Understanding local ozone formation New research tools to support AQ policy

Dr William Bloss

University of Birmingham

• Ozone Trends: Recent UK experience

Key questions for effective Air Quality policy :

- 1 How can we identify which VOCs are the most important ?
- 2 What do we do about "new" VOCs ?
- 3 Separating transport vs processing of local precursors

• Other Uncertainties

Tropospheric chemistry

Ground-Level Background Ozone Trends

- \approx Factor of 2 increase in boundary layer ozone since \approx 1900
- Continuing increase in background ozone

Inflow to the UK: Mace Head, Ireland data

• Limited increase 2000 – 2014...

Fig. 2. Baseline monthly average O_3 mixing ratios at the Mace Head Atmospheric Research Station over the period from April 1987 to December 2012, shown as a blue

UK trends: O₃ and PM₁₀, urban vs rural

• Annual levels of PM₁₀ and Ozone in the UK 1987 – 2012 (DEFRA, 2013)

UK trends: O₃ and PM₁₀, urban vs rural

• Annual levels of PM₁₀ and Ozone in the UK 1987 – 2012 (DEFRA, 2013)

Reduction in Urban Decrement

• Traffic NOx emissions are mostly in form NO

 $NO + O_3 \rightarrow NO_2 + O_2$

• Reduction in traffic NOx emissions

Figure 2.19 Maximum hourly mean ozone concentrations in each year at the long-running rural sites identified in Figure 2.3 and at London sites over the period 1989-2006. The difference between the rural and London sites for the given ozone metric is termed the "urban decrement".

"Street Canyon" chemistry

Street Canyon LES Simulations

$\rm NO + O_3 \rightarrow \rm NO_2 + O_2$

- Low-resolution models *underestimate* canyon O₃ levels
- From Bright et al., 2012; Zhong et al., 2014

Reduction in Urban Decrement

• Traffic NOx emissions mostly in form NO

 $NO + O_3 \rightarrow NO_2 + O_2$

• Reduction in traffic NOx emissions ...but...

Figure 2.19 Maximum hourly mean ozone concentrations in each year at the long-running rural sites identified in Figure 2.3 and at London sites over the period 1989-2006. The difference between the rural and London sites for the given ozone metric is termed the "urban decrement".

Reduction in Urban Decrement

• Traffic NOx emissions mostly in form NO

 $NO + O_3 \rightarrow NO_2 + O_2$

- Reduction in traffic NOx emissionsbut...
- Increase in primary (direct emission) NO₂

-Diesel vehicle fleet penetration -Reality of EURO standards

- \Rightarrow Lower urban decrement in O₃
- \Rightarrow Increased total O_x

$$NO_2 + h\nu \rightarrow NO + O$$
$$O + O_2 + M \rightarrow O_3 + M$$

Figure 2.19 Maximum hourly mean ozone concentrations in each year at the long-running rural sites identified in Figure 2.3 and at London sites over the period 1989-2006. The difference between the rural and London sites for the given ozone metric is termed the "urban decrement".

UK ozone trends :

1995

• Increasing baseline ozone leve

2003

10121-001

ABOVE 18

• Reduction in peak episodes

(f) Number of days with maximum 8-hour running mean ozone concentration greater than 120 μg m⁻⁹

From Ozone in the UK, AQEG, 2009

• Ozone Trends: Recent UK experience

Key questions for effective Air Quality policy :

- **1** How can we identify which VOCs are the most important ?
- 2 What do we do about "new" VOCs ?
- 3 Separating transport vs processing of local precursors

• Other Uncertainties

Insight into emissions controls: POCP Values

- POCP = Photochemical Ozone Creation Potentials
- Trajectory model (highly comprehensive chemically)
- Emissions inventory
- Add additional emission of VOC_i
- Assess resulting ΔO_3 after some time t

 $POCP_i = 100 \times \frac{ozone \text{ increment with the } ith VOC}{ozone \text{ increment with ethene}}$

• t = 1 – 5 days

• A metric to assess impacts of local emissions (and hypothetical controls) on top of trans-boundary components

