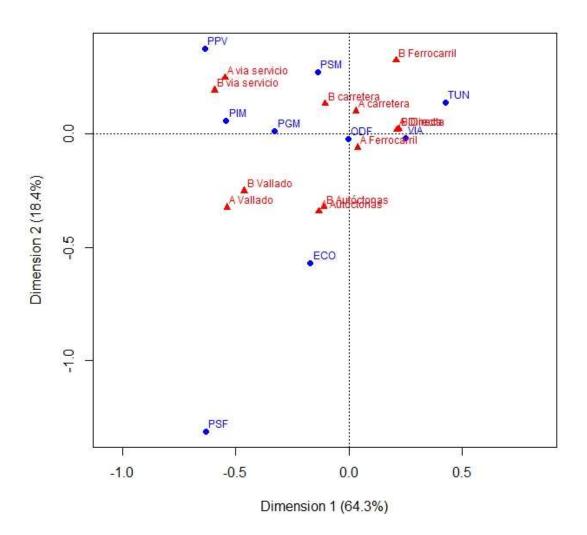
Principal inertias (eigenvalues):

 Value
 0.0922
 0.0264
 0.010
 0.0078
 0.0030
 0.0023
 0.0005
 0.00018

 Percentage
 64.35%
 18.45%
 7.45%
 5.49%
 2.1%
 1.65%
 0.39%
 0.13%

R	\sim	١,	ıc	•
\mathbf{n}	u	V١	ıs	

	ECO	PSF	PSM	VIA	PGM
Mass	0.009573	0.009573	0.031664	0.360457	0.003314
ChiDist	0.820015	1.496749	0.585016	0.255302	1.184750
Inertia	0.006437	0.021446	0.010837	0.023494	0.004651
Dim. 1	-0.561784	-2.077762	-0.449950	0.822460	-1.079006
Dim. 2	-3.514729	-8.079644	1.680199	-0.108635	0.068311


Rows:

	PPV	PIM	ODF	TUN
Mass	0.017673	0.162371	0.350884	0.054492
ChiDist	0.868333	0.549119	0.088186	0.457520
Inertia	0.013326	0.048960	0.002729	0.011407
Dim. 1	-2.097198	-1.783942	-0.008624	1.401683
Dim. 2	2.320016	0.357118	-0.140221	0.861326

Columns:

			A vía		Α	
	A Autóctonas	A Directa	servicio	A carretera	Ferrocarril	A Vallado
Mass	0.053387	0.294183	0.064801	0.040869	0.011782	0.035346
ChiDist	0.411265	0.216837	0.603087	0.172862	0.421349	0.671476
Inertia	0.009030	0.013832	0.023569	0.001221	0.002092	0.015937
Dim. 1	-0.435679	0.697388	-1.803662	0.098709	0.123441	-1.772202
Dim. 2	-2.106698	0.114024	1.524003	0.625393	-0.371938	-1.996738

		B vía		В	
B Autóctonas	B Directa	servicio	B carretera	Ferrocarril	B Vallado
0.048601	0.291973	0.072165	0.042342	0.010309	0.034242
0.391308	0.222186	0.639078	0.357953	0.927518	0.591537
0.007442	0.014414	0.029474	0.005425	0.008869	0.011982
-0.368582	0.722182	-1.956132	-0.344267	0.688140	-1.523478
-1.986908	0.131345	1.188060	0.815732	1.995105	-1.549520
	0.048601 0.391308 0.007442 -0.368582	0.391308	B AutóctonasB Directaservicio0.0486010.2919730.0721650.3913080.2221860.6390780.0074420.0144140.029474-0.3685820.722182-1.956132	B Autóctonas B Directa servicio B carretera 0.048601 0.291973 0.072165 0.042342 0.391308 0.222186 0.639078 0.357953 0.007442 0.014414 0.029474 0.005425 -0.368582 0.722182 -1.956132 -0.344267	B Autóctonas B Directa servicio B carretera Ferrocarril 0.048601 0.291973 0.072165 0.042342 0.010309 0.391308 0.222186 0.639078 0.357953 0.927518 0.007442 0.014414 0.029474 0.005425 0.008869 -0.368582 0.722182 -1.956132 -0.344267 0.688140

APÉNDICE 3. ESTRUCTURAS QUE CUMPLEN DIMENSIONES DENTRO Y FUERA DEL ÁREA DEL CIERVO

Tabla de estructuras que cumplen con las dimensiones del DOC1 y NO se encuentran en área de distribución de ciervo.

Cervus elaphus	Cumple dim.	Tipo de estructura	Longitud	Anchura	Altura	Diámetro	Código estructura	Id
NO	SI	ECO	14	130,1			30SXH2845_002	1138
NO	SI	ECO	14	91,6			30SXH2845_003	1139
NO	SI	ECO	14	132			30SXH2845_004	1140
NO	SI	ECO	20	150			30SXJ7570_001	1176
NO	SI	PSM	30	60			30TWN8492_005	857
NO	SI	PSM	14	140,1			31TDG6821_005	1768
NO	SI	ODF	38			2	30TTL9397_002	2
NO	SI	ODF	37			2	30TTL9397_003	3
NO	SI	ODF	30			2	30TTL9397_005	5
NO	SI	ODF	35			2	30TTL9397_006	6
NO	SI	ODF	37			2	30TTL9397_007	7
NO	SI	ODF	38			2	30TTL9397_008	8
NO	SI	ODF	35			2,5	30TTL9497_001	9
NO	SI	ODF	35			2,5	30TTL9497_002	10
NO	SI	ODF	32			2,5	30TTL9497_003	11
NO	SI	ODF	13	3	2		30TTL9898_001	21
NO	SI	ODF	12	2	2		30TTL9898_002	22
NO	SI	ODF	6	5	5		30TTL9898_004	24
NO	SI	ODF	21	3,5	4		30TUM7055_003	52
NO	SI	ODF	71	3,3	2		30TTN7613_001	69
NO	SI	ODF	34	2	2		31TCF3449_002	86
NO	SI	ODF	33	3	2		31TCF3449_003	87
NO	SI	ODF	41	7,9	5		31TCF3486_002	91
NO	SI	ODF	22	3,5	5,5		31TCF3850_008	98
NO	SI	ODF	12	2	3		31TCF3850_009	99
NO	SI	ODF	53			2	31TCF5856_001	108
NO	SI	ODF	34			2	31TCF6256_001	114
NO	SI	ODF	35	7	3,5		30TXN0643_002	153
NO	SI	ODF	10	10	4,6		30TXN1113_002	160
NO	SI	ODF	10	17	3,5		30TXN1233_003	164
NO	SI	ODF	26	10	4		30TXN3821_001	172
NO	SI	ODF	33	7	2,5		30TXN3920_001	173
NO	SI	ODF	6	10	10		30TXN4527_001	176
NO	SI	ODF	23	17,2	3		31TCG7509_002	185
NO	SI	ODF	7	14	4,9		31TCG8222_003	189
NO	SI	ODF	12	2,3	2,1		31TCG8321_001	190

