4. ANÁLISIS DE CONTAMINANTES PRINCIPALES
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Dióxido de azufre (SO₂)</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>Óxidos de nitrógeno (NO, NO₂, NO₃)</td>
<td>4-19</td>
</tr>
<tr>
<td>4.3</td>
<td>Partículas PM10 y PM2,5</td>
<td>4-37</td>
</tr>
<tr>
<td>4.4</td>
<td>Ozono (O₃)</td>
<td>4-70</td>
</tr>
<tr>
<td>4.5</td>
<td>Monóxido de carbono (CO)</td>
<td>4-87</td>
</tr>
<tr>
<td>4.6</td>
<td>Benceno (C₆H₆)</td>
<td>4-97</td>
</tr>
<tr>
<td>4.7</td>
<td>Benzo(a)pireno (B(a)P)</td>
<td>4-107</td>
</tr>
</tbody>
</table>

Índice de Contaminantes Principales

<table>
<thead>
<tr>
<th>CAPÍTULO</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Dióxido de azufre (SO₂)</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>Óxidos de nitrógeno (NO, NO₂, NO₃)</td>
<td>4-19</td>
</tr>
<tr>
<td>4.3</td>
<td>Partículas PM10 y PM2,5</td>
<td>4-37</td>
</tr>
<tr>
<td>4.4</td>
<td>Ozono (O₃)</td>
<td>4-70</td>
</tr>
<tr>
<td>4.5</td>
<td>Monóxido de carbono (CO)</td>
<td>4-87</td>
</tr>
<tr>
<td>4.6</td>
<td>Benceno (C₆H₆)</td>
<td>4-97</td>
</tr>
<tr>
<td>4.7</td>
<td>Benzo(a)pireno (B(a)P)</td>
<td>4-107</td>
</tr>
</tbody>
</table>
4.7.4 Resultados de la evaluación del B(a)P (2012) ... 4-109
4.7.5 Evolución 2008-2012 del B(a)P. .. 4-113
4.8 Metales: plomo (Pb), arsénico (As), cadmio (Cd) y níquel (Ni)................................. 4-116
 4.8.1 Efectos de los metales ... 4-116
 4.8.2 Origen de la contaminación .. 4-117
 4.8.3 Valores legisladados para los metales ... 4-122
 4.8.4 Resultados de la evaluación del Pb (2012) .. 4-122
 4.8.5 Resultados de la evaluación del As (2012) ... 4-127
 4.8.6 Resultados de la evaluación del Cd (2012) ... 4-132
 4.8.7 Resultados de la evaluación del Ni (2012) .. 4-137
 4.8.8 Evolución 2001-2012 del Pb .. 4-142
 4.8.9 Evolución 2008-2012 del As .. 4-145
 4.8.10 Evolución 2008-2012 del Cd .. 4-148
 4.8.11 Evolución 2008-2012 del Ni .. 4-151
4.9 Amoniaco (NH₃) ... 4-154
 4.9.1 Efectos del NH₃ ... 4-154
 4.9.2 Origen de la contaminación .. 4-154
 4.9.3 Requerimientos de medición .. 4-156
 4.9.4 Resultados 2012 .. 4-156
4.10 Análisis de tendencias temporales (2001-2012) de los principales contaminantes en
 ambiente urbano e industrial en España ... 4-158
 4.10.1 SO₂ ... 4-159
 4.10.2 NO₂ ... 4-160
 4.10.3 O₃ .. 4-161
 4.10.4 CO .. 4-162
 4.10.5 PM10 .. 4-163
 4.10.6 PM2,5 ... 4-164
 4.10.7 Conclusiones .. 4-167
4. **ANÁLISIS DE CONTAMINANTES PRINCIPALES**

Los principales contaminantes a considerar son los siguientes:

- Dióxido de azufre (SO₂)
- Dióxido de nitrógeno (NO₂) y óxidos de nitrógeno (NOₓ)
- Partículas PM10 y PM2,5
- Ozono (O₃)
- Monóxido de carbono (CO)
- Benceno (C₆H₆) y benzo(a)pireno (B(a)P)
- Metales: Plomo (Pb), arsénico (As), cadmio (Cd) y níquel (Ni)
- Amoniaco (NH₃)

4.1 **Dióxido de azufre (SO₂)**

4.1.1 **Efectos del SO₂**

El dióxido de azufre (SO₂) está regulado en la normativa a causa de su potencial efecto sobre la salud y los ecosistemas.

Este contaminante puede producir, incluso a grandes distancias del foco emisor, efectos adversos sobre la salud (tales como irritación e inflamación del sistema respiratorio, afecciones e insuficiencias pulmonares, alteración del metabolismo de las proteínas, dolor de cabeza o ansiedad), sobre la biodiversidad, los suelos y los ecosistemas acuáticos y forestales (puede ocasionar daños a la vegetación, degradación de la clorofila, reducción de la fotosíntesis y la consiguiente pérdida de especies) e incluso sobre las edificaciones, a través de procesos de acidificación, pues una vez emitido, reacciona con el vapor de agua y con otros elementos presentes en la atmósfera, de modo que su oxidación en el aire da lugar a la formación de ácido sulfúrico.

Además, también actúa como precursor de la formación de sulfato amónico, lo que incrementa los niveles de PM10 y PM2,5, con graves consecuencias igualmente sobre la salud.

4.1.2 **Origen de la contaminación**

El origen del SO₂ es, es principalmente antropogénico. Como muestran las Figuras 4.1 y 4.2, el SO₂ es un gas que se origina sobre todo durante la combustión de carburantes fósiles que contienen azufre (petróleo, combustibles sólidos), llevada a cabo sobre todo en los procesos industriales de alta temperatura y de generación eléctrica.
La Figura 4.2 muestra además en 2008 un descenso acusado de las emisiones de SO\(_2\) producidas por la combustión en industrias de producción de energía debido a diversos factores, como el Plan 2007 de Reducción de Emisiones de Grandes Instalaciones de Combustión (GICs), que obligó a la introducción de tecnologías de desulfuración.

Figura 4.2. Tendencias temporales en las emisiones principales de SO\(_2\).
El principal emisor de SO$_2$ es el sector industrial, con lo cual la distribución temporal de los niveles de SO$_2$ suele venir determinada por los periodos en los que la industria emisora que afecta a la estación está en funcionamiento. A modo de ejemplo se muestran los patrones temporales de distribución del SO$_2$ en una estación industrial típica (Figura 4.3):

- La evolución de las concentraciones a lo largo de un día se caracteriza por un máximo muy marcado a mediodía, que se repite de lunes a domingo, coincidiendo con una actividad industrial ininterrumpida, en este caso centrales térmicas y refinería. La entrada de la brisa (con un máximo a mediodía) arrastra la contaminación de SO$_2$ desde la zona costera a la estación de medida.
- En el ejemplo las concentraciones mensuales caen en verano, y alcanzan sus máximos en noviembre y diciembre. Esta distribución de niveles a lo largo del año depende de la naturaleza de la industria que afecta a la estación (periodos de máxima actividad de puertos marítimos, funcionamiento de centrales de combustión, etc.).

Figura 4.3. Evolución horaria, diaria, semanal y mensual de SO$_2$ en una estación industrial.

4.1.3 **Valores legisados para el SO\textsubscript{2}**

Los objetivos de calidad del aire fijados por la legislación vigente para el contaminante SO\textsubscript{2} son los recogidos en la Tabla 4.1:

<table>
<thead>
<tr>
<th>Valor legislado</th>
<th>Valor límite</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor límite horario (VLH) para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2005)</td>
<td>350 μg/m3</td>
<td>Valor medio en 1 h No debe superarse en más de 24 ocasiones por año civil</td>
</tr>
<tr>
<td>Valor límite diario (VLD) para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2005)</td>
<td>125 μg/m3</td>
<td>Valor medio en 24 h No debe superarse en más de 3 ocasiones por año civil</td>
</tr>
<tr>
<td>Valor límite para la protección de los ecosistemas (nuevo nivel crítico para la protección de la vegetación, según la Directiva 2008/50/CE y el RD 102/2011)</td>
<td>20 μg/m3</td>
<td>Año civil y periodo invernal (1 de octubre del año anterior a 31 de marzo del año en curso)</td>
</tr>
</tbody>
</table>

4.1.4 **Resultados de la evaluación del SO\textsubscript{2} (2012)**

4.1.4.1. **Evaluación del SO\textsubscript{2} por zonas**

Las Figuras 4.4 y 4.5 muestran de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para este contaminante en el año 2012, conforme a los límites legales establecidos (valor límite horario y valor límite diario).

En ninguna de las zonas evaluadas se superaron en 2012 los valores legisladados (ni el valor límite horario ni el diario).

4.1.4.2. Estaciones utilizadas para la evaluación del SO$_2$

Por otra parte, la situación de la calidad del aire también se puede representar a través de mapas que muestren los niveles de SO$_2$ en las diferentes estaciones utilizadas en la evaluación. Este enfoque resulta interesante para conocer la distribución espacial de los niveles e identificar cuáles son los lugares más problemáticos, ya que basta que una estación incumpla, para que todo el área a la que pertenece también incumpla.

Las Figuras 4.6 y 4.7 muestran los estadísticos de SO$_2$ de las estaciones en el 2012 clasificados de acuerdo a los valores legisladados de SO$_2$, es decir, estadísticos por encima del valor límite (rojo), entre el valor límite y el umbral de evaluación superior (naranja), entre los umbrales de evaluación (amarillo) y por debajo del umbral de evaluación inferior (verde).

4.1.4.3. Concentración mensual de los niveles de SO$_2$ en 2012

Los estadísticos de evaluación de calidad del aire de SO$_2$ que aparecen en la legislación están referenciados al año civil, sin embargo, también es interesante conocer cómo se distribuyen los niveles de este contaminante a lo largo del año.

Para estudiar la distribución de las medias mensuales de SO$_2$ en el 2012, en la Figura 4.8 se muestra un mapa de España con los valores mensuales de todas las estaciones que han participado en la evaluación, y en Figura 4.9 un gráfico de la distribución de los niveles en el año para las estaciones, agrupadas por tipo de área.

En ninguna de las dos figuras se observa un patrón específico de distribución del nivel de SO$_2$ a lo largo del año, lo único reseñable es que se observan niveles de SO$_2$ más altos en los meses de invierno, lo que podría venir asociado o bien al uso de calefacciones que queman combustible con azufre, o bien a las condiciones menos favorables para la dispersión de la contaminación que predominan en invierno y otoño.
Capítulo 4. Análisis de contaminantes principales

4.1.4.4. Análisis del SO2 por tipo de área y tipo de estación en 2012

El grado de cumplimiento o incumplimiento de las estaciones utilizadas en la evaluación del SO2 en el año 2012 puede analizarse a través de la representación para dicho año de la distribución del estadístico “valor 25 máximo” de las estaciones utilizadas (respecto al valor límite horario de 350 μg/m3 que no se puede superar más de 24 horas al año), agrupadas las estaciones por tipo de área (urbana, suburbana o rural) y por tipo de estación (tráfico, industrial, fondo).

Como se observa en la Figura 4.10, en el año 2012 no se han producido ninguna superación del valor límite horario (no hay ninguna estación que supere la línea roja que representa el VLH). Por otro lado se aprecia que las estaciones con niveles más altos (más hacia la derecha en el eje x) se dan en las estaciones industriales.

El análisis se puede efectuar también en relación con el valor límite diario de 125 μg/m3 que no se debe superar más de 3 días al año. En este caso, lo representado en la Figura 4.11 es la distribución del estadístico “valor 4-máximo” de las estaciones utilizadas en 2012 en la evaluación, de nuevo agrupadas por tipo de área y por tipo de estación.

Las figuras indican que la mayor parte de las estaciones se sitúan por debajo del umbral de evaluación inferior, es decir, en dichos puntos se puede evaluar únicamente mediante modelización o mediciones indicativas, no siendo necesaria la evaluación a través de puntos de muestreo fijos.
Figura 4.10. Distribución de los niveles de SO$_2$ en relación a los valores legislados (VLH) por tipo de área y tipo de estación (2012).

Capítulo 4. Análisis de contaminantes principales
Figura 4.11. Distribución de los niveles de SO$_2$ en relación a los valores legislados (VLD) por tipo de área y tipo de estación (2012).

4.1.5 **Evolución 2001-2012 del SO$_2$**

En este apartado se muestra la evolución del SO$_2$ a lo largo de los años 2001-2012 mediante diferentes enfoques: en lo que respecta a la evolución de las zonas, la evolución de las estaciones (mostrándose la evolución de los estadísticos de legislación) y la evolución de las medias anuales (para el total de estaciones y para las estaciones agrupadas por tipo de área).
El objetivo es tener una visión global de los niveles del contaminante a escala nacional, de las tendencias a lo largo de la serie temporal y de las zonas, áreas o estaciones que presentan niveles más altos a lo largo de los años.

4.1.5.1. Evolución 2001-2012 de los valores legislados en las zonas de SO$_2$

La Figura 4.12 presenta la evolución de las zonas de evaluación de SO$_2$ y su situación respecto a los valores legislados a lo largo del periodo 2001-2012.

Se observa un descenso significativo de las superaciones de SO$_2$ a lo largo de los años. En los últimos 4 años no se han producido superaciones de los valores legislados a excepción del año 2011.
4.1.5.2. Evolución 2007-2012 de los valores legislados de SO₂ en estaciones

Para una mayor claridad se muestra la evolución de los estadísticos de los valores legislados horarios y diarios de SO₂ de los últimos seis años (2007-2012), teniendo en cuenta que a partir del 2005 deja de existir el margen de tolerancia de los dos valores límite establecidos.

La representación en un mapa de la evolución de los valores legislados (Figuras 4.13 y 4.14) muestra que los mayores episodios horarios o diarios vienen asociados a zonas industriales, observándose picos en los últimos años en los siguientes lugares: Zona industrial de León (Congosto, la Robla, Anllares), en el entorno de la central de As Pontes en A Coruña, zona industrial de Puertollano en Ciudad Real, zona de centrales térmicas en el cauce del Ebro en Aragón, Bahía de Algeciras en Cádiz, entorno de la refinería en Santa Cruz de Tenerife, centrales térmicas del cinturón de Barcelona y zona de Escombreras en Murcia.
Figura 4.13. Evolución de los valores registrados de SO₂ respecto al VLD (cuarto máximo diario, ya que el VLD no debe superarse en más de 3 ocasiones por año civil) a lo largo del periodo 2007-2012.
4.1.5.3. Evolución 2001-2012 de los niveles de SO2

La Figura 4.15 muestra la distribución de las medias anuales de las estaciones participantes en la evaluación del SO₂ a lo largo del periodo 2001-2012, en la que las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales.

![Diagrama de caja y bigotes de medias anuales de SO₂ 2001-2012](image_url)

Figura 4.15. Diagrama de caja y bigotes de las medias anuales de SO₂ 2001-2012.

La Figura 4.16 representa la evolución de las medias anuales de las estaciones, agrupadas por tipo de estación y de área.