$\mathsf{Europe} \to \mathsf{UK} \ \mathsf{POCP} \ trajectories$

• Modelled $[O_3]$ and cumulative NOx and VOC emissions along Trajectory Austria \rightarrow UK

POCP Values

• 5-day trajectory POCP values (subset of species)

Species	РОСР
Methane	3.4
Ethane	14
Propane	41.1
Cyclohexane	59.5
Ethene	100
Propene	107.9
Acetylene	28
Benzene	33.4
Toluene	77.1
m-Xylene	108.8
Formaldehyde	55.4

Apply total emissions \Rightarrow cumulative contribution to net ozone production

Rank	c Common name	Emission	РОСР	POCP weighted emission (t yr ⁻¹)	Cumulative percentage of weighted emission (%)
1	Toluene	138574	77	106841	8
2	n-Butane	128743	60	77117	15
3	Ethylene	75308	100	75308	22
4	m-Xylene	60585	109	65917	27
5	p-Xylene	60464	95	57320	33
6	o-Xylene	52433	83	43572	37
7	i-Pentane	67855	60	40577	40
8	Ethyl alcohol	84923	45	37876	44

POCP Caveats

- Trajectory dependent, Emissions Dependent
- Defined NOx scenario: most suited for VOC dependencies
- Outcomes dependent upon simulation duration (fast vs. slow reacting VOCs)

Other Metrics also available:

Maximum Incremental Reactivity...etc

• Ozone Trends: Recent UK experience

Key questions for effective Air Quality policy :

- 1 How can we identify which VOCs are the most important ?
- 2 What do we do about "new" VOCs ?
- 3 Separating transport vs processing of local precursors

• Other Uncertainties

Tropospheric chemistry

"Bottom-up" mechanism approach...

Laboratory studies of individual reactions ullet

- CH₄
 C₂H₄

"Bottom-up" mechanism approach...

• Laboratory studies of individual reactions

	f(298 K)⊧	g	Notes		
			<u>B11</u>		
ata	1.15	+160 80	<u>B12</u>		
ata	1.2	200	<u>B13</u>		
	1.2	200	B13		
0-11	1.1	20	<u>C 1</u>		
-11	1.5	150	<u>C 2</u>		
0-16			<u>C 3</u>		
0-17			<u>C 4</u>		
)-16	3.0	750	<u>C 5</u>		
)–10	1.3	300	<u>C 6</u>		
)-11	1.5		<u>C7</u>		
		+200			

Simuation Chamber Approach

- Study Ozone and SOA formation from "new" VOCs
- Develop chemical mechanisms
- Test and evaluate existing models

 \Rightarrow improved accuracy and quantified uncertainty in model predictions \Rightarrow more efficient air quality policy

EUPHORE simulation chamber, Valencia

Ozone production from MC oxidation

• To predict full ozone, other chemical impacts need full degradation mechanism

...this would be rather complex to develop

Ozone production from MC oxidation

• To predict full ozone, other chemical impacts need full degradation mechanism

...this would be rather complex to develop

⇒ Surrogate mechanism, based on well-understood species, with a small number of "informed modifications"

-Initial kinetics, product channels-Enhanced yields to account for difference in molar mass

-Build upon existing MCM (v3.2) mechanisms

Propylbenzene mechanism base...

• Constrained to initial MC/NO, and to H₂O, T, *j*, HONO source only

Propylbenzene mechanism base...

Future:

Chamber studies of Ambient air Simulated Atmospheric Mixtures

Overview

• Ozone Trends: Recent UK experience

Key questions for effective Air Quality policy :

- 1 How can we identify which VOCs are the most important ?
- 2 What do we do about "new" VOCs ?
- **3** Separating transport vs processing of local precursors

• Other Uncertainties

Integrated Chemistry of Ozone in the Atmosphere

$$\frac{\frac{\partial[O_3]}{\partial t}}{\frac{\partial t}{\partial t}} = \underbrace{p_{O_3} - l_{O_3}}_{P(O_3)} \underbrace{-\frac{v}{H}[O_3]}_{SD} + \underbrace{u_i \frac{\partial[O_3]}{\partial x_i}}_{A}$$