NO	SI	ODF	10	6,1	5,2	31TCG8721_004	196
NO	SI	ODF	65	3,9	2,4	31TDF0991_008	217
NO	SI	ODF	18	12,1	5,6	31TDF1687_001	229
NO	SI	ODF	15	13,3	3,7	31TDF1687_002	230
NO	SI	ODF	38	10,4	4	31TDF1687_003	231
NO	SI	ODF	18	4	4,5	31TDF2493_006	248
NO	SI	ODF	58	4,8	3	31TDG0202_001	249
NO	SI	ODF	48			2,5 31TDG1102_002	268
NO	SI	ODF	8	3	3,2	30TYN1241_001	289
NO	SI	ODF	30	5,3	4,5	30TYN2133_001	322
NO	SI	ODF	19	2	2	30TYN2406_003	332
NO	SI	ODF	7	7,4	3,9	30TYN2506_004	335
NO	SI	ODF	53	4	4	30TYN3005_001	351
NO	SI	ODF	6	3,8	2,3	30TYN3022_001	352
NO	SI	ODF	7	6	6,2	30TYN3512_002	361
NO	SI	ODF	7	4	3,7	30TYN3610_002	363
NO	SI	ODF	6	3	2,6	30TYN3808_001	368
NO	SI	ODF	6	2,8	3,1	30TYN4007_002	370
NO	SI	ODF	7	6	3,2	30TYN4026_001	371
NO	SI	ODF	7	3	3,5	30TYN4107_001	373
NO	SI	ODF	7	8	4,4	30TYN4306_001	376
NO	SI	ODF	7	8,1	3,8	30TYN4506_001	380
NO	SI	ODF	27	5,6	5,1	31TBG6897_002	385
NO	SI	ODF	65	5,1	5,6	31TBG6897_003	386
NO	SI	ODF	11	5	5,8	31TBG8178_001	391
NO	SI	ODF	6	3,6	3,6	31TBH5306_001	399
NO	SI	ODF	6	5	2,9	31TBH5306_002	400
NO	SI	ODF	35	8,1	5,4	31TBH5705_001	402
NO	SI	ODF	12	8,6	3	31TBH6400_001	403
NO	SI	ODF	8	3,7	2,4	31TBH6506_003	405
NO	SI	ODF	7	16,4	11,4	31TBH7031_001	418
NO	SI	ODF	52	5,6	5,2	31TBH7900_003	431
NO	SI	ODF	10	3,9	7,6	31TCG0969_001	455
NO	SI	ODF	6	9,4	2,4	31TCG1796_001	461
NO	SI	ODF	12	2,1	3,2	31TCG1894_005	464
NO	SI	ODF	7	5,5	3	31TCG1969_004	466
NO	SI	ODF	6	12,4	9	31TCG2092_001	471
NO	SI	ODF	7	3,6	2,1	31TCG2191_001	474
NO	SI	ODF	10	5	5,7	31TCG2492_005	477
NO	SI	ODF	6	10	6,6	31TCG2492_006	478
NO	SI	ODF	25	2	2	31TCG2790_005	486
NO	SI	ODF	9	3,1	4,4	31TCH1101_004	538
NO	SI	ODF	9	6,5	4,5	31TCH1101_006	540
NO	SI	ODF	11	8,5	4,8	31TCH1102_001	541
NO	SI	ODF	10	3	3	31TCH1102_003	543
NO	SI	ODF	8	12	2,8	31TCH1312_001	551

NO	SI	ODF	8	9,4	6	31TCH2110_002	559
NO	SI	ODF	8	16,3	6,8	31TCH2212_001	565
NO	SI	ODF	8	16,8	4,5	29TQH4500_002	615
NO	SI	ODF	39	7,2	6	30TVM4279_001	644
NO	SI	ODF	10	3	2	30TVM4279_003	646
NO	SI	ODF	10	8	13	30TVM4279_005	648
NO	SI	ODF	20			2 30TVM4285_002	649
NO	SI	ODF	47	4,8	2,5	30TWM3798_002	688
NO	SI	ODF	11	4	2,5	30TWN2044_002	774
NO	SI	ODF	37	4	2	30TWN2044_004	776
NO	SI	ODF	31	10,1	2,5	30TWN2447_001	779
NO	SI	ODF	30	3	2,5	30TWN2947_002	788
NO	SI	ODF	30	3	2,5	30TWN2947_003	789
NO	SI	ODF	94	2	2	30TWN4047_001	801
NO	SI	ODF	44			2 30TWN5300_003	825
NO	SI	ODF	15	4	2,6	30TWN5300_005	827
NO	SI	ODF	50	3	3	30TWN5646_002	831
NO	SI	ODF	66	3	2	30TWN5746_002	835
NO	SI	ODF	60	3	2	30TWN5746_003	836
NO	SI	ODF	54	3	2	30TWN5946_003	840
NO	SI	ODF	31	4	2,7	30TTN7083_002	911
NO	SI	ODF	96	2,5	2,5	30TWL6158_002	932
NO	SI	ODF	53			2,9 29TNH4436_001	967
NO	SI	ODF	55	3	4,8	29TNH9048_001	971
NO	SI	ODF	26	3	2	29SQA5050_001	1014
NO	SI	ODF	25	3	2	29SQA5543_005	1031
NO	SI	ODF	48	2,5	2	30SXG2475_002	1132
NO	SI	ODF	52	2,1	2	30SXG4292_004	1133
NO	SI	ODF	87	3	2	30SXH2946_001	1141
NO	SI	ODF	72	3	2	30SXH2946_002	1142
NO	SI	ODF	34	2	2,5	30SXH4726_001	1148
NO	SI	ODF	15	5	6,7	30SXH4726_002	1149
NO	SI	ODF	16	5,3	7	30SXH4726_003	1150
NO	SI	ODF	42	2	3	30SXH5354_001	1153
NO	SI	ODF	37	3	3	30SXH5354_004	1156
NO	SI	ODF	19	2	2	30SXH7696_002	1157
NO	SI	ODF	19	2	2	30SXH7696_003	1158
NO	SI	ODF	27	2	2	30SXH7696_005	1159
NO	SI	ODF	59	4	3	30SXJ7470_001	1173
NO	SI	ODF	21	2,5	2	30SXJ7470_003	1175
NO	SI	ODF	55	2	2	30SXJ7570_004	1178
NO	SI	ODF	71	2	2,5	30SXJ9606_001	1180
NO	SI	ODF	12	2	2	30SYH1549_001	1185
NO	SI	ODF	14	2	2	30SYH1549_005	1188
NO	SI	ODF	97	3	3	30SYH4770_002	1200
NO	SI	ODF	52	4	5,3	30SYH4770_004	1201

NO	SI	ODF	15	7	5	30SYJ0272_003	1206
NO	SI	ODF	15	15	5	30TTK4657_002	1255
NO	SI	ODF	88	3	2	30TTK4657_005	1258
NO	SI	ODF	46	10,5	5	30TTK4758_001	1259
NO	SI	ODF	56	4	2,5	30TTK5972_001	1272
NO	SI	ODF	71	4	2,5	30TTK6072_001	1274
NO	SI	ODF	69	4	2,5	30TTK6073_003	1275
NO	SI	ODF	70	4	2,5	30TTK6073_006	1277
NO	SI	ODF	38	3	2,5	30TTK6876_002	1283
NO	SI	ODF	65	4,5	3,6	30SVF2568_001	1300
NO	SI	ODF	53	2	2	30SVF2768_002	1307
NO	SI	ODF	22	2,9	2,2	30SVF2967_005	1311
NO	SI	ODF	55			2,5 30SVF5188_001	1312
NO	SI	ODF	72			2,5 30SVF5188_002	1313
NO	SI	ODF	15	4	8	30SVF5780_004	1318
NO	SI	ODF	6	14,8	35	30SVF6788_001	1320
NO	SI	ODF	26	3,5	4	30SVG4174_002	1325
NO	SI	ODF	63	3	2	30SVG4661_003	1327
NO	SI	ODF	61			2 30SVG4939_001	1328
NO	SI	ODF	13	2,4	3,7	30SVG6009_001	1332
NO	SI	ODF	25			3 30SVG6009_004	1334
NO	SI	ODF	46	4,5	3,9	29SPB8630_006	1379
NO	SI	ODF	36			2 28RCS2230_001	1387
NO	SI	ODF	6	2,1	2,9	28RDR4097_008	1399
NO	SI	ODF	6	3,5	4	28RDR4097_009	1400
NO	SI	ODF	10	2	2,5	28RDR4097_011	1402
NO	SI	ODF	9	3	5	28RDS3903_001	1405
NO	SI	ODF	7	3	3	28RDS3903_002	1406
NO	SI	ODF	7	3	5	28RDS3903_003	1407
NO	SI	ODF	8	2,5	5	28RDS4500_001	1408
NO	SI	ODF	24	2	2	30TYL4612_002	1416
NO	SI	ODF	77	7,5	5	30SVK4629_010	1436
NO	SI	ODF	6	4	7,4	29TPG4698_004	1445
NO	SI	ODF	50			2,1 29TQF1402_002	1449
NO	SI	ODF	13	8,2	4,5	30TVL0120_001	1502
NO	SI	ODF	9	3,2	4,2	30TVL0221_001	1505
NO	SI	ODF	67	2	2,3	30TVL0322_001	1509
NO	SI	ODF	54	4	2,5	30TVL0322_003	1511
NO	SI	ODF	62	6	3,5	30TVL1000_002	1515
NO	SI	ODF	52	2,5	2,5	30TVL4924_001	1519
NO	SI	ODF	8	5	6,5	30TWK1034_002	1525
NO	SI	ODF	100	6	5	31SDD7686_001	1529
NO	SI	ODF	12	3	3	30TVL0120_N005	1539
NO	SI	ODF	59	2	2	30TVL0120_N006	1540
NO	SI	ODF	5	6	7	29SPD7709_N009	1544
NO	SI	ODF	5	4	5	29SPD7709_N010	1545