Capítulo 4. Análisis de contaminantes principales
Análisis de la Calidad del Aire en España: Evolución 2001-2012

En las dos figuras anteriores se observa una tendencia hacia la disminución de los niveles medios a lo largo del tiempo, siendo especialmente significativa la reducción que se produjo en 2008, año de entrada en vigor del Plan Nacional de Reducción de Emisiones de GICs. Por otro lado, los niveles más altos se registran en estaciones industriales generalmente afectadas por centrales térmicas, refinerías, puertos, etc. La reducción media de los niveles de SO$_2$ en el periodo 2001-2010 es de alrededor del 50%.

A modo de ejemplo, la Figura 4.17 muestra la distribución de los niveles horarios y mensuales de SO$_2$ en dos estaciones industriales con diferentes focos de emisión:

- **Estación 1**: Las emisiones proceden de un puerto marítimo, las horas centrales del día presentan los valores horarios más altos (debido al transporte de las emisiones por la brisa), y se registran picos a lo largo de todo el año.

- **Estación 2**: Las emisiones proceden de una gran instalación de combustión, afectada por el plan nacional de reducción GIC 2007. Se observa una bajada acusada de niveles a partir del año 2008. Durante los años 2007-2008 se aprecian máximos de actividad en las horas centrales del día, especialmente en los meses estivales.

En dicha figura se representa, en el eje de abscisas, la evolución mensual a lo largo de varios años, mientras que en el eje de ordenadas se observan las medias para las diferentes horas del día (de 00 a 23 horas).

4.2 Óxidos de nitrógeno (NO, NO₂, NOₓ)

4.2.1 Efectos de los óxidos de nitrógeno

Los denominados óxidos de nitrógeno engloban tanto al monóxido (NO) como al dióxido de nitrógeno (NO₂). De las dos, es ésta última la principal forma química con efectos adversos sobre la salud; además, el NO se oxida con facilidad, dando lugar a NO₂ rápidamente una vez presente en la atmósfera.

Dichos efectos adversos son de muy diversa naturaleza, y se pueden producir sobre la salud humana (inflamación de las vías aéreas, afecciones de órganos, como hígado o bazo, o de sistemas, como el sistema circulatorio o el inmunitario, que propician a su vez infecciones pulmonares e insuficiencias respiratorias) y sobre el medio ambiente (acidificación y eutrofización de ecosistemas, afecciones metabólicas, limitación del crecimiento vegetal). Los procesos de acidificación pueden también afectar a las edificaciones.

Por otra parte, los NOₓ contribuyen igualmente de forma secundaria a la formación de partículas inorgánicas (por ser precursores del ácido nítrico, HNO₃, y por tanto del nitrato, NO₃⁻, en partículas), y también actúan como precursores de la formación de ozono (O₃) y de otros contaminantes fotoquímicos (por ejemplo, al reaccionar con compuestos orgánicos volátiles, COVs), lo que potencialmente agrava las consecuencias mencionadas sobre la salud y el medio ambiente y conlleva efectos sobre el clima.

4.2.2 Origen de la contaminación

El NO₂ y el NOₓ (NO+NO₂) tienen también un origen principalmente antrópico.

Como contaminantes, son gases que se emiten en los procesos de combustión que se llevan a cabo en relación con el tráfico (sobre todo vehículos automóviles, y en especial de motores diésel) y con el transporte en general, así como en instalaciones industriales de alta temperatura y de generación eléctrica (Figuras 4.18 y 4.19).

Su formación se debe a la oxidación que sufre el nitrógeno atmosférico (N₂, principal componente del aire) a altas temperaturas.

Los focos emisores emiten generalmente NO y NO₂, a los que denominamos primarios, con el tiempo el NO se oxida y genera NO₂ secundario. Así pues cerca de las fuente el ratio NO/NO₂ es mucho más alto que en las zonas de fondo regional.

En ambiente urbano, generalmente más del 75% del NO₂ en aire ambiente es aportado por el tráfico rodado. Esta contribución es mayor que la que aporta al Inventario Nacional de Emisiones debido a que los ciudadanos viven muy próximos al tráfico rodado, y aunque en tonelaje las emisiones son inferiores a las de otras fuentes, su contribución a la exposición humana en ciudades es muy superior.
Figura 4.18. Contribución de las actividades por categorías a las emisiones de NO\(_x\) (2011).

Figura 4.19. Tendencias temporales de las emisiones principales de NO\(_x\).
Como se aprecia en la Figura 4.19, a lo largo del periodo considerado se ha producido global y paulatinamente una disminución de las emisiones de estos contaminantes, que resulta más marcada si se atiende a focos individuales como el tráfico (que continúa siendo el principal contribuyente) o a la combustión en las industrias energéticas, que han experimentado una caída importante a partir del año 2008.

De todo ello se puede deducir que los niveles más altos de NOx se van a alcanzar previsiblemente en las grandes aglomeraciones urbanas y en sus zonas metropolitanas, así como en el entorno de las vías de comunicación con tráfico más denso.

La Figura 4.20 muestra los patrones temporales de distribución del NO₂ en una estación de tráfico urbano. Como se observa, la evolución de las concentraciones a lo largo de un día muestra dos perfiles: de lunes a viernes, el gráfico marca dos máximos, a primera hora de la mañana y a partir de las 6 de la tarde, coincidiendo con los desplazamientos entre el domicilio y el lugar de trabajo; mientras que los sábados y los domingos sobre todo destacan los desplazamientos por la tarde-noche, que además llevan a registrar concentraciones inferiores al resto de los días de la semana. La influencia de los desplazamientos laborales se aprecia también en las concentraciones mensuales, que caen significativamente en agosto.

Figura 4.20. Evolución horaria, diaria, semanal y mensual de NO₂ en una estación de tráfico.

Capítulo 4. Análisis de contaminantes principales
4.2.3 **Valores legisados para NO₂ y NOₓ**

Los objetivos de calidad del aire fijados por la legislación vigente para los óxidos de nitrógeno son los recogidos en la Tabla 4.2:

<table>
<thead>
<tr>
<th>Valor legislado</th>
<th>Valor límite</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor límite horario (VLH) de NO₂ para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2010)</td>
<td>200 μg/m³</td>
<td>Valor medio en 1 h No debe superarse en más de 18 ocasiones por año civil</td>
</tr>
<tr>
<td>Valor límite anual (VLA) de NO₂ para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2010)</td>
<td>40 μg/m³</td>
<td>Año civil</td>
</tr>
<tr>
<td>Valor límite (nuevo nivel crítico según la Directiva 2008/50/CE y el RD 102/2011) de NOₓ para la protección de la vegetación</td>
<td>30 μg/m³</td>
<td>Año civil</td>
</tr>
</tbody>
</table>

4.2.4 **Resultados de la evaluación del NO₂ (2012)**

4.2.4.1. **Evaluación del NO₂ por zonas**

Las Figuras 4.21 y 4.22 muestran de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para este contaminante en el año 2012, conforme a los límites legales establecidos (valor límite horario y valor límite anual).

![Figura 4.21. Situación de España para el NO₂ respecto al valor límite horario (2012): Zonas.](image)

Las dos zonas que superaron en 2012 el valor límite horario (VLH) de NO₂ para la protección de la salud humana fueron las recogidas en la Tabla 4.3.
Tabla 4.3. Evaluación respecto al VLH de NO$_2$ (2012).

<table>
<thead>
<tr>
<th>Zonas > VLH de NO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Madrid (ES1301) (Ciudad de Madrid)</td>
</tr>
<tr>
<td>• Urbana Sur (ES1309)</td>
</tr>
</tbody>
</table>

En cuanto al valor límite anual (VLA), en el año 2012 se registraron valores por encima del valor límite en siete zonas (Tabla 4.4). No obstante, para tres de ellas la Comisión Europea ha concedido una prórroga de cumplimiento, (mediante la Decisión de la Comisión de 14.12.2013, relativa a la notificación por el Reino de España de la prórroga del plazo fijado para alcanzar los valores límite de NO$_2$ en tres zonas donde debe evaluarse la calidad del aire), de modo que sólo son cuatro las zonas que realmente superan el VLA.

En las otras tres, se superó dicho valor límite éste pero no su suma con el margen de tolerancia, establecido para el año 2012 conforme al Anexo XI de la Directiva 2008/50/CE, de 21 de mayo, en 20μg/m3 (VLA+MdT = 40+20 = 60 μg/m3) para las Zonas ES1308 “Corredor del Henares”, ES1309 “Urbana Sur” y ES0118 “Granada y Área Metropolitana”. Salvo en estas excepciones, en 2010 se dejó de aplicar con carácter general el margen de tolerancia.

Tabla 4.4. Evaluación respecto al VLA de NO$_2$ (2012).

<table>
<thead>
<tr>
<th>Zonas > Valor límite anual (VLA)</th>
<th>Zonas > VLA, ≤ VLA+MdT (zonas con prórroga):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Área de Barcelona (ES0901)</td>
<td>• Urbana Sur (ES1309) (Madrid)</td>
</tr>
<tr>
<td>• Madrid (ES1301)</td>
<td>• Corredor del Henares (ES1308)</td>
</tr>
<tr>
<td>• Vallès-Baix Llobregat (ES0902)</td>
<td>• Granada y Área Metropolitana (ES0118)</td>
</tr>
<tr>
<td>• Ciudad de Murcia (ES1407)</td>
<td></td>
</tr>
</tbody>
</table>

Capítulo 4. Análisis de contaminantes principales
4.2.4.2. Estaciones utilizadas para la evaluación del NO₂

Si se considera el grado de cumplimiento de la legislación vigente para el NO₂ de las estaciones utilizadas para la evaluación de este contaminante en el año 2012, el resultado es el que recogen las Figuras 4.23 y 4.24, en las que las estaciones se muestran en color rojo (cuando las estaciones superan el valor límite), naranja (entre el valor límite y el umbral de evaluación superior), amarillo (entre los umbrales de evaluación) o verde (por debajo del umbral de evaluación inferior).

El valor límite horario se supera únicamente en Madrid ya que en Palma hay una estación que supera el percentil 99.8 pero el número de superaciones de 200 es igual o inferior a 18.

4.2.4.3. Concentración mensual de los niveles de NO₂ en 2012

Los estadísticos de la evaluación de calidad del aire para NO₂ en la legislación están referenciados al año civil. Para conocer la distribución de los niveles de este contaminante a lo largo del año, se ha elaborado un mapa con los valores medios mensuales registrados en todas las estaciones que han participado en su evaluación en el año 2012 (Figura 4.25), así como un gráfico con la distribución de los niveles en el año para las estaciones, agrupadas por tipo de área (Figura 4.26).

En ambas figuras se observa que el patrón de distribución del NO₂ a lo largo del año presenta valores más altos en invierno que en verano, siendo está tendencia especialmente acusada en las zonas urbanas. Este patrón se puede deber a que en los meses de primavera hay más precipitaciones que limpian los gases de la atmósfera o que en los meses centrales del año al ser más calurosos hay más ventilación de la atmósfera. Otro posible motivo serían las situaciones anticiclónicas que se dan durante el invierno en la península impidiendo la dispersión de los contaminantes.
Figura 4.25. Evolución de las medias mensuales de NO$_2$ en 2012.
4.2.4.4. Análisis del NO₂ por tipo de área y tipo de estación en 2012

Las Figuras 4.27 y 4.28 permiten analizar el grado de cumplimiento de las estaciones utilizadas para evaluar NO₂ en 2012, a través de la representación de la distribución de las medias anuales de las estaciones que evalúan NO₂ respecto al valor límite anual (40 μg/m³) en dicho año, agrupadas por tipo de área y por tipo de estación. Según los resultados, un porcentaje relativamente alto de estaciones sigue superando el valor límite anual, principalmente en estaciones urbanas o suburbanas afectadas por el tráfico.

Para considerar el grado de cumplimiento del valor límite horario de 200 μg/m³, se representa la distribución del valor 19 máximo de las estaciones que han participado en la evaluación de NO₂ en 2012 (dado que el VLH no debe superarse en más de 18 ocasiones por año civil), de nuevo agrupadas por tipo de área y por tipo de estación. Las gráficas del valor límite horario muestran que hay un menor porcentaje de estaciones que superan el VLH respecto al VLA y que las únicas que superan son estaciones urbanas situadas en zonas de tráfico intenso en las principales ciudades de España.
Figura 4.27. Distribución de los niveles de NO₂ en relación a los valores legislados (VLH) por tipo de área y tipo de estación (2012).
Figura 4.28. Distribución de los niveles de NO₂ en relación a los valores legislados (VLA) por tipo de área y tipo de estación (2012).

4.2.5 Evolución 2001-2012 del NO₂

Para analizar la situación de este contaminante a escala nacional y conocer las tendencias del mismo a lo largo de la serie temporal 2001-2012, en este apartado se va a presentar la evolución histórica de los niveles de NO₂, a través de la consideración de la evolución de las zonas donde se evalúa, de las estaciones correspondientes (mostrando la evolución de los estadísticos legislados).
y del comportamiento de las medias anuales (para el total de estaciones y para las estaciones agrupadas por tipo de área).

4.2.5.1. Evolución 2001-2012 de los valores legisados en las zonas de NO₂

En la Figura 4.29 se presenta la evolución de las zonas de evaluación de NO₂ y su situación respecto a los valores legisados a lo largo del periodo 2001-2012. Hay que tener en cuenta que hasta el año 2005 existió un margen de tolerancia para los valores límite, y que posteriormente en el año 2012 se han concedido algunas prórrogas para el cumplimiento del valor límite anual (permitiendo de nuevo un margen de tolerancia para las zonas con prórroga).

Figura 4.29. Evolución del número de superaciones del VLH y del VLA de NO₂ (2001-2012).
En general se observa un descenso de las zonas con superación de NO₂ a lo largo de los años, debido a la aplicación de los planes de mejora de calidad del aire y al efecto de la crisis económica. No obstante, las grandes ciudades españolas con mayor tráfico siguen incumpliendo los valores legisados a pesar de los esfuerzos realizados.

4.2.5.2. Evolución 2007-2012 de los valores legisados de NO₂ en estaciones

Para una mayor claridad, en las Figuras 4.30 y 4.31 se muestra la evolución de los estadísticos de los valores legisados horario y anual de NO₂ de los últimos seis años (2007-2012), teniendo en cuenta que a partir del 2005 deja de existir el margen de tolerancia de los dos valores límite establecidos. La representación en un mapa de la evolución de los valores legisados muestra que la superación de los valores límite de NO₂ se ha producido de manera continuada en Barcelona y su área metropolitana (Hospitalet, Sabadell...) y en Madrid y su área metropolitana (Coslada, Fuenlabrada, Leganés...), y de manera puntual en otras ciudades (A Coruña, Bilbao, Granada, Palma, Sevilla, Valencia...).
Figura 4.30. Evolución de los niveles registrados de NO$_2$ respecto al VLH (19 valor máximo horario, dado que el VLH no debe superarse en más de 18 ocasiones por año civil) a lo largo del periodo 2007-2012.
Capítulo 4. Análisis de contaminantes principales

4.2.5.3. Evolución 2001-2012 de los niveles de NO₂

La Figura 4.32 muestra la distribución de las medias anuales de las estaciones participantes en la evaluación del NO₂ a lo largo del periodo 2001-2012, en la que las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales.