Chemistry Deposition Transport

Integrated Chemistry of Ozone in the Atmosphere

Integrated Chemistry of Ozone in the Atmosphere

- Directly measure *in situ* chemical ozone production rate
 F
 - $P(O_3)$

- Sidestep uncertainties in chemistry, emissions, observations
- Provide new metric with which to challenge [local] models

Chemical oxidant production / loss

North Kensington
 Urban Background Location

Chemical oxidant production / loss

Current Field Measurements – Weybourne, UK

Current Field Measurements – Weybourne, UK

Measurement of in situ Oxidant Production Rate

• Leigh Crilley; Louisa Kramer

NOAA HYSPLIT MODEL Backward trajectory ending at 1400 UTC 01 Jul 15 GDAS Meteorological Data

Conclusions

• Ozone Trends: Recent UK experience

Rising (regional) background levels Falling frequency and intensity of severe ozone episodes Increasing primary NO₂ emission

Key questions for effective Air Quality policy :

1 How can we identify which VOCs are the most important ?

Model tools: POCP as an option to assess impact of local emissions superimposed upon trans-boundary input

2 What do we do about "new" VOCs ?

Use of simulation chambers to develop and test chemical mechanisms

3 Separating transport vs processing of local precursors New field measurements to assess local emissions vs transport

Other Science Uncertainties

• Role of other radical sources

"traditional" OH sources – well known HONO CINO2

"Unmeasured" VOCs

>C₁₀ alkanes (diesel vehicles) Biogenic benzenoids

- Ozone and temperature: "Climate Penalty"
- Will real world emissions follow Euro (and national) policy ?

Acknowledgements

Leigh Crilley, Louisa Kramer, Salim Alam, Juan Najera, Hao Huang (Birmingham) Andrew Rickard (York) Marie Camredon (Paris-Est), EUPHORE Team

Funding:

UK NERC, NCAS, EU FP7 EUROCHAMP-2

Latest Mace Head O₃ trends...

• Derwent et al., Atmos Env 2013

Fig. 2. Baseline monthly average O_3 mixing ratios at the Mace Head Atmospheric Research Station over the period from April 1987 to December 2012, shown as a blue line, with a linear fit to the annual average mixing ratios shown as green line and a quadratic fit shown as a red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Model performance

• Major uncertainties shown by model-model and model-observation comparisons

Effect of model chemical schemes upon predicted $[O_3]$ (Emmerson & Evans, 2009)

European AOT-40 cumulative ozone exposure

• Crop yield losses across $EU = \in 6.7$ bn yr¹ (Holland *et al.*, CEH, 2006)

Man-made Ozone

Figure 1.1 Modelled global changes in surface O_3 concentrations between pre-industrial times and the present day. Multi-model mean surface layer annual mean O_3 (ppb) is presented for pre-industrial (PI) times in the top left, and for the present day (PD) in the top right. The modelled increase in O_3 (PD–PI) is presented in the lower left figure and the percentage of annual mean O_3 attributable to anthropogenic sources in the lower right.

Sources of Alkenes

• Biogenic vs anthropogenic VOC emissions; future temperature response

GEOS-Chem Anthropogenic VOC Emissions

Millet et al (2007)

"Street Canyon" chemistry

Error in modelled [O₃] using a single-box treatment

Increasing Primary NO₂ emissions

- Increasing primary NO₂ emissions
 - -Increased diesel useage
 - -Effects of some emissions controls (DPF) (?)

From: Trends in Primary Nitrogen Dioxide in the UK, AQEG, 2007

Figure 3.15: Estimated weekly NO_2/NO_x emission ratio (f- NO_2) at Marylebone Road derived using the method of Carslaw and Beevers (2005). Error bars are shown at 2σ .

Will lead to increased urban NO₂, increased urban and regional O₃, increased nitrate aerosol

Ozone Production in the Atmosphere

- Chemical ozone production displays a complex dependence upon prevailing composition, NO $_{\rm x}$ and VOC abundance

Figure from Fowler et al. (2008)

Challenges in predicting ozone production (and developing mitigation strategies) :

- Emissions inventories
- Composition measurements
- Chemical processes

Inherent limitations to "bottom up" approach to date \Rightarrow solution: integrated approach...