NO	SI	ODF	6	32	5	29SPD7709_N011	1546
NO	SI	ODF	59	2	2,5	30TTK5972_N003	1555
NO	SI	ODF	15	2	2	30TWN5746_N007	1564
NO	SI	ODF	16	3	2	30TWN5746_N006	1565
NO	SI	ODF	8	4	3,5	30TWN4047_N002	1569
NO	SI	ODF	7	3,7	3	30TWN4047_N003	1570
NO	SI	ODF	48	2	2	30TXN4720_N002	1573
NO	SI	ODF	65	5	2,5	30TXN4720_N003	1574
NO	SI	ODF	28	3,5	2,5	31TDG7426_N003	1576
NO	SI	ODF	12	5	5	30TTL9898_N002	1594
NO	SI	ODF	42	6	2,5	31TDG9190_N005	1601
NO	SI	ODF	44			2 31TDG9289_N007	1603
NO	SI	ODF	36			2 31TDG8994_N011	1604
NO	SI	ODF	66	2,5	2	31TDG8138_N010	1607
NO	SI	ODF	39			3,3 31TDG8137_N009	1608
NO	SI	ODF	30			2 30TVM4279_N006	1614
NO	SI	ODF	6	4	2,4	31TDG9189_N004	1626
NO	SI	ODF	13	10	2	31SDD7686_N002	1629
NO	SI	ODF	13	4	3	31SDD7686_N003	1630
NO	SI	ODF	50			2 30TXM0364_N003	1644
NO	SI	ODF	73	5,7	5	31TBH7801_N002	1655
NO	SI	ODF	7	3	2	28RDS3903_N004	1670
NO	SI	ODF	8	4	4	28RBS1086_N001	1671
NO	SI	ODF	55	5	3	31TDG3821_002	1686
NO	SI	ODF	57	8,2	5,2	31TDG3845_001	1688
NO	SI	ODF	5	9,8	2	31TDG3845_005	1690
NO	SI	ODF	36	5,5	2,5	31TDG4017_003	1693
NO	SI	ODF	54	12	8	31TDG4305_006	1702
NO	SI	ODF	19	6,5	3,3	31TDG4405_009	1707
NO	SI	ODF	31	12	4	31TDG4506_004	1711
NO	SI	ODF	53	8	2,5	31TDG4506_007	1713
NO	SI	ODF	14	3	2,5	31TDG4708_010	1720
NO	SI	ODF	35	8	3	31TDG5110_006	1726
NO	SI	ODF	22			2 31TDG5313_002	1728
NO	SI	ODF	9	16,2	4,7	31TDG5613_004	1735
NO	SI	ODF	20			2 31TDG5613_005	1736
NO	SI	ODF	23	6	2,2	31TDG6620_002	1750
NO	SI	ODF	30			2 31TDG6620 006	1752
NO	SI	ODF	14	11	4,8	31TDG6620_007	1753
NO	SI	ODF	17			2 31TDG6720_003	1758
NO	SI	ODF	13	3,5	7,5	31TDG6736_003	1763
NO	SI	ODF	8	3,5	7,5	31TDG6736_004	1764
NO	SI	ODF	21	3	3	31TDG6821_004	1767
NO	SI	ODF	34	3	3	31TDG8036_005	1779
NO	SI	ODF	47	6,5	4	31TDG8036_011	1783
NO	SI	ODF	38	6,5	4	31TDG8036_012	1784
-	-	*		-,-	-		

NO	SI	ODF	40	10	6	31TDG8138_002	1791
NO	SI	ODF	35			3 31TDG8138_008	1793
NO	SI	ODF	21	5	2	31TDG8443_002	1795
NO	SI	ODF	13	10	3	31TDG8955_002	1801
NO	SI	ODF	30	4	2,5	31TDG8994_001	1803
NO	SI	ODF	9	3	2,5	31TDG8994_004	1805
NO	SI	ODF	19			2 31TDG8994_010	1809
NO	SI	ODF	53	4	2,5	31TDG9189_003	1815
NO	SI	ODF	67	8,5	5,2	31TDG9190_001	1816
NO	SI	ODF	98			3 31TDG9190_004	1818
NO	SI	ODF	79	8,2	5,2	31TDG9288_002	1820
NO	SI	ODF	18			4 31TDG9289_001	1824
NO	SI	ODF	20	5	2,5	31TDG9289_003	1825
NO	SI	ODF	45			3 31TDG9289_004	1826
NO	SI	ODF	20	2	2	31TDG9368_003	1830
NO	SI	ODF	14	6,7	5,5	31TDG9368_005	1832
NO	SI	ODF	57			5 30SXG1372_N001	1848
NO	SI	PPV	87	2,6	2,8	30TTM7401_011	28
NO	SI	PPV	25	3	2	30TUL5477_002	45
NO	SI	PPV	25	3	3	30TUL5477_003	46
NO	SI	PPV	23	4	2,7	30TUL7954_001	47
NO	SI	PPV	25	3	3	30TUL7954_003	49
NO	SI	PPV	39	3,5	4	30TTN7239_002	66
NO	SI	PPV	18	3	2,8	30TTN7523_004	68
NO	SI	PPV	46	6,9	4	30TTN8117_002	70
NO	SI	PPV	12	4	5,2	31TDG0408_001	250
NO	SI	PPV	14	4	2,5	30TYN2107_002	321
NO	SI	PPV	44	4	3,5	30TWN0300_003	701
NO	SI	PPV	12	4	4,5	30TWN1132_001	755
NO	SI	PPV	65	2	2	30TXM2344_001	953
NO	SI	PPV	65	2	2	31SDD8171_001	1532
NO	SI	PPV	130	5	3	31TDG6720_N006	1602
NO	SI	PPV	60	2,5	2,5	31TDG9470_N003	1606
NO	SI	PPV	40	3	3	31TDG9189_N005	1609
NO	SI	PPV	54	4	2,5	30TXL4768_N001	1633
NO	SI	PPV	57	4	2,5	30TXL4766_N002	1635
NO	SI	PPV	140	3	3	30TXL4766_N003	1636
NO	SI	PPV	80	2	2	30TWN5200_N003	1642
NO	SI	PPV	53	2	2	30TXM4627_N001	1646
NO	SI	PPV	49	2	2	30TXM4627_N002	1647
NO	SI	PPV	30	3	2	31TDG6620_005	1751
NO	SI	PPV	21	3	2	31TDG9574_005	1842
NO	SI	PGM	19	7	3,8	31TDG5313_001	1727
NO	SI	PGM	44	8,5	5,5	31TDG8036_008	1780
NO	SI	VIA	14	642,2	5,4	30TTL9397_001	1
NO	SI	VIA	8	179,4	5,7	30TTL9898_003	23