La Figura 4.33 recoge la evolución de las medias anuales de NO₂ (2001-2012) de las estaciones, agrupadas por tipo de estación y de área.

En ambos gráficos se observa una tendencia de reducción que se hace especialmente patente a partir del año 2008, lo que podría venir explicado por los efectos de la crisis económica y la aplicación de los planes de mejora de calidad del aire en las principales ciudades.
Figura 4.33. Evolución de las medias anuales de NO2 (2001-2012) por tipo de estación y área.

A modo de ejemplo, en la Figura 4.34 se muestra la distribución de los niveles horarios y mensuales de NO2 en dos estaciones urbanas de la misma ciudad, una de tráfico y otra de fondo:

- Estación 1: Afectada por tráfico intenso en una gran ciudad de España. Se distinguen dos picos máximos a lo largo del día, por la mañana y por la tarde, coincidiendo con los desplazamientos de ida y vuelta al trabajo. Por otro lado se observan mayores concentraciones durante el invierno y más bajas durante el verano, siendo especialmente significativo el descenso de niveles durante el mes de agosto debido al menor tráfico que tiene lugar durante las vacaciones en dicha ciudad (en las ciudades de la costa ocurre lo contrario, con mayores niveles durante el periodo estival debido al aumento de desplazamientos que tiene lugar durante el verano).

- Estación 2: Situada en una ubicación de fondo, en un parque, pero dentro de la misma ciudad que la estación 1. Se observa que el patrón de distribución temporal de la contaminación a lo largo del día es el mismo que en la estación 1 (es decir, está influida por el tráfico), pero que los niveles son inferiores al estar más alejada de la fuente de emisión (vehículos).

En ambas estaciones se observa un descenso de los niveles registrados a lo largo de los años, que confirma los resultados anteriores.
Figura 4.34. Evolución de las concentraciones de NO₂ en dos estaciones urbanas de una misma ciudad (2006-2012).

4.3 Partículas PM10 y PM2,5

4.3.1 Efectos de las partículas

Las “partículas” (PM) están integradas por una mezcla heterogénea y compleja de sustancias orgánicas e inorgánicas de tamaño y composición química muy variable; sólidas y/o líquidas, de origen tanto natural como antropogénico.

Son los contaminantes del aire más importantes en términos de peligrosidad para la salud humana (aquellas de un diámetro aerodinámico igual a las 10 micras, o inferior, conocidas como PM10), ya que pueden ser inhaladas y penetrar así en el sistema respiratorio; las de menor tamaño (de 2,5 micras de diámetro, o inferior –PM2,5-) pueden incluso alcanzar los alveolos pulmonares, lo que les permite de este modo llevar sustancias nocivas a zonas muy sensibles y agravar patologías que pueden conducir incluso a una muerte prematura. De este modo, las partículas (en especial las PM2,5) pueden estar implicadas en el incremento de la mortalidad y de la morbilidad por causas respiratorias y cardiovasculares. Además de PM10 y PM2,5, las partículas ultrafinas (inferiores a 0,1 micras, UFP) pueden incluso alcanzar el flujo sanguíneo y afectar por tanto a diversos órganos, y afectar al sistema nervioso central y al sistema reproductor, entre otros.

Por otra parte, las partículas ultrafinas en suspensión también pueden tener efectos muy diversos sobre el medio ambiente y el clima, dependiendo de su tamaño y composición; en líneas generales pueden afectar al crecimiento vegetal, a la fauna (de modo similar a lo ya visto para el caso humano), reducen la visibilidad, influyen en los cambios de temperatura netos (ya sea incrementándola o disminuyéndola) e incluso pueden alterar los patrones de precipitación y la relación entre la radiación reflejada y la incidente (albedo superficial); y además ocasionar daños en las edificaciones.

4.3.2 Origen de la contaminación

El origen puede ser primario o secundario:

- **Primario:** Cuando las PM se emiten directamente a la atmósfera, ya sea de manera natural (polvo y partículas del suelo, partículas salinas marinas, esporas y pólenes...) o como consecuencia de la actividad humana, que en ambientes urbanos se asocia sobre todo al tráfico rodado y a la circulación de vehículos (lo que incluye tanto las emisiones de combustión del motor como el desgaste de frenos y neumáticos), a otros procesos de combustión (en especial industriales, pero también relacionados con la calefacción de edificios y viviendas), a otras fuentes de emisión industriales y a la construcción.

- **Secundario:** Cuando se producen en la atmósfera como resultado de reacciones químicas a partir de gases precursores (SO₂, NOₓ, NH₃ y compuestos orgánicos volátiles, principalmente). Dichos precursores permiten resumir el origen de las partículas secundarias en dos grandes bloques:
 - Los componentes inorgánicos secundarios, como el sulfato y nitrato amónico ([NH₄]₂SO₄ y NH₄NO₃), que generalmente constituyen el 30-40% de las partículas PM2,5. Se originan por la oxidación en la atmósfera de SO₂ y NO₂ y su interacción con amoníaco (NH₃). Esta reacción es más rápida en condiciones de alta temperatura y humedad y elevada insolación, y el origen de los gases precursores es antropogénico en su gran mayoría.
 - Los compuestos secundarios orgánicos se originan a partir de COVs, tanto naturales como antrópicos. Entre los gases orgánicos antrópicos destacan los hidrocarburos...
emitidos por evaporación de combustibles o por emisiones de combustión, así como un gran número de focos industriales (pinturas, barnices, entre otros). Entre los naturales destacan los COVs biogénicos procedentes de las emisiones vegetales, como los isoprenos, típicos de los bosques caducifolios y los terpenos de los de coníferas. Estos COVs reaccionan en la atmósfera con O₃, NOₓ y otros componentes y generan compuestos carbonosos sólidos y/o líquidos que constituyen alrededor del 25-30% del PM10 y PM2,5. La velocidad de formación de este PM10 y PM2,5 carbonoso es mayor en las ciudades por presentar altos niveles de NOₓ, a su vez, la reacción entre NO₂ y COVs genera O₃.

En general, la fracción antropogénica domina sobre la natural, tanto en zonas rurales como en puntos de tráfico rodado o industriales. Además la fracción secundaria representa entre el 40 y el 70 % de la masa de PM.

La Figura 4.35 resume las contribuciones relativas de las diversas fuentes de partículas PM10 y PM2,5 en suspensión primarias a las emisiones nacionales de estos contaminantes, tal como se recoge en el Inventario Nacional de Emisiones Contaminantes a la ATMósfera 2011. De todos los tipos de focos considerados en dicho Inventario, entre los más influyentes en el año 2011 predomina como fuente principal la combustión en sectores no industriales, tanto para las PM10 como para las PM2,5, seguida por el tráfico rodado (en el caso de las PM10) o por la agricultura (en el de las PM2,5).
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Figura 4.35. Contribución de las actividades por categorías a las emisiones de PM10 y PM2,5 (2011).

La Figura 4.36 muestra una evolución generalizada a la baja en las emisiones de partículas entre los años 2000 y 2011 en sectores como el del transporte, pero tal tendencia no es tan evidente ni en el caso de la agricultura (para las PM10) ni el de otros sectores que implican procesos de
combustión (tanto para PM10 como para PM2,5), cuyas emisiones se mantienen invariadas o incluso ligeramente al alza en el periodo considerado.

![Gráfico PM10 (Mg)](image1)

![Gráfico PM2,5 (Mg)](image2)

Figura 4.36. Origen de la contaminación: Emisiones principales de partículas PM10 y PM2,5.
En España se registran niveles altos de PM10 en zonas de tipología muy diversa, en ciudades, en algunas zonas industriales e incluso zonas rurales, debido a que la distribución de fuentes de emisión de partículas en muy compleja, ya que pueden proceder del tráfico rodado (tanto de la emisión del motor, como del desgaste de frenos como de la erosión del firme de rodadura), de la minería, de la industria, de las emisiones domésticas y residenciales, del polvo mineral de origen africano, o del aerosol marino, entre otros.

En ambientes urbanos la mayor contribución (entre 35 y 60%) a los niveles de PM10 y PM2,5 en aire ambiente la aporta el tráfico rodado, tanto por medio de las emisiones del motor, como de las emisiones mecánicas por abrasión de frenos, discos, ruedas y pavimento. Como se ha descrito para NO₂, esta contribución es mayor que la que aporta al Inventario Nacional de Emisiones debido a que los ciudadanos viven muy próximos al tráfico rodado y, aunque en tonelaje las emisiones son inferiores a las de otras fuentes, su contribución a la exposición humana en ciudades es muy superior. Siguiendo a la contribución del tráfico rodado, los otros focos de emisión importantes son la formación de partículas secundarias, las emisiones industriales, las residenciales y domésticas, la construcción, la resuspensión de polvo mineral y los aportes de aerosol marino y de los buques en zonas costeras. Las contribuciones de las fuentes expuestas dan lugar a que la composición de PM10 y PM2,5 de una zona urbana de España sea de 10-35% de materia mineral, 10-20 % sulfato, (SO₄²⁻), 10-20% nitrato (NO₃⁻), 5-10 % amoníaco (NH₃³⁻), 2-5% de carbono elemental grafitico procedente de combustión, 15-30% de materia carbonosa orgánica en su mayoría secundario, 1-10% aerosol marino, y menos de 1% de la suma de contaminantes traza, entre ellos los metales.

Para valorar la situación nacional con respecto a estos contaminantes hay que tener presente, en primer lugar, que España siempre ha presentado niveles altos de partículas, cuya concentración se incrementa esporádicamente de forma natural por las intrusiones de polvo africano. Por este motivo, la legislación vigente establece un procedimiento² para conocer en qué medida se ven afectados esos niveles por las fuentes naturales y cuál es el nivel de partículas ocasionado por actividades humanas, con la finalidad de no contabilizar (a efectos de cumplimiento de valores límite) las superaciones ocasionadas por dichas fuentes naturales, tal y como establecen el Real Decreto 102/2011 (en su artículo 22.2) y la Directiva 2008/50/CE (en su artículo 20).

Figura 4.37. Imagen satélite que muestra una intrusión de masas de aire africanas con elevada carga de polvo atmosférico sobre Canarias.

Fuente: Imagen NASA-USA

4.3.3 **Valores legislados para las partículas en suspensión**

Los objetivos de calidad del aire fijados por la legislación vigente para las partículas PM10 y PM2,5 son los recogidos en las Tablas 4.5 y 4.6.

<table>
<thead>
<tr>
<th>Tabla 4.5. Valores legislados para PM10 en aire ambiente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor legislado – FASE I</td>
</tr>
<tr>
<td>Valor límite diario (VLD) de PM10 para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2005)</td>
</tr>
<tr>
<td>Valor límite anual (VLA) de PM10 para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2005)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 4.6. Valores legislados para PM2,5 en aire ambiente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor objetivo</td>
</tr>
<tr>
<td>Valor objetivo anual para la protección de la salud (fecha de cumplimiento: 1 de enero del 2010)</td>
</tr>
</tbody>
</table>

Valor límite	**Valor límite + Margen de Tolerancia (2013 y 2014)**	**Período**	
VL	MdT	Año natural	
Valor límite anual para la **protección de la salud** (fecha de cumplimiento: 1 de enero de 2015).- Fase I	25 µg/m³	1 µg/m³	Año natural
Valor límite anual para la **protección de la salud** (fecha de cumplimiento: 1 de enero de 2020).- Fase II	20 µg/m³	--	Año natural

Por otra parte, la legislación vigente también establece que las autoridades competentes tomarán todas las medidas necesarias (que no conlleven gastos desproporcionados) para reducir la exposición a partículas PM2,5, con el fin de cumplir el objetivo nacional de reducción de la exposición fijado en la Tabla 4.7, a más tardar en el año 2020.

<table>
<thead>
<tr>
<th>Tabla 4.7. Objetivo nacional de reducción de la exposición.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivo de reducción de la exposición</td>
</tr>
<tr>
<td>Concentración inicial en µg/m³</td>
</tr>
<tr>
<td><8,5 a 8,5</td>
</tr>
<tr>
<td>>8,5 a <13</td>
</tr>
<tr>
<td>= 13 a <18</td>
</tr>
<tr>
<td>= 18 a <22</td>
</tr>
<tr>
<td>≥ 22</td>
</tr>
</tbody>
</table>

2 Valor límite indicativo que deberá ratificarse como valor límite en 2013 a la luz de una mayor información acerca de los efectos sobre la salud y el medio ambiente, la viabilidad económica y la experiencia obtenida con el valor objetivo en los Estados Miembros de la Unión Europea.

3 En relación con el Indicador Medio de Exposición (IME) en 2011. El IME deberá ser igual o menor a 20 µg/m³ a más tardar en 2015.

4 Cuando el Indicador Medio de Exposición (IME), expresado en µg/m³, en el año de referencia sea igual o inferior a 8,5 µg/m³, el objetivo de reducción de la exposición será cero. El objetivo de reducción también será cero en los casos en que el IME alcance el nivel de 8,5 µg/m³ en cualquier momento durante el periodo comprendido entre 2011 y 2020 y se mantenga en dicho nivel o por debajo de él.
4.3.4 Resultados de la evaluación de las partículas PM10 (2012)

4.3.4.1. Evaluación de las partículas PM10 por zonas

A continuación se recoge la evolución de las diferentes zonas definidas para este contaminante en 2012, conforme a los límites legales establecidos (valor límite diario y valor límite anual).

En primer lugar, la Figura 4.38 muestra de forma gráfica el resultado de la evaluación 2012, conforme al valor límite diario (VLD).

La Tabla 4.8 muestra las zonas donde se han producido superaciones del VLD de PM10 en 2012.

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Valor límite diario (VLD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nueva Zonas Rurales (ES0123)</td>
<td>Vallès-Baix Llobregat (ES0902)</td>
</tr>
<tr>
<td>Asturias Central (ES0302)</td>
<td>Comarques de Girona (ES0908)</td>
</tr>
<tr>
<td>Gijón (ES0304)</td>
<td>Terres de L’Ebre (ES0915)</td>
</tr>
<tr>
<td>Área de Barcelona (ES0901)</td>
<td>Bajo Nervión (ES1602)</td>
</tr>
<tr>
<td>Plana de Vic (ES0906)</td>
<td></td>
</tr>
</tbody>
</table>

La zona “Nueva Zonas Rurales (ES0123)” que cubre gran parte de Andalucía incumple el valor límite diario por la superación del mismo en una única estación (Villanueva del Arzobispo), lo que es coherente con el criterio de que el nivel de la peor estación es el que marca la situación de la zona respecto al valor legislado. Esto no quiere decir que en todo el territorio de la zona se...
Análisis de la Calidad del Aire en España: Evolución 2001-2012

superen los valores legislados, sino que en el lugar donde se registran los valores más altos de la zona se supera el valor legisado.

La Tabla 4.9 muestra las zonas en las que se dejó superar dicho VLD tras el descuento de intrusiones en 2012.

<table>
<thead>
<tr>
<th>Zonas en las que se dejó de superar el Valor Límite Diario (VLD) de PM10 tras el descuento de intrusiones (2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zona Industrial de Bailén (ES0108)</td>
</tr>
<tr>
<td>• Córdoba (ES0111)</td>
</tr>
<tr>
<td>• Granada y Área Metropolitana (ES0118)</td>
</tr>
<tr>
<td>• Málaga y Costa del Sol (ES0119)</td>
</tr>
<tr>
<td>• Nueva Zona de Núcleos de 50.000 a 250.000 Habitantes (ES0122)</td>
</tr>
<tr>
<td>• Nueva Zona Sevilla y Área Metropolitana (ES0125)</td>
</tr>
<tr>
<td>• Comarca de Puertollano (ES0705)</td>
</tr>
<tr>
<td>• Fuerteventura y Lanzarote (ES0504)</td>
</tr>
<tr>
<td>• Sur de Gran Canaria (ES0510)</td>
</tr>
<tr>
<td>• Sur de Tenerife (ES0513)</td>
</tr>
<tr>
<td>• Mijares-Peñagolosa. Área Costera (ES1003)</td>
</tr>
</tbody>
</table>

La Figura 4.39 y la Tabla 4.10 resumen los resultados de la evaluación 2012 en lo que respecta al valor límite anual (VLA).

En 2012 se ha superado el VLA de PM10 en una única zona de Asturias (Tabla 4.10).

<table>
<thead>
<tr>
<th>Zonas > Valor límite anual (VLA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Asturias Central (ES0302)</td>
</tr>
</tbody>
</table>

4.3.4.2. Estaciones utilizadas para la evaluación de las partículas PM10

Si se considera el grado de cumplimiento de la legislación vigente para las partículas PM10 de las estaciones utilizadas para la evaluación de este contaminante en el año 2012, el resultado es el que recogen las Figuras 4.40 y 4.41, en las que las estaciones se muestran en color rojo (cuando las estaciones superan el valor límite), naranja (entre el valor límite y el umbral de evaluación superior), amarillo (entre los umbrales de evaluación) o verde (por debajo del umbral de evaluación inferior).

Hay que tener en cuenta que los valores representados son los medidos en las estaciones sin descontar aquellos aportes de fuentes naturales (episodios de polvo africano).

4.3.4.3. Concentración mensual de los niveles de partículas en el 2012

Los estadísticos de evaluación de calidad del aire en función de los niveles de las partículas PM10 y PM2,5 que aparecen en la legislación están referenciados al año civil; para conocer cómo se distribuyen mensualmente los niveles de este contaminante a lo largo del año se han elaborado las Figuras 4.42 a 4.47, con los valores mensuales de todas las estaciones que han participado en la evaluación, así como un gráfico de la distribución de los niveles en el año para las estaciones agrupadas por tipo de área.

En la evolución de los niveles de partículas se observa una correlación entre los valores de PM10 y PM2,5. Es difícil establecer patrones de evolución típicos durante el año puesto que las estaciones están influidas por múltiples fuentes de emisión, que pueden ser de origen antrópico (tráfico, industria, construcción-demolición...) o de origen natural (episodios de polvo del Sáhara) y, además, hay que tener en cuenta el efecto de la meteorología (las precipitaciones provocan el lavado de la atmósfera y el régimen de vientos a su vez influye en el aporte natural). Sin embargo, es posible evidenciar una tendencia a incrementar los niveles en los meses de final de primavera a verano, con un máximo relativo también evidente en marzo. Esta tendencia es típica de las aportaciones de fondo regional en España.

La nueva precipitación estival, la mayor frecuencia de episodios africanos, la alta frecuencia de ocurrencia de episodios de estancamiento atmosférico y la mayor velocidad de formación de partículas secundarias por mayor radiación solar, son las causas del incremento estival de los niveles de partículas. Por otro lado, la elevada frecuencia de ocurrencia de episodios africanos y
Análisis de la Calidad del Aire en España: Evolución 2001-2012

de algunos episodios de contaminación regional podrían ser la cusa del aumento relativo del mes de marzo.

Figura 4.42. Evolución de las medias mensuales de PM10 en el 2012.
Figura 4.43. Evolución de las medias mensuales de PM2,5 en el 2012.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Figura 4.44. Evolución de las medias mensuales de PM10 en 2012 por tipo área.

Figura 4.45. Evolución de las medias mensuales de PM2,5 en 2012 por tipo área.
Figura 4.46. Distribución mensual del número de días africanos según las diferentes regiones consideradas en 2012.

Fuente: Episodios Naturales de Partículas 2012

Las regiones utilizadas en esta Figura 4.46 son las que se reflejan gráficamente en la Figura 4.47 (sólo se han utilizado las correspondientes a territorio español).

Figura 4.47. Regiones consideradas en relación con los episodios naturales de partículas 2012.

Se corresponden con las zonas definidas en el informe “Episodios Naturales de Partículas 2012”, que se elabora como resultado del Convenio de colaboración para el estudio y evaluación de la contaminación atmosférica por material particulado en España entre el Ministerio de Agricultura,
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Alimentación y Medio Ambiente, el Consejo Superior de Investigaciones Científicas y la Agencia Estatal de Meteorología, y que son las siguientes:

- Canarias.
- Madeira (Portugal).
- SW: Suroeste (Andalucía occidental y sur de Extremadura, además de Algarve, en Portugal).
- SE: Sureste (Andalucía oriental y Murcia).
- Levante: Comunidad valenciana hasta Delta Ebro (en la Figura 4.47 denominada “Zona Este”).
- W: Oeste (Zona Central de Portugal).
- Centro: Resto Extremadura, Castilla la Mancha, Comunidad de Madrid, Castilla León
- NW: Noroeste (Galicia, Asturias, Noroeste Castilla y León, y Norte de Portugal).
- N: Norte (Cantabria, País Vasco y La Rioja).
- NE: Noreste (Navarra, Aragón y Cataluña).
- Baleares.

4.3.4.4. Análisis de las partículas PM10 por tipo de área y tipo de estación en 2012

En las Figuras 4.48 y 4.49 se representa la distribución estadística de las medias anuales de PM10 en 2012, y su comparación con el valor límite anual, así como la distribución del percentil 90,4, respecto al valor límite diario.

El número de estaciones que supera el valor límite diario es mayor que el número de estaciones que superan el valor límite anual. En general las estaciones de tráfico y las industriales presentan niveles más altos que las estaciones de fondo, aunque existen superaciones de los valores legislados de las tres tipologías (todos los valores que se han representado gráficamente tienen en cuentan los valores de partículas medidos antes de descuento de partículas de origen natural).
Figura 4.48. Distribución de los niveles de PM10 en relación a los valores legisados (VLD) por tipo de área y tipo de estación (2012).
Figura 4.49. Distribución de los niveles de PM10 en relación a los valores legisliados (VLA) por tipo de área y tipo de estación (2012).
4.3.5 Resultados de la evaluación de las partículas PM2,5 (2012)

4.3.5.1. Evaluación de las partículas PM2,5 por zonas

La Figura 4.50 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para este contaminante en el año 2012, conforme al límite legal establecido (valor límite anual para 2015, que coincide en valor absoluto con el valor objetivo en vigor desde 2010).

![Figura 4.50. Situación de España para las PM2,5 respecto al valor límite anual (2012).](image)

Esto es, en 2012, en ninguna de las zonas definidas para evaluar partículas PM2,5 se superó el valor objetivo ni, por tanto, el valor límite anual más el margen de tolerancia establecido para el año 2015. De hecho, el valor objetivo para este contaminante no se ha superado nunca en ninguna de las zonas definidas para su evaluación desde que ésta comenzó.

4.3.5.2. Estaciones utilizadas para la evaluación de partículas PM2,5

Si se considera el grado de cumplimiento de la legislación vigente para las partículas PM2,5 de las estaciones utilizadas para la evaluación de este contaminante en el año 2012, el resultado es el que recoge la Figura 4.51, donde las estaciones se muestran en color rojo (cuando las estaciones superan el valor límite anual), naranja (entre el valor límite y el umbral de evaluación superior), amarillo (entre los umbrales de evaluación) o verde (por debajo del umbral de evaluación inferior).

4.3.5.3. Análisis de las partículas PM2,5 por tipo de área y tipo de estación en 2012

La Figura 4.52 representa la distribución de las medias anuales de las estaciones que evalúan PM2,5 respecto al valor objetivo para el año de referencia.

Ninguna media anual de PM2,5 sobrepasa el valor objetivo anual (se sitúa a la derecha de la línea roja que representa el VO), lo que a su vez indica que tampoco se supera el valor límite de PM.5 (ya que es mayor que el VO).

Las estaciones urbanas de tráfico suelen presentar niveles de PM2,5 más altos, aunque en general la distribución de los niveles es similar para todas las tipologías, tanto de áreas como de estaciones.
Figura 4.52. Distribución de los niveles de PM2,5 en relación a los valores legislados (VOA) por tipo de área y tipo de estación (2012).

4.3.5.4. Indicador Medio de Exposición (IME)

El IME es un indicador de la exposición de la población a partículas PM2,5 y se evalúa como concentración media móvil trienal, ponderada con la población en todos los puntos de muestreo establecidos a tal fin. Así, el IME para el año de referencia 2012 será la concentración media de los años 2010, 2011 y 2012 (es decir, de los indicadores anuales de 2010, 2011 y 2012).
El IME trienal 2009-2011 se calcula a partir de las medidas obtenidas en las estaciones de vigilancia de la calidad del aire que se muestran en la Figura 4.53 y Tablas 4.11 y 4.12. Este indicador sirve de referencia para determinar el objetivo nacional de reducción para el año 2020 y fue de 14,1 µg/m³ (lo que supone un objetivo nacional de reducción para el 2020 del 15%; rango 18 > IME ≥ 13). En el 2012 el IME trienal 2010-2012 ha sido de 13,6 µg/m³.

Tabla 4.11. IME trienal 2011 y 2012.

<table>
<thead>
<tr>
<th>Indicador anual de exposición</th>
<th>Nivel</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador anual de exposición 2009</td>
<td>15,1 µg/m³</td>
<td>Año natural 2009</td>
</tr>
<tr>
<td>Indicador anual de exposición 2010</td>
<td>13,4 µg/m³</td>
<td>Año natural 2010</td>
</tr>
<tr>
<td>Indicador anual de exposición 2011</td>
<td>13,8 µg/m³</td>
<td>Año natural 2011</td>
</tr>
<tr>
<td>Indicador anual de exposición 2012</td>
<td>13,7 µg/m³</td>
<td>Año natural 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicador medio de la exposición (IME)</th>
<th>Nivel</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador medio de exposición 2011</td>
<td>14,1 µg/m³</td>
<td>2009-2010-2011</td>
</tr>
<tr>
<td>Indicador medio de exposición 2012</td>
<td>13,6 µg/m³</td>
<td>2010-2011-2012</td>
</tr>
</tbody>
</table>

Figura 4.53. Indicador medio de exposición 2012.

<table>
<thead>
<tr>
<th>Estaciones participantes en el cálculo</th>
<th>Medias anuales PM2,5 (μg/m³)</th>
<th>Población representada</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDALUCÍA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1425A</td>
<td>ES1425A</td>
<td>41091016</td>
</tr>
<tr>
<td>ES1750A</td>
<td>ES1750A</td>
<td>29067006</td>
</tr>
<tr>
<td>ES1799A</td>
<td>ES1799A</td>
<td>14021007</td>
</tr>
<tr>
<td>ES1924A</td>
<td>ES1924A</td>
<td>18087010</td>
</tr>
<tr>
<td>ARAGÓN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1641A</td>
<td>ES1641A</td>
<td>50297036</td>
</tr>
<tr>
<td>ASTURIAS (PRINCIPADO DE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1572A</td>
<td>ES1572A</td>
<td>33044032</td>
</tr>
<tr>
<td>BALEARES (ISLAS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1994A</td>
<td>ES1994A</td>
<td>7040005</td>
</tr>
<tr>
<td>CANARIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1934A</td>
<td>ES1934A</td>
<td>38038017</td>
</tr>
<tr>
<td>CANTABRIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES2003A</td>
<td>ES2003A</td>
<td>38038024</td>
</tr>
<tr>
<td>CASTILLA Y LEÓN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1529A</td>
<td>ES1529A</td>
<td>39075005</td>
</tr>
<tr>
<td>ES1443A</td>
<td>ES1443A</td>
<td>9059006</td>
</tr>
<tr>
<td>CASTILLA-LA MANCHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1535A</td>
<td>ES1535A</td>
<td>2003001</td>
</tr>
<tr>
<td>CATALUÑA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1506A</td>
<td>ES1506A</td>
<td>43148026</td>
</tr>
<tr>
<td>ES1684A</td>
<td>ES1684A</td>
<td>8184006</td>
</tr>
<tr>
<td>ES1841A</td>
<td>ES1841A</td>
<td>8121014</td>
</tr>
<tr>
<td>ES1852A</td>
<td>ES1852A</td>
<td>8019053</td>
</tr>
<tr>
<td>ES1856A</td>
<td>ES1856A</td>
<td>8019054</td>
</tr>
<tr>
<td>COMUNIDAD VALENCIANA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1619A</td>
<td>ES1619A</td>
<td>46250043</td>
</tr>
<tr>
<td>ES1916A</td>
<td>ES1916A</td>
<td>12040016</td>
</tr>
<tr>
<td>EXTREMADURA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1601A</td>
<td>ES1601A</td>
<td>6015001</td>
</tr>
<tr>
<td>GALICIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES1957A</td>
<td>ES1957A</td>
<td>15030027</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCAA</th>
<th>Código Europeo</th>
<th>Código Nacional</th>
<th>Nombre</th>
<th>Medias anuales PM2.5 (μg/m³)</th>
<th>Población representada</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADRID</td>
<td>ES0126A</td>
<td>28079018</td>
<td>Farolillo</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>ES1752A</td>
<td>28148004</td>
<td>Torrejón de Ardoz II</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ES1890A</td>
<td>28007004</td>
<td>Alcorcón 2</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>ES1893A</td>
<td>28079044</td>
<td>Centro Cultural Alfredo Krauss</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>ES1894A</td>
<td>28079045</td>
<td>Junta Municipal de Moratalaz</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>MURCIA (REGIÓN DE)</td>
<td>ES1921A</td>
<td>30016020</td>
<td>Mompean</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>NAVARRA (COMUNIDAD FORAL)</td>
<td>ES1472A</td>
<td>31201012</td>
<td>Iturrama</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>PAÍS VASCO</td>
<td>ES1697A</td>
<td>20069005</td>
<td>Avenida Tolosa</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>ES1713A</td>
<td>48020003</td>
<td>Parque Europa</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>RIOJA (LA)</td>
<td>ES1602A</td>
<td>26089001</td>
<td>La Cigüeña</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Media anual IME ponderada por la población</td>
<td></td>
<td></td>
<td></td>
<td>13,4</td>
<td>13,8</td>
</tr>
</tbody>
</table>
4.3.6 **Evolución 2001-2012 de las partículas PM10**

En este apartado se muestra la evolución de las partículas PM10 a lo largo del periodo 2001-2012 desde varios puntos de vista: evolución de las zonas donde se evalúa; evolución de las estaciones de evaluación (estadísticos); y evolución de las medias anuales (para el total de estaciones y para las estaciones agrupadas por tipo de área).