NO	SI	VIA	59	105.0	4	30TTM7401 001	27
NO	SI	VIA	70	105,8 21	8	30TUL2590_003	30
NO	SI	VIA	14	266,1	6	30TUL5399_003	36
NO	SI	VIA	12	200,1 74	6	30TUL5399_002	37
NO	SI	VIA	11	61	6,8	30TUL5399_005	38
NO	SI	VIA	14		12	30TUL5473_001	39
NO	SI	VIA	7	122,6	4	30TUL5473_001	40
NO	SI	VIA	8	111 5		30TUL5473_005	40
NO	SI	VIA	35	111,5 75	8,2	-	53
NO	SI	VIA	24	34	8,7	30TUM7155_001	55 54
	SI	VIA	32	257	4,3 8	30TUM7155_002	
NO						30TTN8612_003	81
NO	SI	VIA	11	423,1	6,9	31TCF2238_003	84
NO	SI	VIA	13	86	5	31TCF3449_001	85
NO	SI	VIA	44	85,4	4,4	31TCF3850_002	94
NO	SI	VIA	65	86	4,9	31TCF3850_005	95
NO	SI	VIA	28	59,7	5,2	31TCF6357_001	115
NO	SI	VIA	47	298,5	7,2	31TCF7071_002	118
NO	SI	VIA	18	204,2	6,5	30TXN0639_001	148
NO	SI	VIA	7	12	4,5	30TXN0639_002	149
NO	SI	VIA	8	20	4	30TXN0639_003	150
NO	SI	VIA	42	44,9	5	30TXN0907_001	154
NO	SI	VIA	21	51,6	3,7	30TXN0907_002	155
NO	SI	VIA	26	256,6	11	30TXN0938_001	156
NO	SI	VIA	40	63	4	30TXN1233_004	165
NO	SI	VIA	13	123	9,1	30TXN1234_002	168
NO	SI	VIA	27	122	15	30TXN5020_003	180
NO	SI	VIA	29	467,3	25	30TXN5020_004	181
NO	SI	VIA	39	22	12,9	31TCG7509_003	186
NO	SI	VIA	27	145,4	16,1	31TCG8222_001	187
NO	SI	VIA	30	104,5	10,7	31TCG8721_001	193
NO	SI	VIA	29	63,9	12,2	31TCG8721_003	195
NO	SI	VIA	30	67,4	4	31TCG8921_003	200
NO	SI	VIA	12	44,6	6,1	31TCG9021_001	201
NO	SI	VIA	29	39	4,4	31TCG9021_002	202
NO	SI	VIA	12	59,4	6,7	31TCG9021_005	205
NO	SI	VIA	7	69,2	10	31TDF0086_001	208
NO	SI	VIA	14	837,1	18	31TDF0086_004	209
NO	SI	VIA	32	298,5	6	31TDF0388_002	210
NO	SI	VIA	27	337,6	19,3	31TDF0991_001	214
NO	SI	VIA	72	567,2	35,5	31TDF1192_001	218
NO	SI	VIA	13	194	16,6	31TDF1192_002	219
NO	SI	VIA	38	25,7	10,6	31TDF1192_004	221
NO	SI	VIA	14	97,8	15,2	31TDF1292_002	224
NO	SI	VIA	31	150,3	12,5	31TDF1299_001	227
NO	SI	VIA	28	27,8	4,3	31TDF1687_006	233
NO	SI	VIA	9	258	7,1	31TDF1687_007	234

NO	SI	VIA	25	116,7	4,2	31TDF1687_008	235
NO	SI	VIA	11	98,7	4,2	31TDF1689_002	236
NO	SI	VIA	24	279,6	20,5	31TDF1899_003	240
NO	SI	VIA	17	865,9	14,2	31TDF2178_001	244
NO	SI	VIA	10	51,8	4,7	31TDF2178_006	245
NO	SI	VIA	9	220,4	16,3	31TDG0408_004	251
NO	SI	VIA	4	208,5	16,2	31TDG0408_005	252
NO	SI	VIA	30	106,3	15	31TDG0741_002	256
NO	SI	VIA	12	50,8	8,1	31TDG0741_003	257
NO	SI	VIA	26	117,9	17,2	31TDG0745_001	258
NO	SI	VIA	6	27,6	14	31TDG1002_001	262
NO	SI	VIA	8	290,8	40,1	31TDG1002_002	263
NO	SI	VIA	27	209,3	17,4	31TDG1002_005	266
NO	SI	VIA	13	90	16,2	30TYN2506_003	334
NO	SI	VIA	14	162,6	20,5	30TYN2706_001	342
NO	SI	VIA	14	246,8	13,5	30TYN3409_001	356
NO	SI	VIA	10	79	4,3	30TYN3609_003	362
NO	SI	VIA	6	64,4	5,2	30TYN4407_002	379
NO	SI	VIA	8	62,9	5,8	31TBG8076_001	388
NO	SI	VIA	10	96	9,2	31TBG8595_001	393
NO	SI	VIA	5	111,2	10,7	31TBG8595_003	394
NO	SI	VIA	7	32,2	20	31TBG8596_002	396
NO	SI	VIA	10	67,7	13,7	31TBG8597_001	398
NO	SI	VIA	11	95,6	4	31TBH6509_001	406
NO	SI	VIA	6	65,5	5,5	31TBH6509_002	407
NO	SI	VIA	9	134,4	20,2	31TBH7600_001	428
NO	SI	VIA	5	42,8	7,9	31TCG0969_002	456
NO	SI	VIA	10	71	5,2	31TCG0969_003	457
NO	SI	VIA	6	34,6	4,5	31TCG1068_003	459
NO	SI	VIA	9	24	6,1	31TCG2669_002	480
NO	SI	VIA	11	31,3	3,6	31TCH1102_002	542
NO	SI	VIA	9	21	5,8	31TCH1208_001	549
NO	SI	VIA	11	46,8	7,8	31TCH1618_001	555
NO	SI	VIA	29	389,4	4	29TPH5934_004	599
NO	SI	VIA	28	405	4	29TPH5934_009	601
NO	SI	VIA	31	318,5	5	29TPH7820_001	602
NO	SI	VIA	31	120,9	5	29TPH7820_002	603
NO	SI	VIA	41	68,1	4,5	29TPH7820_003	604
NO	SI	VIA	39	14,1	4	29TQH1022_002	610
NO	SI	VIA	32	227,4	8	29TQH1022_003	611
NO	SI	VIA	10	75,5	3,9	29TQH1022_006	613
NO	SI	VIA	26	316,9	7	30TTN6304_001	624
NO	SI	VIA	12	174,3	3,8	30TTN6304_002	625
NO	SI	VIA	13	81,8	6,1	30TUM6789_002	629
NO	SI	VIA	49	140	4,4	30TVM0060_001	637
NO	SI	VIA	10	202,8	5	30TVM0060_002	638

NO	SI	VIA	14	141,4	8,3	30TVM0060_003	639
NO	SI	VIA	43	450	18	30TVM3489_001	640
NO	SI	VIA	35	110	11,5	30TVM5091_005	653
NO	SI	VIA	10	90	5,2	30TVN6633_003	673
NO	SI	VIA	33	130,2	6	30TWM5699_001	691
NO	SI	VIA	11	105,9	5	30TWM5699_002	692
NO	SI	VIA	4	95	4	30TWM5699_003	693
NO	SI	VIA	37	150,2	10	30TWN0127_001	697
NO	SI	VIA	34	177,7	7,8	30TWN0300_005	702
NO	SI	VIA	36	60,3	7	30TWN0628_001	705
NO	SI	VIA	8	41	4,2	30TWN0710_001	712
NO	SI	VIA	37	138	7,5	30TWN0780_001	718
NO	SI	VIA	37	74,3	7,3	30TWN0780_002	719
NO	SI	VIA	36	110	7,3	30TWN0780_003	720
NO	SI	VIA	12	59	7	30TWN0780_004	721
NO	SI	VIA	10	29	8	30TWN0780_006	723
NO	SI	VIA	11	100	4,8	30TWN0780_008	724
NO	SI	VIA	36	132	6	30TWN0925_001	733
NO	SI	VIA	10	276	3,9	30TWN1028_001	740
NO	SI	VIA	36	74,5	4	30TWN1028_002	741
NO	SI	VIA	10	140,2	4,4	30TWN1028_003	742
NO	SI	VIA	32	373	40	30TWN1120_001	753
NO	SI	VIA	10		4,5	30TWN1233_004	762
NO	SI	VIA	30	183	6,1	30TWN2044_005	777
NO	SI	VIA	33	25	4,2	30TWN2547_001	782
NO	SI	VIA	18	80,4	5	30TWN2847_001	784
NO	SI	VIA	30	61	6	30TWN2947_001	787
NO	SI	VIA	14	55	12	30TWN2947_004	790
NO	SI	VIA	14	503	12	30TWN2947_005	791
NO	SI	VIA	14	88,2	6	30TWN2947_007	793
NO	SI	VIA	25	308,2	8,5	30TWN4700_001	807
NO	SI	VIA	9	38	4,2	30TWN4700_002	808
NO	SI	VIA	11	155	10	30TWN5090_001	816
NO	SI	VIA	13	382	35	30TWN5090_002	817
NO	SI	VIA	9	51	9,5	30TWN5191_002	821
NO	SI	VIA	12	21	4	30TWN6648_004	850
NO	SI	VIA	11	128,7	3,5	30TWN7986_001	852
NO	SI	VIA	22	197	8,2	30TWN7992_001	853
NO	SI	VIA	23	220	8	30TWN8492_001	854
NO	SI	VIA	33	114	12	30TWN8492 004	856
NO	SI	VIA	11	121,7	5	30TUN2542_001	919
NO	SI	VIA	14	217,1	13	30TWL6057_001	928
NO	SI	VIA	14	539,9	53	30TWL6057_002	929
NO	SI	VIA	14	342	55	30TWL6258_001	934
NO	SI	VIA	14	476,7	47	30TWL9974_001	937
NO	SI	VIA	30	240	30	30TWL9974_002	938
						_	