4.3.6.1. Evolución 2001-2012 de los valores legislados en las zonas de PM10

A continuación se presenta la evolución de las zonas de evaluación de las partículas PM10 y su situación respecto a los valores legislados a lo largo del periodo 2001-2012.

La figura 4.54 muestra una serie de zonas en color naranja, ya que hasta el año 2005 hubo un margen de tolerancia para ambos valores legislados. En 2006 se llega al máximo de zonas que superaron los valores legislados, de ahí en adelante se produjo un descenso del número de zonas con incumplimientos. En la actualidad la Comisión ha enviado una carta de emplazamiento al Reino de España, por los incumplimientos continuados en el tiempo de diez zonas.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

4.3.6.2. Evolución 2007-2012 de los valores legislados de PM10 en estaciones

Para una mayor claridad se muestra, en las Figuras 4.55 y 4.56, la evolución de los estadísticos de los valores legisladados (anual y diario) de PM10 de los últimos 6 años (2007-2012), teniendo en cuenta que a partir de 2005 se deja de aplicar el margen de tolerancia de los dos valores límite.

Figura 4.54. Evolución del número de superaciones del VLD y del VLA de PM10 (2001-2012).
Figura 4.55. Evolución de los valores registrados de PM10 respecto al VLD (36 máximo diario, dado que el VLD no debe superarse en más de 35 ocasiones por año civil) a lo largo del periodo 2007-2012.

Capítulo 4. Análisis de contaminantes principales
La representación en un mapa de la evolución de los valores legisladados (Figuras 4.55 y 4.56) muestra que se han producido niveles altos de partículas en gran diversidad de lugares, desde ciudades con mucho tráfico a lugares donde se están realizando labores de construcción o demolición, zonas industriales, puertos y aeropuertos. Esto se corresponde con la gran diversidad de fuentes emisoras de partículas, de hecho, lo normal es que una estación se vea afectada por diferentes focos de emisión al mismo tiempo.

Entre los lugares que han registrado altos niveles de partículas PM10 de forma continuada en los últimos años se encuentran Asturias Central (zona Industrial de Avilés), Gijón, las zonas industriales de Huelva y Jaén, el Vallés-Baix Llobregat y las zonas rurales de Andalucía, así como algunas grandes ciudades y sus áreas metropolitanas (Barcelona, Granada, Sevilla). También con niveles altos, pero más puntuales, destacan Bilbao, la Comunidad de Madrid, Mijares-Peñagolosa (áreas costeras), Murcia, Puertollano, Torrelavega o Zaragoza, por citar algunas.

4.3.6.3. Evolución 2011-2012 de los niveles de PM10

La distribución de las medias anuales de las estaciones participantes en la evaluación de las partículas PM10 a lo largo del periodo 2001-2012 ha sido la mostrada en la Figura 4.57, en la que las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales. A su vez, la Figura 4.58 representa las medias anuales de las estaciones agrupadas por tipo de estación y de área.

En las Figuras 4.57 y 4.58 se observa una tendencia hacia la disminución de los niveles medios a lo largo del tiempo, principalmente desde el año 2007. El descenso se hace especialmente patente en las estaciones urbanas de tráfico y en las industriales.
Figura 4.58. Evolución de las medias anuales de PM10 (2001-2012) por tipo de estación y área.

A modo de ejemplo se muestra la distribución de los niveles horarios y mensuales de PM10 en dos estaciones con diferente foco de emisión principal (Figura 4.59):

- Estación 1: Las emisiones proceden de una zona industrial que incluye grandes instalaciones de combustión y refinería. En general los niveles más altos de partículas se dan en las horas centrales del día, coincidiendo con la actividad industrial.

- Estación 2: Las emisiones proceden del tráfico por lo que se observan dos máximos a lo largo del día, por la mañana y por la tarde, coincidiendo con los desplazamientos de ida y vuelta al trabajo.

No obstante, para el contaminante PM10, al estar las estaciones afectadas por múltiples focos de emisión, que pueden ser incluso de origen natural, es más difícil distinguir la tipología de la misma (foco de emisión principal que afecta a la estación), de ahí que en la Figura 4.59 no sean tan fácilmente diferenciables como en el caso de otros contaminantes.
Capítulo 4. Análisis de contaminantes principales

Figura 4.59. Evolución de las concentraciones de PM10 en una estación de industrial (2006-2012).

4.3.7 **Evolución 2008-2012 de las partículas PM2,5**

La Directiva 2008/50/CE introduce valores objetivo (25μg/m³) y valores límite (igual que el valor objetivo, pero a cumplir en el año 2015) para el PM2,5. Por este motivo, la primera evaluación de este contaminante se realizó en el año 2008.

El análisis del desarrollo histórico de este contaminante se efectuará a través del estudio de las zonas en las que se evalúa, de la consideración de las estaciones utilizadas para ello y de la observación de la evolución de las medias anuales correspondientes al periodo mencionado.

4.3.7.1. Evolución 2008-2012 de los valores legisladados en las zonas de PM2,5

Hasta la fecha nunca se ha superado el valor objetivo, y por tanto tampoco se ha superado el valor límite que entrará en vigor en el año 2015, en ninguna zona, por lo que no se han elaborado gráficos de superaciones para este contaminante.

4.3.7.2. Evolución 2008-2012 de los valores legisladados de PM2,5 en estaciones

Al analizar como se distribuyen los niveles por estaciones en un mapa (Figura 4.60), se observan en general valores más altos en Barcelona, en la zona sur de la Península (Bailén, Granada...) y en la costa levantina (sobre todo en las principales ciudades: Alicante, Castellón, Valencia).
Figura 4.60. Evolución de la media anual de PM2,5 a lo largo del periodo 2008-2012.
4.3.7.3. Evolución 2008-2012 de los niveles de PM2,5

La distribución de las medias anuales de las estaciones participantes en la evaluación de las partículas PM2,5 a lo largo del periodo 2008-2012 ha sido la mostrada en la Figura 4.61, en la que las cajas viene definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales.

En ella se aprecia que los niveles de PM2,5 han permanecido relativamente constantes a lo largo de los años considerados. Al observar cómo se distribuyen los niveles por tipo de área (Figura 4.62), se pone de manifiesto que los valores más altos se dan en estaciones de tráfico y posteriormente en estaciones industriales.

Figura 4.61. Diagrama de caja y bigotes de la media anual de PM2,5 2008-2012.

4.4 Ozono (O₃)

4.4.1 Efectos del O₃
El gas ozono (O₃) tiene un efecto positivo en la estratosfera (a unos 10-50 km de la superficie terrestre), ya que protege de la radiación ultravioleta. Sin embargo, a cotas inferiores, en la troposfera (la capa de la atmósfera en contacto con la tierra), se convierte en un contaminante que actúa como un potente y agresivo agente oxidante.

La exposición a elevados niveles del mismo origina problemas respiratorios sobre la salud humana (irritación, inflamación, insuficiencias respiratorias, asma) y puede contribuir a incrementar la mortalidad prematura; también puede dañar la vegetación, afectar al crecimiento de cultivos y bosques, reducir la absorción de CO₂ por las plantas, alterar la estructura de los ecosistemas y reducir la biodiversidad. Además, es un gas de efecto invernadero, que contribuye al calentamiento de la atmósfera. Así pues, por su claro impacto en la salud y los ecosistemas, los niveles de O₃ en aire ambiente están también regulados en la normativa ambiental.

4.4.2 Origen de la contaminación

En España, como en todo el sur de Europa, el O₃ constituye un problema generalizado, a causa de sus especiales condiciones de elevada insolación; de modo que se reparte por toda la península, con niveles comparativamente inferiores en la zona norte.

En la troposfera, el O₃ se forma de manera secundaria a partir de reacciones químicas complejas desde la proximidad de las fuentes de emisión de sus gases precursores hasta las zonas receptoras de la contaminación, reacciones en las que participan otros gases contaminantes que actúan como precursores, principalmente óxidos de nitrógeno (NO₂ secundario, junto al emitido como primario) y compuestos orgánicos volátiles (COVs, tanto antrópicos como biogénicos procedentes de la vegetación).

La velocidad y el grado de formación de O₃ se ven muy incrementados con el aumento de la radiación solar, las emisiones antropogénicas de precursores y el ciclo biológico de emisiones biogénicas de COVs. Por ello sus niveles son más elevados en el sur de Europa y en primavera y verano.

Además, sus niveles son superiores en las periferias de las grandes urbes y en las zonas rurales porque la reacción fotoquímica necesita una cierta distancia para generar O₃ a partir de sus precursores. Una vez formado y en entornos urbanos con altos niveles de NO, el O₃ se consume rápidamente mediante la oxidación de NO a NO₂. Es por ello que en zonas urbanas de tráfico los niveles de O₃ suelen ser muy bajos, mucho más bajos que en entornos poco contaminados, en donde se recibe el O₃ generado durante el transporte de masas de aire desde zonas contaminadas urbanas e industriales, y no existe NO local que lo pueda consumir.

La Figura 4.63 muestra los patrones temporales de distribución del O₃ en una estación fuertemente influida por la insolación. Lógicamente, los valores más altos se observan en las horas centrales del día y durante los meses de verano, con máximos en julio, y los mínimos de madrugada (tras el periodo de la noche), y en invierno (diciembre y enero).

Semanalmente, los niveles de O₃ más elevados se registran los fines de semana y, sobre todo, el domingo, en coherencia con la disminución de los niveles de precursores que se registra en tales días (sobre todo NOₓ).
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Figura 4.63. Evolución horaria, diaria, semanal y mensual de O₃ en una estación fuertemente influenciada por la insolación.

4.4.3 Valores legislados para el O₃

Los objetivos de calidad del aire fijados por la legislación vigente para el contaminante O₃ son los recogidos en la Tabla 4.13.
Tabla 4.13. Valores legislados (O₃).

<table>
<thead>
<tr>
<th>Valores objetivo</th>
<th>Nivel</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor objetivo para la protección de la salud humana (fecha de cumplimiento: año 2010⁵)</td>
<td>120 µg/m³</td>
<td>Máxima diaria de las medias móviles octohorarias. No debe superarse en más de 25 ocasiones de promedio en un periodo tres años</td>
</tr>
<tr>
<td>Valor objetivo para la protección de la vegetación (fecha de cumplimiento: año 2010⁷)</td>
<td>AOT40⁷ = 18.000 µg/m³-h</td>
<td>Valor acumulado de mayo a julio de promedio en un periodo de 5 años</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objetivos a largo plazo</th>
<th>Nivel</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivo a largo plazo para la protección de la salud humana</td>
<td>120 µg/m³</td>
<td>Máxima diaria de las medias móviles octohorarias dentro de un año civil</td>
</tr>
<tr>
<td>Objetivo a largo plazo para la protección de la vegetación</td>
<td>AOT40⁸ = 6.000 µg/m³-h</td>
<td>Valor acumulado de mayo a julio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipos de umbrales</th>
<th>Parámetro</th>
<th>Valor del umbral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbral de información</td>
<td>Promedio horario</td>
<td>180 µg/m³³</td>
</tr>
<tr>
<td>Umbral de alerta</td>
<td>Promedio horario⁹</td>
<td>240 µg/m³³</td>
</tr>
</tbody>
</table>

4.4.4 Resultados de la evaluación del O₃ (2012)

4.4.4.1. Evaluación del O₃ por zonas

La Figura 4.64 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para este contaminante en el año 2012, conforme al límite legal establecido para la protección de la salud (valor objetivo).

⁵ El cumplimiento de los valores objetivo se evalúa a partir de esta fecha. Es decir, 2011 es el primer año cuyos datos se utilizarán para calcular los valores de ozono durante los tres o cinco años siguientes, según corresponda.

³ La concentración máxima diaria de las medias móviles octohorarias se determina examinando las medias octohorarias móviles, calculadas a partir de datos horarios y actualizados cada hora. Cada media octohoraria así calculada se asigna al día en que termina el período, es decir, el primer periodo de cálculo para un día cualquiera será el comprendido entre las 17:00 h. del día anterior y la 1:00 h. de dicho día; el último periodo de cálculo para un día cualquiera será el comprendido entre las 16:00 h. y las 24:00 h. de dicho día.

⁷ AOT40 [expresado en [µg/m³-h]] es la suma de las diferencias entre las concentraciones horarias superiores a los 80 µg/m³ (~40 partes por mil millones) y 80 µg/m³ a lo largo de un periodo dado utilizando únicamente los valores horarios medidos entre las 8:00 h. y las 20:00 h., Hora de Europa Central (HEC), cada día.

⁹ A efectos de la aplicación del artículo 25 del RD 102/2011 en relación con la elaboración de Planes de Acción a corto plazo, la superación del umbral se debe medir o prever durante tres horas consecutivas.
En lo referente a la protección de la salud, de las 135 zonas en donde se evaluó el O₃ en 2012, en 51 de ellas se registraron valores por encima del valor objetivo, en 80, valores entre el valor objetivo y el objetivo a largo plazo, y en las otras 4 zonas restantes, valores por debajo del objetivo a largo plazo (Tabla 4.14).

<table>
<thead>
<tr>
<th>51 Zonas con valores por encima del Valor Objetivo (Salud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Córdoba (ES0111)</td>
</tr>
<tr>
<td>• Zona Industrial de Carboneras (ES0116)</td>
</tr>
<tr>
<td>• Granada y Área Metropolitana (ES0118)</td>
</tr>
<tr>
<td>• Nueva Zona Industrial de Huelva (ES0121)</td>
</tr>
<tr>
<td>• Nueva Zona de Núcleos de 50.000 a 250.000 Habitantes (ES0122)</td>
</tr>
<tr>
<td>• Nueva Zonas Rurales (ES0123) (Andalucía)</td>
</tr>
<tr>
<td>• Nueva Zona Sevilla y Área Metropolitana (ES0125)</td>
</tr>
<tr>
<td>• Nueva Zona Industrial de Puente Nuevo (ES0127)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>51 Zonas con valores por encima del Valor Objetivo (Salud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Valle del Ebro (ES0202)</td>
</tr>
<tr>
<td>• Núcleos de Población de más de 20.000 Habitantes (ES1103)</td>
</tr>
<tr>
<td>• Extremadura Rural (ES1104)</td>
</tr>
<tr>
<td>• Bajo Aragón (ES0203)</td>
</tr>
<tr>
<td>• Sierra de Tramuntana (ES0402)</td>
</tr>
<tr>
<td>• Resto Eivissa-Formentera (ES0412)</td>
</tr>
<tr>
<td>• Comarca de Puertollano (ES0705)</td>
</tr>
<tr>
<td>• Resto de Castilla-La Mancha 2 (ES0711)</td>
</tr>
<tr>
<td>• Corredor del Henares (ES0714)</td>
</tr>
<tr>
<td>• Duero Norte de Castilla y León (ES0823)</td>
</tr>
<tr>
<td>• Duero Sur de Castilla y León (ES0824)</td>
</tr>
<tr>
<td>• Valle del Tiétar y Alberche (ES0827)</td>
</tr>
<tr>
<td>• Área de Barcelona (ES0901)</td>
</tr>
<tr>
<td>• Vallès-Baix Llobregat (ES0902)</td>
</tr>
<tr>
<td>• Plana de Vic (ES0906)</td>
</tr>
<tr>
<td>• Comarques de Girona (ES0908)</td>
</tr>
<tr>
<td>• Empordà (ES0909)</td>
</tr>
<tr>
<td>• Pirineu Oriental (ES0911)</td>
</tr>
<tr>
<td>• Prepirineu (ES0913)</td>
</tr>
<tr>
<td>• Terres de L’Ebre (ES0915)</td>
</tr>
<tr>
<td>• Núcleos de Población de más de 20.000 Habitantes (ES1103)</td>
</tr>
<tr>
<td>• Extremadura Rural (ES1104)</td>
</tr>
<tr>
<td>• G (Franja Fisterra-Santiago) (ES1214)</td>
</tr>
<tr>
<td>• Madrid (ES1301)</td>
</tr>
<tr>
<td>• Corredor del Henares (ES1308)</td>
</tr>
<tr>
<td>• Urbana Sur (ES1309)</td>
</tr>
<tr>
<td>• Urbana Noroeste (ES1310)</td>
</tr>
<tr>
<td>• Sierra Norte (ES1311)</td>
</tr>
<tr>
<td>• Cuenca del Alberche (ES1312)</td>
</tr>
<tr>
<td>• Cuenca del Tajüña (ES1313)</td>
</tr>
<tr>
<td>• Comunidad de Murcia Norte (ES1401)</td>
</tr>
<tr>
<td>• Comunidad de Murcia Centro (ES1402)</td>
</tr>
<tr>
<td>• Ciudad de Murcia (ES1407)</td>
</tr>
<tr>
<td>• Litoral-Mar Menor (ES1408)</td>
</tr>
<tr>
<td>• Ribera de la Comunidad de Navarra (ES1503)</td>
</tr>
<tr>
<td>• País Vasco Ribera (ES1608)</td>
</tr>
<tr>
<td>• La Rioja (ES1705)</td>
</tr>
</tbody>
</table>

4.4.4.2. Estaciones utilizadas para la evaluación del O₃

Si se considera el grado de cumplimiento de la legislación vigente para el O₃ de las estaciones utilizadas para la evaluación de este contaminante en el año 2012, el resultado es el que recoge la Figura 4.65, donde las estaciones se muestran en color rojo (cuando las estaciones superan el valor objetivo en más de 25 ocasiones de promedio en tres años), naranja (si el número de dichas superaciones se encuentra entre 1 y 25) o verde (sin superaciones del valor objetivo).
4.4.4.3. Concentración mensual de los niveles de O₃ en 2012

Para conocer cómo se distribuyen los niveles de O₃ a lo largo del año, a continuación se muestra un mapa de España con los valores mensuales de todas las estaciones que han participado en la evaluación de este contaminante en 2012 (Figura 4.66), así como un gráfico con la variación de los niveles en dicho año para las estaciones agrupadas por tipo de área (Figura 4.67).

Las Figuras 4.66 y 4.67 muestran que el patrón de concentraciones mensuales de O₃ a lo largo del año presenta una geometría convexa, con valores más altos en verano independientemente del tipo de área que se considere.

Los niveles registrados son menores en las zonas urbanas, como consecuencia de la mayor presencia de óxidos de nitrógeno que reaccionan con el O₃ y disminuyen sus niveles.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Capítulo 4. Análisis de contaminantes principales
4.4.4.4. Análisis del O₃ por tipo de área y tipo de estación en 2012

En la Figura 4.68 se representa la distribución del valor máximo a partir de valores máximos diarios de las estaciones que evalúan O₃ respecto al valor objetivo para la protección de la salud, para el año de referencia 2012, con las estaciones agrupadas por tipo de área y por tipo de estación.

Como se observa, la línea roja que marca el valor objetivo para la salud se supera con cierta frecuencia, sobre todo en estaciones rurales y de fondo, mientras que los valores más bajos se registran en estaciones urbanas y de tráfico, en consonancia con lo indicado anteriormente.
Figura 4.68. Distribución de los niveles de O₃ en relación a los valores legislados (VO Salud) por tipo de área y tipo de estación (2012).

4.4.4.5. Umbrales de información y alerta del O₃

Las Figuras 4.69 y 4.70 muestran el número de días de superación del umbral de información de O₃ registradas en España en el período de verano (abril-sept) en los años 2012 y 2013, respectivamente.

Como se observa, el mayor número de días con superación del umbral de información en ambos años se asocia sobre todo a Cataluña y Madrid, aunque se aprecia también un ligero ascenso en 2013 respecto a las cifras del año anterior en Galicia, en el norte de Castilla y León y en Huelva y sus
alrededores. Por el contrario, la situación ha mejorado en Puertollano, Sevilla y su entorno y, en general, en Levante y Murcia.

Figura 4.69. Días de superación umbral de información de O₃ en el periodo abr-sept 2012.

Figura 4.70. Días de superación umbral de información de O₃ en el período abr-sept 2013.
La evolución de las superaciones de los umbrales de información y alerta del O₃ producidas a lo largo del periodo 2008-2013 se recogen gráficamente en la Figura 4.71. En ella se aprecia que, respecto a los años anteriores, en 2013 se ha producido un aumento del número de horas en que se supera el umbral de información, si se exceptúa el año 2010, en el que dicho número fue aún mayor. Esta situación no es equiparable a lo ocurrido con las superaciones del umbral de información en número de días, que se mantienen a los niveles de 2012, y muy similares a los del 2008 y 2009 (de nuevo el año 2010 resulta excepcional a este respecto).

Las superaciones del umbral de alerta (en horas) fueron creciendo a lo largo del período considerado hasta alcanzar un máximo en 2011, para luego disminuir en 2012 y, sobre todo, en 2013.

Figura 4.71. Superación de los umbrales de información y alerta del O₃ en el periodo 2008-2013.

Para concretar más, la Figura 4.72 se centra en las superaciones del período estival, el más sensible para este contaminante. De nuevo se observa cómo los valores de 2013 se aproximan a los registrados en 2010, aunque sin alcanzarlos. El mayor número de superaciones tiene lugar durante el mes de julio, salvo puntuales excepciones (2012 y, sobre todo, 2008).
4.4.5 Evolución 2004-2012 del O₃

A continuación se muestra la evolución del O₃ a lo largo del periodo 2004-2012 desde varios puntos de vista: evolución de las zonas donde se evalúa; evolución de las estaciones de evaluación (estadísticos); y evolución de las medias anuales (para el total de estaciones y para las estaciones agrupadas por tipo de área).

4.4.5.1. Evolución 2004-2012 de los valores legislados en las zonas de O₃

La Figura 4.73 presenta la evolución en el número de superaciones de los valores legislados de O₃ para la salud entre los años 2004 y 2012.

Figura 4.72. Superación del umbral de información del O₃ durante el periodo de verano en el período 2008-2013.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

4.4.5.2. Evolución 2007-2012 de los valores legisladados de O₃ en estaciones

En la Figura 4.74 se representa la evolución de los estadísticos de los valores legisladados de O₃ para la salud de los últimos seis años (2007-2012).

Dicha representación muestra episodios generalizados por toda España, aunque principalmente en las áreas con mayor insolación (zonas sur y mediterránea); tan sólo la franja más septentrional de la Península muestra niveles comparativamente más bajos que el resto.

Capítulo 4. Análisis de contaminantes principales
Figura 4.74. Evolución de los valores registrados de O₃ respecto al VO salud (valor 26 máximo a partir de los valores máximos diarios octohorarios, dado que el VO salud no debe superarse en más de 25 ocasiones de promedio en un periodo de 3 años) a lo largo del periodo 2007-2012.
4.4.5.3. Evolución 2001-2012 de los niveles de O₃

La Figura 4.75 muestra la distribución de las medias anuales de las estaciones participantes en la evaluación del O₃ a lo largo del periodo 2001-2012, en la que las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales.

La Figura 4.76 muestra cómo evolucionan las medias anuales de O₃ (máximos diarios octohorarios) de las estaciones que han participado en la evaluación entre 2001 y 2012, agrupadas por tipos de estación y por tipo de área. En ella se pone de manifiesto que los valores tienden a aumentar en las estaciones urbanas y de tráfico, y a mantenerse en las rurales.
Figura 4.76. Evolución de las medias anuales de O₃ (2001-2012) por tipo de estación y área.

A modo de ejemplo, en la Figura 4.77 se muestra la distribución de los niveles horarios y mensuales de O₃ en dos estaciones situadas en diferente localización geográfica:

- Estación 1: Localizada en el sur de España;
- Estación 2: Localizada en el norte de España.

En el gráfico se representa, en el eje de abscisas, la evolución mensual a lo largo de varios años, mientras que en el eje de ordenadas se observan las medias para las diferentes horas del día (de 00 a 23 horas). Como se observa, ambas muestran máximos en las horas centrales del día, que además son más altos, lógicamente, en la estación más meridional.

Análisis de la Calidad del Aire en España: Evolución 2001-2012

4.5 Monóxido de carbono (CO)

4.5.1 Efectos del CO

El monóxido de carbono (CO) es un gas sin color ni olor emitido como consecuencia de la combustión incompleta de carburantes fósiles y de biocombustibles.

El CO penetra en el organismo a través de los pulmones, y puede provocar una disminución de la capacidad de transporte de oxígeno de la sangre, con el consecuente detrimento de oxigenación de órganos y tejidos, así como disfunciones cardíacas, daños en el sistema nervioso, dolor de cabeza, mareos y fatiga; estos efectos pueden producirse tanto sobre el ser humano como sobre la fauna silvestre.

También posee consecuencias sobre el clima, ya que contribuye a la formación de gases de efecto invernadero: su vida media en la atmósfera es de unos tres meses, lo que permite su lenta oxidación para formar CO₂, proceso durante el cual también se genera O₃.

4.5.2 Origen de la contaminación

En general, cualquier combustible que contenga carbono (gas, petróleo, carbón, madera...) y que sea quemado sin suficiente oxígeno como para formar CO₂ es una fuente potencial de CO.

Como se observa en las Figuras 4.78 y 4.79, las principales fuentes de emisión de CO en el año 2011 han sido los procesos de combustión en sectores no industriales, seguidos por las actividades del sector agropecuario y por los procesos industriales sin combustión.

El transporte por carretera (tráfico) ha contribuido en poco más de un 10%, ya que sus potenciales consecuencias probablemente se han visto minoradas por la utilización de convertidores catalíticos. De hecho, éste ha sido el sector en el que más se han reducido las emisiones desde el año 2001 (el resto se mantiene en niveles más menos constante, con ligeras variaciones interanuales).
Figura 4.78. Contribución de las actividades por categorías a las emisiones de CO (2011).

Figura 4.79. Tendencias temporales de las emisiones principales de CO.
4.5.3 Valores legislados para el CO

Los objetivos de calidad del aire fijados por la legislación vigente para el contaminante CO son los recogidos en la Tabla 4.15.

<table>
<thead>
<tr>
<th>Valor legislado</th>
<th>Valor límite</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor límite para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2005)</td>
<td>10 mg/m³</td>
<td>Máximo diario octohorario anual</td>
</tr>
</tbody>
</table>

4.5.4 Resultados de la evaluación del CO (2012)

4.5.4.1. Evaluación del CO por zonas

La Figura 4.80 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para este contaminante en el año 2012, conforme al límite legal establecido (valor límite). Como se observa en ella, en 2012 no hubo ninguna superación de dicho valor límite, en ninguna de las zonas de evaluación.

Figura 4.80. Situación de España para el CO respecto al valor límite para la protección de la salud (2012).
4.5.4.2. Estaciones utilizadas para la evaluación del CO

Para conocer la distribución espacial de los niveles de CO en 2012, se ha elaborado el mapa mostrado en la Figura 4.81, que muestra los estadísticos de las estaciones que han evaluado este contaminante en el año de referencia clasificados de acuerdo a los valores legisladados, en color rojo (cuando las estaciones superan el valor límite), naranja (entre el valor límite y el umbral de evaluación superior), amarillo (entre los umbrales de evaluación) o verde (por debajo del umbral de evaluación inferior). Como resulta lógico, a la vista de las conclusiones del apartado anterior, en ninguna de las estaciones utilizadas se ha superado el valor límite en 2012.

4.5.4.3. Concentración mensual de los niveles de CO en 2012

Los estadísticos de evaluación de la calidad del aire de CO que aparecen en la legislación están referenciados a la media octohoraria máxima en un día; para conocer cómo se distribuyen las medias mensuales a lo largo de 2012 se ha elaborado un mapa de España (Figura 4.82) con los valores mensuales calculados a partir de los máximos diarios octohorarios de todas las estaciones que han participado en la evaluación en dicho año, así como un gráfico de la variación de los niveles en el año para las estaciones agrupadas por tipo de área (Figura 4.83).

En las Figuras 4.82 y 4.83 se observa que el patrón de distribución del CO a lo largo del año presenta una silueta cóncava, con valores más altos en invierno independientemente del tipo de área que se considere, aunque más marcada en el caso de las estaciones que se sitúan en áreas urbanas y suburbanas, debido a la mayor presencia en las mismas de focos de emisión (tráfico, sistemas de calefacción, industria...).
Figura 4.82. Evolución de las medias mensuales de CO en 2012.
4.5.4.4. Análisis del CO por tipo de área y tipo de estación en 2012

Una vez más, la Figura 4.84 analiza el grado de cumplimiento o incumplimiento de las estaciones utilizadas para la evaluación del CO en 2012 a través de la representación para dicho año de la distribución del valor máximo diario octohorario anual de las estaciones que participan, agrupadas por tipo de área (urbana, suburbana o rural) y tipo de estación (industrial, tráfico o fondo).
Figura 4.84. Distribución de los niveles de CO en relación a los valores legislados (VL) por tipo de área y tipo de estación (2012).

En este gráfico se aprecia que en ninguna estación se han producido superaciones del valor límite (ninguna estación se encuentra a la derecha de la línea roja que lo marca), y que las estaciones con niveles más altos (más hacia la derecha en el eje de abscisas) se corresponden con las urbanas de tráfico.
La mayor parte de las estaciones registran valores por debajo del umbral inferior de evaluación, lo que supone que en dichos puntos se puede evaluar únicamente mediante modelización o mediciones indicativas, y que no es necesario efectuar la evaluación a través de puntos de muestreo fijos.

4.5.5 Evolución 2003-2012 del CO

La evolución del CO entre los años 2003 y 2012 se va a analizar a través de la consideración de tres cuestiones distintas: la evolución de las áreas de evaluación, la evolución de las estaciones y la evolución de las medidas anuales (para el total de las estaciones y para las estaciones agrupadas por tipo de área).