NO	SI	VIA	10	31,5	5	30TWL9974_003	939
NO	SI	VIA	11	20	11	30TWL9974_005	941
NO	SI	VIA	13	120,7	5	30TWM7676_001	942
NO	SI	VIA	34	151,5	5,5	30TWM8483_001	946
NO	SI	VIA	10	103	5,6	30TWM8483_002	947
NO	SI	VIA	34	75,5	5	30TXM0364_001	949
NO	SI	VIA	10	253,7	4	30TXM0770_001	951
NO	SI	VIA	10	700	15	30TXM0770_002	952
NO	SI	VIA	23	1131	45	30TXM7208_003	962
NO	SI	VIA	22	196,6	9	29TNH3738_001	966
NO	SI	VIA	22	1050	10	29TNH6497_001	978
NO	SI	VIA	6	528,8	6	29TNH6497_002	979
NO	SI	VIA	24	855,8	10	29TNJ9208_001	983
NO	SI	VIA	24	764,2	10	29TPJ3408_001	991
NO	SI	VIA	14	1145,4	15	29TNG8395_002	999
NO	SI	VIA	26	220,1	15	29TNG8988_001	1004
NO	SI	VIA	14	105,8	5	29TPH0401_002	1008
NO	SI	VIA	7	224,1	5,6	29SQA5050_002	1015
NO	SI	VIA	13	187,7	3,5	29SQA5439_002	1019
NO	SI	VIA	7	82	13,3	30SYK0722_003	1064
NO	SI	VIA	14	245,8	6,3	30SUH8705_001	1080
NO	SI	VIA	7	209,7	14	30SUH8705_002	1081
NO	SI	VIA	55	337,6	18	30SXG1371_002	1129
NO	SI	VIA	14	89,4	30	30SXH2845_001	1137
NO	SI	VIA	28	117	4,5	30SXH9617_006	1165
NO	SI	VIA	42	431,1	25	30SXJ2778_001	1169
NO	SI	VIA	18	599,1	15	30SXJ2778_002	1170
NO	SI	VIA	17	60,6	7	30SXJ7570_002	1177
NO	SI	VIA	25	435,2	10	30SYH1549_002	1186
NO	SI	VIA	15	593,5	15	30SYH1549_003	1187
NO	SI	VIA	35	134	5	30SYH2257_001	1193
NO	SI	VIA	35	183,4	15	30SYH2257_002	1194
NO	SI	VIA	11	141,1	4	30SYH2257_003	1195
NO	SI	VIA	28	461	34	30SYH2288_004	1196
NO	SI	VIA	30	328,9	20	30SYH2390_002	1198
NO	SI	VIA	5	50	10	30SYH4770_001	1199
NO	SI	VIA	19	442,4	15	30SYJ0272_001	1204
NO	SI	VIA	30	217,5	8	30SYJ1476_001	1207
NO	SI	VIA	25	222,1	4,4	29SPD7709_001	1211
NO	SI	VIA	27	179,9	10	29SPD7709_005	1215
NO	SI	VIA	9	155	5,5	29SPD7709_006	1216
NO	SI	VIA	9	86,7	3,9	29SPD7709_007	1217
NO	SI	VIA	32	98,6	10	30TTK4657_001	1254
NO	SI	VIA	44	46,7	4,8	30TTK5870_001	1268
NO	SI	VIA	34	357,7	35	30TTK5871_001	1271
NO	SI	VIA	36	580,9	50	30TTK6274_001	1281

NO	SI	VIA	33	262,1	5,3	30SUF5865 001	1290
NO	SI	VIA	33 11	262,1 67,7	5,5 4	30SUF6364 001	1290
NO	SI	VIA	33	384,9	8	30SUG8611 002	1292
NO	SI	VIA	32	120,1	o 15	30SVF2468 002	1295
NO	SI	VIA	10	65,5	30	30SVF2468_002 30SVF2468_003	1298
						-	
NO	SI	VIA	6	21,7	22	30SVF2468_004	1299
NO	SI	VIA	25	156,9	20	30SVF2568_002	1301
NO	SI	VIA	32	375,5	80	30SVF2768_001	1306
NO	SI	VIA	12	213,2	52	30SVF2967_001	1308
NO	SI	VIA	13	381,5	22,8	30SVF5190_001	1314
NO	SI	VIA	7	69,7	5,5	30SVF5191_001	1315
NO	SI	VIA	22	353,2	6,5	30SVF5780_003	1317
NO	SI	VIA	49	71,4	8,4	30SVG3481_002	1322
NO	SI	VIA	9	39,8	4,5	30SVG3481_003	1323
NO	SI	VIA	39	20,2	9	30SVG4661_002	1326
NO	SI	VIA	15	1366,6	4,8	29SPB7926_001	1370
NO	SI	VIA	27	461,3	15	30SVK4629_002	1430
NO	SI	VIA	14	300,2	4,7	30SVK4629_003	1431
NO	SI	VIA	16	150,7	4,6	30TVM5909_002	1440
NO	SI	VIA	7	125,6	5,3	30TVM5909_003	1441
NO	SI	VIA	14	119,4	4	30TWL0994_001	1442
NO	SI	VIA	23	143,8	12	30TVK5577_001	1485
NO	SI	VIA	26	246,9	5	30TVK5577_002	1486
NO	SI	VIA	49	187,7	4	30TVK5577_003	1487
NO	SI	VIA	31	193,4	7	30TVK5663_001	1488
NO	SI	VIA	17	218,6	4,6	30TVK5663_002	1489
NO	SI	VIA	9	165,8	7	30TVK5663_003	1490
NO	SI	VIA	10	386,9	7,3	30TVK5663_004	1491
NO	SI	VIA	39	1357	15	30TVK5672_001	1494
NO	SI	VIA	14	2226,3	15	30TVK5672_002	1495
NO	SI	VIA	8	111,7	5	30TVK5672_003	1496
NO	SI	VIA	107	830,5	7	30TVK5673_001	1497
NO	SI	VIA	65	73,6	4,5	30TVK6480_001	1499
NO	SI	VIA	23	80,3	5	30TVK6480_002	1500
NO	SI	VIA	15	93,5	6	30TVK6480_003	1501
NO	SI	VIA	54	60,4	5	30TVL1000_001	1514
NO	SI	VIA	13	20	3,5	30TVL1000_004	1517
NO	SI	VIA	21	1270	15	30TWK1034_001	1524
NO	SI	VIA	12	80	6	31TDG6821_N006	1577
NO	SI	VIA	44	60	4	30TXN0907_N003	1590
NO	SI	VIA	14	150	5,8	30TUL5473_N001	1599
NO	SI	VIA	12	35	8	31TDG8036_N014	1605
NO	SI	VIA	70	132	8	30TVM3489_N006	1611
NO	SI	VIA	33	62	13,2	30TVM4285_N003	1613
NO	SI	VIA	12	67	5,5	31TDG4708_N011	1618
NO	SI	VIA	14	600	11	31TDG5110 N001	1619
	51	V 17 1		300		31.233110_11001	1013