4.5.5.1. Evolución 2003-2012 de los valores legislados en las zonas de CO

En este caso no se ha incluido la representación del número de superaciones del valor límite legislado por zonas de evaluación porque no se ha producido ninguna a lo largo del periodo considerado.

4.5.5.2. Evolución 2007-2012 de los valores legislados de CO en estaciones

La Figura 4.85 muestra la evolución del valor estadístico legislado para CO de los últimos seis años (entre 2007 y 2012).

En ella se observa una situación bastante homogénea en toda España, con valores bajos que apenas puntualmente (Cáceres, Plasencia...) han dado lugar a episodios destacables que, en cualquier caso, se han mantenido por debajo del valor de los 10 mg/m³ que constituye el límite para la protección de la salud.
4.5.5.3. Evolución 2003-2012 de los niveles de CO

La Figura 4.86 muestra la distribución de las medias anuales de las estaciones participantes en la evaluación del CO a lo largo del periodo 2003-2012, en la que las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales.

En la Figura 4.87 se representan las medias anuales de las estaciones, agrupadas una vez más por tipo de estación y tipo de área.

Las dos figuras muestran que no sólo los valores registrados están muy lejos del incumplimiento de lo dispuesto legalmente, sino que además se aprecia una tendencia a la baja en las concentraciones a lo largo de los años desde que se inició la evaluación de este contaminante, independientemente del tipo de estación de que se trate, pero aún de forma más marcada para el caso de las de tráfico urbanas.

Figura 4.86. Diagrama de caja y bigotes de las medias anuales de CO 2003-2012.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

4.6 Benceno (C₆H₆)

4.6.1 Efectos del C₆H₆

El C₆H₆ es un compuesto orgánico potencialmente carcinogénico que, tras ser inhalado y después de exposiciones prolongadas, puede ocasionar graves efectos sobre la salud humana, ya que afecta al sistema nervioso central y a la normal producción de células sanguíneas, puede deteriorar el sistema inmunitario y dañar el material genético celular, lo que a su vez puede originar determinados tipos de cáncer (leucemia) así como malformaciones congénitas.

Sus efectos nocivos se dejan igualmente sentir sobre el medio ambiente, ya que resulta marcadamente tóxico para los organismos acuáticos y, en especial, sobre los invertebrados, en los que puede producir cambios genéticos (problemas reproductivos, malformaciones) y de comportamiento. Afecta también a la vegetación (puede llegar a provocar la muerte de la planta afectada, lo que adquiere además un matiz económico cuando se trata de cultivos), así como al clima, ya que se trata de un gas de efecto invernadero que contribuye al calentamiento de la atmósfera y a la formación de O₃ y de aerosoles orgánicos secundarios.

4.6.2 Origen de la contaminación

Este contaminante procede sobre todo de fuentes de tipo natural. Se libera básicamente como consecuencia de procesos de combustión incompleta y por evaporación de determinados combustibles.

El Inventario Nacional de Emisiones Contaminantes a la atmósfera 2011 no contempla el C₆H₆ de forma individualizada, pero sí el conjunto de los compuestos orgánicos volátiles no metánicos (COVNM). Según se desprende de las Figuras 4.88 y 4.89, más de la mitad de las emisiones de COVNM tiene su origen en procesos que pueden ser tanto naturales (tormentas, fauna libre, vegetación y zonas húmedas...) como producidos por el hombre (incendios, reconversión de pastos). La segunda mayor contribución en el año 2011 se ha debido al uso de disolventes y otros productos.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

seguida por la asociada a actividades agropecuarias. De las tres, tan sólo las emisiones debidas al uso de disolventes han mostrado una ligera disminución a lo largo del período considerado.

Figura 4.88. Contribución de las actividades por categorías a las emisiones de COVNM (2011).

Figura 4.89. Tendencias temporales de las emisiones principales de COVNM.

Capítulo 4. Análisis de contaminantes principales
4.6.3 **Valores legislados para el C₆H₆**

Los objetivos de calidad del aire fijados por la legislación vigente para el contaminante C₆H₆ son los recogidos en la Tabla 4.16.

<table>
<thead>
<tr>
<th>Valor legislado</th>
<th>Valor límite</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor límite anual (VLA) de C₆H₆ para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2010)</td>
<td>5 μg/m³</td>
<td>Año civil</td>
</tr>
</tbody>
</table>

Tabla 4.16. Valores legislados (C₆H₆).

4.6.4 **Resultados de la evaluación del C₆H₆ (2012)**

4.6.4.1. **Evaluación del C₆H₆ por zonas**

La Figura 4.90 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para este contaminante en el año 2012, conforme al límite legal establecido (valor límite anual). Como se observa, en 2012 no hubo ninguna superación de dicho valor límite anual, en ninguna de las zonas establecidas para la evaluación.

Figura 4.90. Situación de España para el C₆H₆ respecto al valor límite anual (2012).

4.6.4.2. **Estaciones utilizadas para la evaluación de C₆H₆**

La Figura 4.91 muestra la ubicación espacial de las diferentes estaciones utilizadas para la evaluación de C₆H₆ en 2012, clasificadas según los valores legislados (valor límite y umbrales superior e inferior de evaluación) con los siguientes colores: rojo, si las estaciones superan el valor límite; naranja,
cuando los valores medidos se encuentran entre el valor límite y el umbral de evaluación superior; amarillo, si estuvieran entre los dos umbrales de evaluación; o verde, por debajo del umbral de evaluación inferior. Como corresponde a lo indicado en el apartado anterior, todas las estaciones aparecen en color verde o amarillo (no ha habido superaciones en 2012).

También se observa en el mapa que en ciertas comunidades autónomas no hay puntos de medición fija, sino que la evaluación de C₆H₆ se realiza mediante modelización.

4.6.4.3. Concentración mensual de los niveles de C₆H₆ en 2012

El análisis de la situación del C₆H₆ en 2012 puede ampliarse con la consideración de cuál ha sido la variación mensual de los niveles de este contaminante en las estaciones que han participado en la evaluación (Figura 4.92).

En la Figura 4.93, en la que además las estaciones aparecen agrupadas por tipo de área, se observa un perfil cóncavo, con máximos invernales (diciembre-enero) que resultan más altos en las estaciones de naturaleza urbana, posiblemente asociados al tráfico y a los sistemas de calefacción, que constituyen las principales fuentes de emisión.
4.6.4.4. Análisis del C₆H₆ por tipo de área y tipo de estación en 2012

En la Figura 4.94 se representa la distribución de las medias anuales de las estaciones utilizadas en 2012 para evaluar C₆H₆, agrupadas por tipo de área y por tipo de estación. Se observa de nuevo que no ha habido superaciones del valor límite (ninguna estación se localiza a la derecha de la barra roja que lo señaliza).
Figura 4.94. Distribución de los niveles de C₆H₆ en relación a los valores legislados (VLA) por tipo de área y tipo de estación (2012).

4.6.5 Evolución 2003-2012 del C₆H₆

La evolución del C₆H₆ entre los años 2003 y 2012 se va a analizar a través de la consideración de tres cuestiones distintas: la evolución de las áreas de evaluación, la evolución de las estaciones y la evolución de las medidas anuales (para el total de las estaciones y para las estaciones agrupadas por tipo de área).
4.5.6.1. Evolución 2003-2012 de los valores legislados en las zonas de C₆H₆

En este caso no se ha incluido la representación del número de superaciones del valor límite anual legislado por zonas de evaluación porque no se ha producido ninguna a lo largo del periodo considerado.

4.5.6.2. Evolución 2007-2012 de los valores legislados de C₆H₆ en estaciones

En la Figura 4.95 se muestra la evolución de los estadísticos del valor legislado (valor límite anual) de los últimos seis años, entre 2007 y 2012, teniendo en cuenta que a partir de 2010 deja de existir el margen de tolerancia.

Dicha representación muestra que los mayores episodios registrados (que, pese a ello, no han supuesto superaciones en 2012) se han asociado a grandes zonas urbanas e industrializadas (Barcelona, Tarragona...), y de forma particular a aquellas con presencia de actividades relacionadas con el petróleo y sus derivados (Santa Cruz de Tenerife, Puertollano...).
4.5.6.3. Evolución 2003-2012 de los niveles de C₆H₆

La Figura 4.96 muestra la variación de las medias anuales de las estaciones participantes en la evaluación del C₆H₆ a lo largo del periodo 2003-2012 ha sido la mostrada en la figura adjunta, en la que, las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales. A su vez, la Figura 4.97 representa la variación de las medias anuales de las estaciones correspondientes, agrupadas por tipo de estación y de área.

En las figuras se aprecia cómo las medias anuales se mantienen por debajo del límite legislado año tras año dentro del periodo considerado, y cómo se ha seguido dentro del mismo una tendencia descendente, más o menos estabilizada desde 2009-2010.

![Diagrama de caja y bigotes de las medias anuales de C₆H₆ 2003-2012.](image-url)
4.7 Benzo(a)pireno (B(a)P)

4.7.1 Efectos del B(a)P

El B(a)P pertenece al grupo de los hidrocarburos aromáticos policíclicos (HAPs), nocivos para la salud humana por su efecto bioacumulativo y cancerígeno, de los que constituye un buen trazador. Además de su elevada potencialidad para inducir tumores (sobre todo, de pulmón) también resultan irritantes para las vías aéreas y para los ojos; y son tóxicos para los organismos dependientes del medio acuático (incluidas las aves asociadas a dicho medio), por acumulación, sobre todo en invertebrados.

4.7.2 Origen de la contaminación

El Inventario Nacional de Emisiones Contaminantes a la Atmósfera 2011 no contempla el B(a)P de forma individualizada, pero sí el conjunto de los hidrocarburos aromáticos policíclicos (HAPs).

Como se observa en las Figuras 4.98 y 4.99, los HAPs se originan principalmente como consecuencia de las actividades agropecuarias (sobre todo por combustión de compuestos orgánicos, como ocurre durante la quema de rastrojos). La segunda contribución en importancia corresponde con los procesos industriales con combustión, tanto de combustibles fósiles como no fósiles (acerías, altos hornos, valorización de residuos), con una tendencia mantenida a lo largo de los últimos años.
Figura 4.98. Contribución de las actividades por categorías a las emisiones de HAPs (2011).

Figura 4.99. Tendencias temporales de las emisiones principales de HAPs.
4.7.3 Valores legislados para el B(a)P

Los objetivos de calidad del aire fijados por la legislación vigente para el contaminante B(a)P son los recogidos en la Tabla 4.17.

<table>
<thead>
<tr>
<th>Valores objetivo</th>
<th>Nivel</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor objetivo para la protección de la salud humana y el medio ambiente en su conjunto (fecha de cumplimiento: año 2013)</td>
<td>1 ng/m³</td>
<td>Año natural</td>
</tr>
</tbody>
</table>

4.7.4 Resultados de la evaluación del B(a)P (2012)

4.7.4.1. Evaluación del B(a)P por zonas

La Figura 4.100 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para este contaminante en el año 2012, conforme al límite legal establecido (valor objetivo anual). Como se observa en la misma, en el año 2012 se ha evaluado todo el territorio español para este contaminante, y en ninguna de las zonas definidas se ha superado el valor objetivo para la protección de la salud.

Figura 4.100. Situación de España para el B(a)P respecto al valor objetivo anual (2012).

4.7.4.2. Estaciones utilizadas para la evaluación del B(a)P

La Figura 4.101 a continuación refleja la ubicación espacial de las estaciones utilizadas para la evaluación del B(a)P en 2012, clasificadas según los valores legisados (valor objetivo y umbrales superior e inferior de evaluación) con los siguientes colores: rojo, si las estaciones superan el valor
límite; naranja, cuando los valores medidos se encuentran entre el valor objetivo y el umbral de evaluación superior; amarillo, si estuvieran entre los dos umbrales de evaluación; o verde, por debajo del umbral de evaluación inferior. Como se aprecia, en ninguna de las estaciones se ha superado en 2012 el valor objetivo para la protección de la salud humana y el medio ambiente en su conjunto, en consonancia con el mapa de zonas.

El número de puntos de muestreo fijo es menor que en el caso de otros contaminantes debido al coste que supone realizar las medidas manuales de dicho contaminante, en muchas comunidades autónomas la evaluación se realiza a través de modelización.

4.7.4.3. Concentración mensual de los niveles de B(a)P en 2012

Hasta ahora se han considerado los estadísticos de evaluación de la calidad del aire en lo referente al B(a)P referenciados al año civil. Para conocer cómo se distribuyen los niveles de este contaminante a lo largo del año, la Figura 4.102 muestra la variación de las medias mensuales de todas las estaciones que han participado en la evaluación en 2012, mientras que la Figura 4.103 recoge la distribución en el año de los niveles registrados por dichas estaciones, agrupadas según el tipo de área a la que pertenecen.

En ellas se observa que los niveles de B(a)P se dan en los meses invernales lo que se asocia a las calefacciones, en especial a combustiones incompletas.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Figura 4.102. Evolución de las medias mensuales de B(a)P en 2012.
4.7.4.4. Análisis del B(a)P por tipo de área y tipo de estación en 2012

La Figura 4.104 representa la distribución de las medias anuales de las estaciones utilizadas en 2012 para evaluar B(a)P, agrupadas por tipo de área y por tipo de estación. En ella se observa de nuevo que en el año de referencia no ha habido superaciones del valor objetivo (ninguna estación se localiza a la derecha de la barra roja que lo señala).
4.7.5 Evolución 2008-2012 del B(a)P

La evolución del B(a)P entre los años 2008 y 2012 se va a analizar a través de la consideración de tres cuestiones distintas: la evolución de las áreas de evaluación, la evolución de las estaciones y la evolución de las medidas anuales (para el total de las estaciones y para las estaciones agrupadas por tipo de área).
4.7.5.1. Evolución 2008-2012 de los valores legislados en las zonas de B(a)P

No se incluye para este contaminante la representación del número de superaciones del valor objetivo anual legislado por zonas de evaluación porque no se ha producido ninguna a lo largo del periodo considerado.

4.7.5.2. Evolución 2008-2012 de los valores legislados de B(a)P en estaciones

La Figura 4.105 muestra la evolución de los estadísticos del valor objetivo legislado para el B(a)P de los últimos cinco años (2008-2012). Como se observa, los niveles registrados son, en general, bajos, salvo excepciones puntuales que no llegan en ningún caso a superar el valor objetivo anual fijado por la legislación. Dichas excepciones se corresponden sobre todo con estaciones industriales localizadas en áreas urbanas (Castellón, Barcelona).

4.7.5.3. Evolución 2008-2012 de los niveles de B(a)P

La Figura 4.106 muestra la distribución de las medias anuales de las estaciones participantes en la evaluación del B(a)P a lo largo del periodo 2008-2012, en la que las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales. Esta figura confirma una vez más las conclusiones de los apartados precedentes, ya que muestra cómo las medias anuales se encuentran muy por debajo del valor objetivo para este contaminante.

Lógicamente, lo mismo ocurre si lo que se representa son las medias anuales de las estaciones correspondientes, agrupadas por tipo de estación y de área (Figura 4.107).