NO	SI	VIA	13	20 E	2.6	21TDCE110_N009	1621
NO	SI	VIA	60	28,5 530	3,6 14	31TDG5110_N008 30TXM7208_N004	1638
NO	SI	VIA	23	62	5	31TDG3821_003	1687
NO	SI	VIA	6	180,5	13	31TDG3821_003 31TDG4017_001	1692
NO	SI	VIA	13	80,2	5	31TDG4017_001 31TDG4045_001	1694
NO	SI	VIA	13	770	10	-	1694
NO	SI	VIA	14		10	31TDG4103_002 31TDG4305 004	1700
				255		31TDG4405_004	
NO	SI SI	VIA VIA	15 40	111,7	6	31TDG4403_000 31TDG4607_001	1705
NO				39,6	4	-	1714
NO	SI	VIA	14	40	4,6	31TDG4607_003	1716
NO	SI	VIA	12	92,4	14	31TDG4708_008	1718
NO	SI	VIA	14	108	6,7	31TDG4708_009	1719
NO	SI	VIA	24	196,3	12,5	31TDG4803_001	1721
NO	SI	VIA	6	30	10	31TDG5110_002	1724
NO	SI	VIA	15	202,2	12,5	31TDG5313_006	1732
NO	SI	VIA	9	43	4	31TDG5613_002	1733
NO	SI	VIA	52	27	5	31TDG5613_006	1737
NO	SI	VIA	14	30	6,5	31TDG5917_001	1738
NO	SI	VIA	41	307,8	12	31TDG6736_002	1762
NO	SI	VIA	12	112,5	6,7	31TDG6821_001	1765
NO	SI	VIA	14	342,6	8,5	31TDG6821_002	1766
NO	SI	VIA	38	242,8	6	31TDG7321_001	1771
NO	SI	VIA	35	110,9	10	31TDG7421_005	1772
NO	SI	VIA	14	285	25	31TDG7426_001	1773
NO	SI	VIA	33	23,8	7	31TDG8036_003	1777
NO	SI	VIA	14	95,1	7	31TDG8036_009	1781
NO	SI	VIA	15	171,7	7	31TDG8036_013	1785
NO	SI	VIA	29	25	4	31TDG8137_008	1789
NO	SI	VIA	11	284,1	13	31TDG8653_002	1796
NO	SI	VIA	29	421,3	20	31TDG8754_002	1798
NO	SI	VIA	12	31,8	4,8	31TDG8754_003	1799
NO	SI	VIA	10	190,3	12,2	31TDG8854_001	1800
NO	SI	VIA	47	20	4	31TDG8955_004	1802
NO	SI	VIA	6	24	5,5	31TDG8994_009	1808
NO	SI	VIA	14	239	20	31TDG9092_001	1812
NO	SI	VIA	33	34,7	3,5	31TDG9092_002	1813
NO	SI	VIA	28	197,8	6	31TDG9189_001	1814
NO	SI	VIA	8		6	31TDG9289_005	1827
NO	SI	VIA	31	524,3	10,5	31TDG9368_001	1829
NO	SI	VIA	15	525,1	30	31TDG9387_001	1833
NO	SI	VIA	32	207,1	7,5	31TDG9387_002	1834
NO	SI	VIA	31	104,4	12,5	31TDG9574_001	1840
NO	SI	VIA	10	37,2	4,2	31TDG9574_003	1841
NO	SI	VIA	31	176	5,3	31TDG9577_001	1843
NO	SI	VIA	36	34,3	4,5	31TDG9577_002	1844
NO	SI	VIA	30	313,4	6,3	31TDG9583_005	1845

NO	SI	VIA	9	94,5	3,5	31TDG9776_002	1846
NO	SI	VIA	8	122,6	3,5	31TDG9776_003	1847
NO	SI	VIA	18	225	15	30SXJ2778 N005	1849

Tabla de estructuras que cumplen con las dimensiones del DOC 1 y se encuentran en área de distribución de ciervo.

Cervus elaphus	Cumple dim.	Tipo de estructura	Longitud	Anchura	Altura	Diámetro	Código estructura	Id
SI	SI	ECO	55	181,9			29TQG1855_003	892
SI	SI	ECO	33	244,6			30STF5039_004	1037
SI	SI	ECO	31	215,6			30STF6719_004	1045
SI	SI	ECO	50	97,2			30SWG3010_002	1360
SI	SI	ODF	11	11	4,5		31TCG7979_001	125
SI	SI	ODF	30	2,5	2,4		31TCG9692_003	130
SI	SI	ODF	10	14	4,5		30TXN7019_002	183
SI	SI	ODF	6	5	2,4		30TYM1598_002	273
SI	SI	ODF	53	2,5	2,8		30TYM1793_003	280
SI	SI	ODF	3	12,5	3,1		30TYM3099_001	282
SI	SI	ODF	54	4	3		30TYN0515_002	286
SI	SI	ODF	6	2	2		30TYN0515_004	287
SI	SI	ODF	11	5	2,6		30TYN1402_003	292
SI	SI	ODF	18	2	3,2		30TYN1403_001	293
SI	SI	ODF	13	4	3,6		30TYN1403_002	294
SI	SI	ODF	20	5	3,9		30TYN1403_004	295
SI	SI	ODF	5	7,8	6		30TYN1404_001	296
SI	SI	ODF	11	6	4,8		30TYN1404_003	298
SI	SI	ODF	8	3	2,5		30TYN1607_002	303
SI	SI	ODF	10	15	4		30TYN1908_003	313
SI	SI	ODF	9	6,9	11,8		30TYN2522_003	338
SI	SI	ODF	14	2	2		31TBH6511_001	409
SI	SI	ODF	11	3	4,6		31TBH6613_002	411
SI	SI	ODF	10	3	4,6		31TBH6613_003	412
SI	SI	ODF	11	15,4	6,1		31TBH6714_001	414
SI	SI	ODF	10	15	7,6		31TBH6714_002	415
SI	SI	ODF	11	4	2		31TBH7223_003	426
SI	SI	ODF	10	5	2,2		31TBH9209_001	437
SI	SI	ODF	9	11,7	3,1		31TBH9217_001	440
SI	SI	ODF	5	7,6	7,5		31TBH9509_002	446
SI	SI	ODF	4	13	2,2		31TBH9619_002	448
SI	SI	ODF	7	9	5,5		31TBH9720_002	450
SI	SI	ODF	7	8	2,5		31TBH9917_004	452
SI	SI	ODF	28	8,5	6,5		31TCG3176_001	489
SI	SI	ODF	7	4,4	3,8		31TCG3189_001	490
SI	SI	ODF	6	5	5,2		31TCG3380_002	493

SI	SI	ODF	10	5	6,5	31TCG3380_003	494
SI	SI	ODF	28	4,5	6	31TCG3681_001	495
SI	SI	ODF	11	16	3	31TCG3782_001	496
SI	SI	ODF	10	14,1	3,7	31TCG4191_001	507
SI	SI	ODF	15	3,2	4,3	31TCG4191_002	508
SI	SI	ODF	13	2,5	3	31TCG4392_002	512
SI	SI	ODF	6	2	3,6	31TCG4971_001	518
SI	SI	ODF	9	5,6	2,8	31TCG5393_001	520
SI	SI	ODF	22	7,5	5	31TCG5393_002	521
SI	SI	ODF	9	3	5,2	31TCG5568_001	522
SI	SI	ODF	12	4,1	3,3	31TCG6687_001	525
SI	SI	ODF	20	4,1	2,5	31TCG6687_002	526
SI	SI	ODF	8	4	4	31TCH0005_001	528
SI	SI	ODF	5	2	2	31TCH0005_002	529
SI	SI	ODF	10	15	6,1	31TCH0703_001	536
SI	SI	ODF	16	2	3,1	31TCH0703_002	537
SI	SI	ODF	21	7,8	3	31TCH2329_001	566
SI	SI	ODF	12	6,5	3,5	31TCH3623_001	574
SI	SI	ODF	12	5,6	3,5	31TCH3623_002	575
SI	SI	ODF	14	5,5	3,5	31TCH3623_003	576
SI	SI	ODF	13	5,5	2,7	31TCH3623_004	577
SI	SI	ODF	10	5	5	31TCH4301_002	583
SI	SI	ODF	7	17,7	2,6	31TCH4600_001	584
SI	SI	ODF	10	13,5	4,9	31TCH4715_001	588
SI	SI	ODF	13	14,8	5	31TCH4715_006	590
SI	SI	ODF	19			2 30TUN8745_006	635
SI	SI	ODF	64	3	2	30TVN0748_001	665
SI	SI	ODF	94	2	2	30TVN0748_003	667
SI	SI	ODF	24	3	2	29TPG9559_001	868
SI	SI	ODF	48	4	2,5	29TQG0258_002	880
SI	SI	ODF	43	3	2,5	29TQG1157_001	885
SI	SI	ODF	51			2,2 29TQG3254_003	901
SI	SI	ODF	6	10,2	6	30TUN1975_001	917
SI	SI	ODF	7	4	2,8	30TUN1975_002	918
SI	SI	ODF	6	4	4,4	30TUN3676_001	920
SI	SI	ODF	6	5,9	3,3	30TUN3676_003	922
SI	SI	ODF	52	5,3	3	30STF5735_002	1039
SI	SI	ODF	55	2	2	30STF6719 002	1043
SI	SI	ODF	14	4	3,4	30SUG5198_002	1072
SI	SI	ODF	30	13,5	4,2	30SUH9709_005	1085
SI	SI	ODF	55	·	·	2,9 30SVH3622_001	1088
SI	SI	ODF	62			2 30SVH5344_001	1089
SI	SI	ODF	73			2 30SVH5447 001	1093
SI	SI	ODF	38	5,5	3	30SVH5547_002	1096
SI	SI	ODF	18	5,5	2,6	30SVH5548_003	1103
SI	SI	ODF	57	6,5	4	30SVH5652_002	1121
		e = :		-,-	•	222.1.000002	-

SI	SI	ODF	47	9	5		30SVH5654_002	1126
SI	SI	ODF	46	9	6		30SVH5654_004	1127
SI	SI	ODF	11	2	2,1		29SQD2177_003	1224
SI	SI	ODF	10	2	2,1		29SQD2177_004	1225
SI	SI	ODF	99	2	2		29SQD2177_005	1226
SI	SI	ODF	34	3	3		29SQD3014_006	1230
SI	SI	ODF	34	2	2		29SQD3443_001	1232
SI	SI	ODF	64	2	2		29SQE2101_001	1233
SI	SI	ODF	53	2	2		29SQE2101_002	1234
SI	SI	ODF	139	8,1	5,1		29SQE2511_002	1236
SI	SI	ODF	44	2	2		29SQE2511_003	1237
SI	SI	ODF	14	4,7	2,8		29TQE5453_002	1241
SI	SI	ODF	5	8,5	4		30TTK7966_001	1285
SI	SI	ODF	7	5	4,5		30TTK8067_003	1286
SI	SI	ODF	11	15	4,5		30TTK8067_004	1287
SI	SI	ODF	9	12	4,5		30TUK2550_002	1288
SI	SI	ODF	46	3,5	2		30SVG6028_001	1335
SI	SI	ODF	51			5	30SVG6028_004	1337
SI	SI	ODF	46				30SVG6429_001	1345
SI	SI	ODF	56			3	30SVG6429_002	1346
SI	SI	ODF	77			2,3	30SVG6829_002	1349
SI	SI	ODF	51			2,6	29SQB2336_003	1383
SI	SI	ODF	17	2	2		30SUJ5325_001	1420
SI	SI	ODF	11	8	5		30TUL9810_002	1471
SI	SI	ODF	11	4,5	3,5		30TUL9811_002	1474
SI	SI	ODF	50	5	2,5		30TUL9812_001	1475
SI	SI	ODF	32	2	2		30TVK4092_005	1484
SI	SI	ODF	50	2	2		30TVK4092_N004	1538
SI	SI	ODF	88	2	2		29SQD2177_N002	1548
SI	SI	ODF	22	8	5		29SQE2511_N004	1549
SI	SI	ODF	83	2,1	2,5		30STK4428_N002	1554
SI	SI	ODF	5	3	3		30TUN8745_N008	1563
SI	SI	ODF	13	4,5	7		30TWM3074_N002	1640
SI	SI	ODF	45			2,5	29SQB2436_N003	1666
SI	SI	ODF	44	5	5,4		30SUG5198_N003	1668
SI	SI	ODF	11	3,9	2,7		30SUH7000_N007	1669
SI	SI	ODF	68	4	4		29TPG9958_N004	1679
SI	SI	ODF	70	4	4		29TPG9258_N004	1683
SI	SI	ODF	38	2	2		29TPG9559_N003	1684
SI	SI	ODF	38	3	3,2		31TDG6017_005	1741
SI	SI	ODF	19	4,6	6		31TDG6118_005	1744
SI	SI	ODF	68	2,7	3		31TDG6118_006	1745
SI	SI	ODF	11	4	3		31TDG6118_007	1746
SI	SI	ODF	13	10,8	2,8		31TDG6118_008	1747
SI	SI	ODF	9	6,2	7		31TDG6118_009	1748
SI	SI	ODF	13	3,8	2		31TDG7074_004	1769

SI	SI	PPV	13	6	6	31TDG0581_003	134
SI	SI	PPV	48	5,1	5	30STF7210_001	1055
SI	SI	PPV	50	2	2	30TWL2532_N001	1623
SI	SI	PGM	41	12	5,5	29TQE5453_004	1243
SI	SI	PIM	43	20	8,7	30TWN2953_013	796
SI	SI	PIM	11	12	4,7	30SVH5447_002	1094
SI	SI	PIM	71	20,2	15,5	30SVH5547_001	1095
SI	SI	PIM	31	15,5	4,7	30TUL9716_001	1467
SI	SI	VIA	47	145,3	10,4	31TCF5683_001	107
SI	SI	VIA	15	381	32	31TDG0581_001	132
SI	SI	VIA	14	200,3	27	31TDG0581_004	135
SI	SI	VIA	8	42,5	6	31TDG0776_001	136
SI	SI	VIA	14	47,6	8,7	31TDG0776_002	137
SI	SI	VIA	27	278,4	15	30TXN7019_001	182
SI	SI	VIA	8	53	5	30TYM1598_001	272
SI	SI	VIA	15	353,4	21	30TYM1698_001	276
SI	SI	VIA	6	72,1	7,8	30TYN1402_001	290
SI	SI	VIA	14	23,8	6,4	30TYN1608_002	307
SI	SI	VIA	11	11,6	7,4	30TYN1608_003	308
SI	SI	VIA	11	144,7	3,5	30TYN1810_001	311
SI	SI	VIA	10	130,2	3,6	30TYN1923_001	316
SI	SI	VIA	6	37,7	7	30TYN2522_002	337
SI	SI	VIA	7	77,2	4,8	31TBH6510_002	408
SI	SI	VIA	10	36,7	4	31TBH7118_001	419
SI	SI	VIA	12	33	5,7	31TBH7124_001	420
SI	SI	VIA	12	2,6	3,9	31TBH7223_001	425
SI	SI	VIA	10	65,6	4,7	31TBH9115_001	435
SI	SI	VIA	8	50,8	4,7	31TBH9213_001	439
SI	SI	VIA	15	46,9	4,5	31TBH9310_001	442
SI	SI	VIA	7	30	4,5	31TBH9418_003	445
SI	SI	VIA	6	26,2	4,7	31TBH9822_001	451
SI	SI	VIA	6	69,2	5	31TCG4086_001	503
SI	SI	VIA	3	31,5	5	31TCG4595_002	516
SI	SI	VIA	11	58,3	4,4	31TCG6787_001	527
SI	SI	VIA	8	58	3,5	31TCH0126_002	532
SI	SI	VIA	18	37	4,8	31TCH1136_002	545
SI	SI	VIA	11	84,5	4,4	31TCH2329_003	568
SI	SI	VIA	6	22,6	4,5	31TCH2630_001	570
SI	SI	VIA	5	38,3	3,5	31TCH4600_003	586
SI	SI	VIA	13	22	4	31TCH4715_003	589
SI	SI	VIA	12	22,5	8	31TCH4902_002	591
SI	SI	VIA	25	373,9	5,3	29TPH5441 001	598
SI	SI	VIA	33	83,8	5,7	30TVN0141_002	659
SI	SI	VIA	30	308	12	30TVN0656_002	661
SI	SI	VIA	9	71,5	5,5	30TVN0658_001	663
SI	SI	VIA	39	91,6	13,8	30TWN0631_002	708
				•	-	-	

SI	SI	VIA	10		15	30TWN0631_003	709
SI	SI	VIA	38	106,8	6,7	30TWN0631_004	710
SI	SI	VIA	38	170,7	8,8	30TWN0739_001	713
SI	SI	VIA	38	420	29	30TWN0752_001	716
SI	SI	VIA	38	189	13	30TWN0840_001	725
SI	SI	VIA	10	5	6	30TWN0848_006	732
SI	SI	VIA	37	520	25	30TWN0960_001	737
SI	SI	VIA	10	80	4,8	30TWN1640_002	766
SI	SI	VIA	36	108	11,3	30TWN2953_001	794
SI	SI	VIA	14	66	5,1	30TWN2953_012	795
SI	SI	VIA	31	249,8	10	29TPG9659_002	871
SI	SI	VIA	16	266	8	29TPG9659_005	872
SI	SI	VIA	35	186,3	10	29TPG9759_001	874
SI	SI	VIA	31	203,7	5	29TQG3054_005	898
SI	SI	VIA	33	597,6	21,8	30STF5039_001	1035
SI	SI	VIA	8	18	5,9	30STF5039_002	1036
SI	SI	VIA	30	100,9	18	30STF6813_003	1048
SI	SI	VIA	12	164	12	30STF7011_001	1050
SI	SI	VIA	14	127,7	15	30STF7011_003	1052
SI	SI	VIA	12	176,7	4	30STF7110_002	1054
SI	SI	VIA	8	103,2	8,5	30SUH6401_001	1073
SI	SI	VIA	8	34,7	4,6	30SUH9709_003	1083
SI	SI	VIA	8	230,6	9	30SVH0709_002	1086
SI	SI	VIA	30	217,5	5	30SVH0709_003	1087
SI	SI	VIA	29	184,5	15	30SVH5344_002	1090
SI	SI	VIA	28	569,9	13,2	30SVH5345_001	1091
SI	SI	VIA	29	570,5	57	30SVH5446_001	1092
SI	SI	VIA	33	418,7	35	30SVH5547_006	1099
SI	SI	VIA	12	119,2	5,2	30SVH5547_007	1100
SI	SI	VIA	12	136,3	4,5	30SVH5548_004	1104
SI	SI	VIA	8	57,4	13	30SVH5549_002	1106
SI	SI	VIA	9	47	8	30SVH5549_005	1109
SI	SI	VIA	12	458,1	11	30SVH5650_001	1110
SI	SI	VIA	10	287,2	14	30SVH5650_005	1114
SI	SI	VIA	5	53,6	5	30SVH5650_006	1115
SI	SI	VIA	6	52	7	30SVH5651_001	1116
SI	SI	VIA	10	79,8	26	30SVH5651_003	1118
SI	SI	VIA	18	140,5	10	30SVH5651_004	1119
SI	SI	VIA	11	60,1	10,9	30SVH5652_001	1120
SI	SI	VIA	6	45,3	6	30SVH5652_003	1122
SI	SI	VIA	5	57,3	7	30SVH5652_005	1124
SI	SI	VIA	12	116,6	5,2	29SQD3014_003	1227
SI	SI	VIA	34	20	4,6	29SQD3014_004	1228
SI	SI	VIA	39	31,3	8	29TQE5453_001	1240
SI	SI	VIA	32	240,3	8,7	30STK5124_001	1250
SI	SI	VIA	8	363,5	7,5	30STK5124_002	1251

SI	SI	VIA	6	214,5	9	30STK5124_003	1252
SI	SI	VIA	11	56,2	4,5	30TUK2550_003	1289
SI	SI	VIA	17	22	5	30SVG6329_002	1344
SI	SI	VIA	12	122,5	4,8	30SWG1213_001	1353
SI	SI	VIA	14	346,8	34	30SUH7463_003	1419
SI	SI	VIA	32	413	4,6	30SVK1413_001	1428
SI	SI	VIA	6	30,2	10	30SWH3818_001	1437
SI	SI	VIA	14	418,7	18,3	31TBG4901_001	1447
SI	SI	VIA	26	362,1	28	30TUL9410_001	1465
SI	SI	VIA	12	54,2	10	30TUL9810_001	1470
SI	SI	VIA	12	51,7	9	30TUL9810_003	1472
SI	SI	VIA	4	195	23	30SUH7463_N004	1559
SI	SI	VIA	12	30	3,8	31TDG6118_001	1742
SI	SI	PIM	14	6	5	31TCF4683_001	106
SI	SI	PIM	15	8,8	4,6	31TCH2730_001	571
SI	SI	PIM	17	6	6	30TUN8745_001	630
SI	SI	PIM	40	8	6	30TVN0656_001	660
SI	SI	PIM	52	8	7	30TVN0656_003	662
SI	SI	PIM	42	8,5	6	30TVN0748_002	666
SI	SI	PIM	40	7	4,8	30TWN0631_001	707
SI	SI	PIM	10	4,9	3	30TWN0752_002	717
SI	SI	PIM	48	2,5	3,5	30TWN1059_004	750
SI	SI	PIM	46	2	2,3	30TWN1954_001	771
SI	SI	PIM	40	7	5,2	29TPG9359_006	866
SI	SI	PIM	38	6,9	4,9	29TPG9559_002	869
SI	SI	PIM	41	7	5,5	29TPG9958_001	875
SI	SI	PIM	42	10	4,7	29TQG1456_001	888
SI	SI	PIM	44	7	5,2	29TQG2654_001	894
SI	SI	PIM	38	7	4,4	29TQG3054_001	896
SI	SI	PIM	40	4,4	3,6	29TQG3354_004	904
SI	SI	PIM	61	10	6	30TWL4139_002	924
SI	SI	PIM	37	9,8	5,2	30TWL4142_001	927
SI	SI	PIM	36	8	5	30STF7210_002	1056
SI	SI	PIM	40	4	2	30TXL4200_001	1070
SI	SI	PIM	17	12,7	1,7	30SVH5547_003	1097
SI	SI	PIM	48	4	4	30SVH5547_005	1098
SI	SI	PIM	9	6,6	6,4	30SVH5652_004	1123
SI	SI	PIM	13	6	4,3	30SVH5654_001	1125
SI	SI	PIM	19	9,9	6,7		1229
SI	SI	PIM	47	9	5,5	29TQE5453_003	1242
SI	SI	PIM	47	4	2,6	30STJ5357_001	1244
SI	SI	PIM	35	7,1	5,6	30STJ6194_001	1245
SI	SI	PIM	44	7,1	4,9	30STK4428_005	1249
SI	SI	PIM	59	5	4,5	30TTK5362_001	1261
SI	SI	PIM	39	5	4,5	30TTK5768_001	1266
SI	SI	PIM	40	10,9	3,5	30SVG6028_005	1338
٠.	٥.		.5		5,5	555. 65525_655	_555

SI	SI	PIM	31	6	4,5	30SWG1449_002	1359
SI	SI	PIM	50	5,1	4	29SQB2336_002	1382
SI	SI	PIM	17	8	4,8	30SUH7463_001	1417
SI	SI	PIM	33	8	5,6	30SVH1099_002	1426
SI	SI	PIM	143	5	3,5	30SVH1099_003	1427
SI	SI	PIM	38	8,1	5,3	30SWK1618_001	1464
SI	SI	PIM	13	4,8	2,8	30TUL9716_002	1468
SI	SI	PIM	43	4	2,5	30TUL9812_003	1477
SI	SI	PIM	19	8	5,5	30TVK4092_001	1482
SI	SI	PIM	42	3,5	3,5	30SWK1618_N002	1534
SI	SI	PIM	12	3	2,5	30TUL9812_N004	1535
SI	SI	PIM	11	4	4,6	30TVK4092_N003	1537
SI	SI	PIM	41	10	3,5	31TDG6017_004	1740