![Diagrama de cajas](image_url)

4.8 Metales: plomo (Pb), arsénico (As), cadmio (Cd) y níquel (Ni)

4.8.1 Efectos de los metales

El plomo (Pb) y otros metales como el arsénico (As), el cadmio (Cd), y el níquel (Ni) constituyen contaminantes que frecuentemente se asocian a las partículas, y que por tanto no sólo contaminan el aire, sino que también pueden depositarse en suelos y aguas y acumularse en ellos (por tanto, en las cadenas alimenticias), con una elevada persistencia.

Estos contaminantes pueden producir efectos muy dispares entre sí:

- El Pb potencialmente puede afectar a todos los órganos y sistemas del cuerpo, y en especial al sistema nervioso, originando retraso mental, nacimientos prematuros y retrasos en el crecimiento. Sobre el medio ambiente, puede producir malformaciones y cambios en el comportamiento de los organismos tanto acuáticos como terrestres, por bioacumulación en sus respectivos ecosistemas.

- El As inorgánico resulta carcinogénico para el ser humano, es irritante para las vías respiratorias y puede producir daños sanguíneos, cardiacos, hepáticos y renales, además de alterar el sistema nervioso periférico. Sobre el medio ambiente, es altamente tóxico para la fauna tanto terrestre (incluidas aves) como acuática, y en elevadas concentraciones en los suelos disminuye el crecimiento vegetal.

- El Cd, y en especial el óxido de cadmio, es igualmente carcinogénico para el hombre, y afecta especialmente a los sistemas respiratorio, renal y reproductivo. También es muy tóxico para los organismos que viven en ecosistemas acuáticos.

- Diversos compuestos de Ni se encuentran también considerados como carcinogénicos. Puede provocar reacciones alérgicas cutáneas y afectar a la defensa inmune y a los sistemas respiratorio y renal, y reducir la fertilidad, con consecuencias similares para humanos y animales. Tanto el Ni
como sus compuestos derivados poseen una elevada y persistente toxicidad sobre el medio acuático.

4.8.2 Origen de la contaminación

En general, el origen de los metales es muy diverso. Así, metales como antimonio, cobre, zinc y bario (Sb, Cu, Zn y Ba) suelen atribuirse en ambiente urbano a las emisiones de abrasión de frenos y ruedas del tráfico rodado; vanadio y níquel (V y Ni) a las emisiones de la combustión de fuel-oil y coque de petróleo (en zonas costeras mayoritariamente en motores de buques), arsénico, selenio y mercurio (As, Se y Hg) a la combustión del carbón en centrales térmicas y algunos focos industriales específicos; y plomo, cadmio, cromo, cobalto, manganeso (Pb, Cd, Cr, Co, Mn), entre otros, a emisiones industriales, aunque el primero hace unas décadas provenía en ciudades sobretodo del tráfico.

Las Figuras 4.108 a 4.111 muestran la contribución relativa a las emisiones de los diferentes metales cuya evaluación se encuentra legislada (Pb, As, Cd y Ni), por actividades, según los datos recogidos en el Inventario Nacional de Emisiones Contaminantes a la Atmósfera 2011.

En ellas se observa que los metales considerados se emiten principalmente como resultado de actividades que implican procesos de combustión, de uno u otro tipo según el contaminante de que se trate:

- Los procesos de combustión que más contribuyen a las emisiones de Pb y As se asocian a algunas actividades industriales específicas (en más de un 70%), y, en menor medida, al tráfico rodado (transporte por carretera, contribución que se ha visto minorada gracias a la utilización de combustibles sin plomo), en el caso del Pb, y a la generación eléctrica, en el del As (sobre todo, combustión de carbón en centrales térmicas).

- Las emisiones de Cd también proceden sobre todo de procesos industriales con combustión, pero en este caso su contribución al total de las emisiones de este metal es menor (no llega al 50%), ya que la combustión en el sector de la producción y transformación de energía tiene una mayor participación (en torno al 30%).

- El Ni presenta una situación similar a la del Cd, pero en un orden inverso (la combustión para producción eléctrica (sobre todo de fuel-oil y coque de petróleo) supone la mayor contribución, de poco más del 50%, frente al 30% de la combustión industrial). En las zonas costeras las emisiones procedentes de los motores de los buques constituyen también una fuente importante.
Figura 4.108. Contribución de las actividades por categorías a las emisiones de Pb (2011).

Figura 4.109. Contribución de las actividades por categorías a las emisiones de As (2011).

Capítulo 4. Análisis de contaminantes principales

Figura 4.111. Contribución de las actividades por categorías a las emisiones de Ni (2011).
Si lo que se considera es la evolución de las emisiones, que se muestra en las Figuras 4.112 a 4.115, en general se observa lo siguiente:

- Las emisiones de Pb procedentes de los procesos industriales (ya sea con o sin combustión) se han mantenido relativamente constantes en los últimos años, no así las asociadas al tráfico, que experimentaron una fuerte caída en 2002 (generalización de los combustibles sin plomo), descenso que se ha mantenido desde dicho año hasta la actualidad, aunque más suavemente.

- Las emisiones de As muestran una tendencia a la baja, muy suave en el caso de la contribución mayoritaria (procesos industriales con combustión), aunque con un ligero repunte en 2011 respecto a años anteriores en el caso de las emisiones procedentes de la combustión en el sector de la producción y transformación de energía.

- Las emisiones de Cd, sobre todo de origen industrial (procesos con combustión, pero también sin ella), muestran igualmente una tendencia a la baja desde el año 2001, más brusca a partir de 2007 en lo que se refiere a la contribución mayoritaria (procesos industriales con combustión).

- La contribución a las emisiones de Ni del sector energético ha disminuido también en el periodo considerado, al igual que la de los procesos industriales con combustión (aunque éstas en menor medida). Sin embargo, se han incrementado ligeramente las emisiones asociadas a medios de transporte diferentes al de carretera (transporte ferroviario, marítimo, aéreo) y a vehículos y maquinaria móvil automotriz no destinados al transporte de vehículos o de mercancías (maquinaria agrícola, forestal, minera, de la construcción...).
Figura 4.113. Origen de la contaminación: Emisiones principales de As.

4.8.3 **Valores legisados para los metales**

Los objetivos de calidad del aire fijados por la legislación vigente para el Pb, el As, el Cd y el Ni son los recogidos en la Tabla 4.18.

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Valor legisado</th>
<th>Valor</th>
<th>Período</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plomo (Pb)</td>
<td>Valor límite anual (VLA) de Pb para la protección de la salud humana (fecha de cumplimiento: 1 de enero de 2005)</td>
<td>0,5 μg/m³</td>
<td>Año civil</td>
</tr>
<tr>
<td>Arsénico (As)</td>
<td>Valor objetivo para la protección de la salud humana y el medio ambiente en su conjunto (fecha de cumplimiento: año 2013)</td>
<td>6 ng/m³</td>
<td>Año natural</td>
</tr>
<tr>
<td>Cadmio (Cd)</td>
<td>Valor objetivo para la protección de la salud humana y el medio ambiente en su conjunto (fecha de cumplimiento: año 2013)</td>
<td>5 ng/m³</td>
<td>Año natural</td>
</tr>
<tr>
<td>Níquel (Ni)</td>
<td>Valor objetivo para la protección de la salud humana y el medio ambiente en su conjunto (fecha de cumplimiento: año 2013)</td>
<td>20 ng/m³</td>
<td>Año natural</td>
</tr>
</tbody>
</table>

4.8.4 **Resultados de la evaluación del Pb (2012)**

4.8.4.1. Evaluación del Pb por zonas

La Figura 4.116 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para el Pb en el año 2012, conforme al límite legal establecido (valor límite anual). Como se observa, en 2012 no hubo superaciones del valor límite legisado para el Pb, en ninguna de las zonas donde éste se evaluó.
4.8.4.2. Estaciones utilizadas para la evaluación del Pb

Con el objetivo de conocer la distribución espacial de los niveles de Pb, se ha elaborado la Figura 4.117, que muestra los estadísticos de las estaciones que han participado en la evaluación de este contaminante en 2012, según la siguiente escala de color: rojo, si las estaciones superan el valor límite; naranja, cuando los valores medidos se encuentran entre el valor límite y el umbral de evaluación superior; amarillo, si estuvieran entre los dos umbrales de evaluación; o verde, por debajo del umbral de evaluación inferior.

4.8.4.3. Concentración mensual de los niveles de Pb en 2012

Para conocer cómo varían los niveles de Pb a lo largo del último año, se han elaborado las Figuras 4.118 y 4.119, que muestran la distribución de las medias mensuales de todas las estaciones que han participado en la evaluación en 2012, así como la distribución en dicho año de los niveles registrados por las diferentes estaciones, agrupadas según el tipo de área a la que pertenecen.

Los niveles más bajos de este contaminante se registran en zonas rurales, donde además se aprecian escasas variaciones estacionales, y los más elevados, en áreas urbanas, sobre todo en invierno. No se han producido superaciones del valor límite anual establecido, en ningún caso.
4.8.4.4. Análisis del Pb por tipo de área y tipo de estación en 2012

La Figura 4.120 representa la distribución de las medias anuales de las estaciones utilizadas en 2012 para evaluar Pb, agrupadas por tipo de área y por tipo de estación. En ella se aprecia que los valores registrados en la totalidad de las estaciones que han participado en la evaluación se encuentran muy alejados no ya del valor límite anual, sino incluso del umbral inferior de evaluación, independientemente de la naturaleza de la estación de que se trate.
4.8.5 Resultados de la evaluación del As (2012)

4.8.5.1 Evaluación del As por zonas

La Figura 4.121 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para As en el año 2012, conforme al límite legal establecido (valor objetivo anual).

Como se observa en ella, en el año de referencia no se ha producido ninguna superación del valor objetivo (cuya fecha de cumplimiento es, además, el año 2013), en ninguna de las zonas definidas para este contaminante.
Figura 4.121. Situación de España para el As respecto al valor objetivo anual (2012).

4.8.5.2. Estaciones utilizadas para la evaluación del As

Con el objetivo de conocer la distribución espacial de los niveles de As, se ha elaborado la Figura 4.122, que muestra los estadísticos de las estaciones que han participado en la evaluación de este contaminante en 2012, según la siguiente escala de color: rojo, si las estaciones superan el valor objetivo; naranja, cuando los valores medidos se encuentran entre el valor objetivo y el umbral de evaluación superior; amarillo, si estuvieran entre los dos umbrales de evaluación; o verde, por debajo del umbral de evaluación inferior.

4.8.5.3. Concentración mensual de los niveles de As en 2012

Para estudiar cómo han variado los niveles de As a lo largo de 2012, se ha elaborado un mapa con los valores mensuales de todas las estaciones que han participado en su evaluación (Figura 4.123), así como un gráfico de la distribución de los niveles registrados en las estaciones a lo largo del año, agrupadas por tipo de área (Figura 4.124).

En 2012, los niveles más bajos de este contaminante se registran una vez más en zonas rurales, y los más altos, en zonas urbanas (como por ejemplo, en determinadas zonas industrializadas del entorno de Huelva), sin que en ningún caso se llegue a superar el valor legislado.

Como muestra la Figura 4.124 para 2012, la distribución mensual muestra un perfil a lo largo del año en forma de dientes de sierra, si bien parece existir cierta tendencia a registrar valores más altos durante el verano, en todos los tipos de estaciones considerados.
Figura 4.123. Evolución de las medias mensuales de As en 2012.
4.8.5.4. Análisis del As por tipo de área y tipo de estación en 2012

La Figura 4.125 representa la distribución de las medias anuales de las estaciones utilizadas en 2012 para evaluar As, agrupadas por tipo de área y por tipo de estación. Como se aprecia, se confirma que en 2012 no se ha producido ninguna superación del valor objetivo anual de As, ya que todas las estaciones se encuentran a la izquierda de la línea roja que lo señala.
Figura 4.125. Distribución de los niveles de As en relación a los valores legislados (VOA) por tipo de área y tipo de estación (2012).

4.8.6 Resultados de la evaluación del Cd (2012)

4.8.6.1. Evaluación del Cd por zonas

La Figura 4.126 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para el Cd contaminante en el año 2012, conforme al límite legal establecido (valor objetivo...
anual). Como se observa, de todas las zonas definidas para evaluar la situación de este contaminante en 2012, en ninguna se ha producido superación del valor objetivo.

4.8.6.2. Estaciones utilizadas para la evaluación del Cd

Con el objetivo de conocer la distribución espacial de los niveles de Cd, se ha elaborado la Figura 4.127, que muestra los estadísticos de las estaciones que han participado en la evaluación de este contaminante en 2012, según la siguiente escala de color: rojo, si las estaciones superan el valor objetivo; naranja, cuando los valores medidos se encuentran entre el valor objetivo y el umbral de evaluación superior; amarillo, si estuvieran entre los dos umbrales de evaluación; o verde, por debajo del umbral de evaluación inferior.

4.8.6.3. Concentración mensual de los niveles de Cd en 2012

Para estudiar cómo han variado los niveles de Cd a lo largo de 2012, se ha elaborado un mapa con los valores mensuales de todas las estaciones que han participado en su evaluación (Figura 4.128), así como un gráfico de la distribución de los niveles registrados en las estaciones a lo largo del año, agrupadas por tipo de área (Figura 4.129).

En dichas figuras se aprecia cómo, en general, los niveles más bajos corresponden una vez más a las áreas rurales, y los más altos a las urbanas (el resultado de mayo de 2012 en áreas suburbanas se entiende como excepcional). La distribución mensual muestra ligeros aumentos invernales frente a los registros de verano, en todas las áreas, pero de forma algo más acusada en las zonas urbanas y suburbanas. En todo caso, los niveles se mantienen muy alejados del valor objetivo anual para la protección de la salud.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

4.8.6.4. Análisis del Cd por tipo de área y tipo de estación en 2012

La Figura 4.130 representa la distribución de las medias anuales de las estaciones utilizadas en 2012 para evaluar Cd, agrupadas por tipo de área y por tipo de estación. En ella se confirma que en 2012 no se han producido superaciones del valor objetivo anual. La mayor parte de las estaciones utilizadas en la evaluación se localizan además por debajo del umbral inferior de evaluación, ya que tan sólo en dos casos puntuales (en una zona urbana y en otra suburbana, en ambos casos industriales) superan, respectivamente, el umbral inferior y el umbral superior.
Figura 4.130. Distribución de los niveles de Cd en relación a los valores legislados (VOA) por tipo de área y tipo de estación (2012).

4.8.7 Resultados de la evaluación del Ni (2012)

4.8.7.1. Evaluación del Ni por zonas

La Figura 4.131 muestra de forma gráfica el resultado de la evaluación de las diferentes zonas definidas para el Ni en el año 2012, conforme al límite legal establecido (valor objetivo anual). Según se aprecia en ella, en el año 2012 se ha evaluado todo el territorio español, y de todas las zonas definidas, tan sólo en una se ha producido la superación del valor objetivo, concretamente en la zona indicada en la Tabla 4.19.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

<table>
<thead>
<tr>
<th>Zonas > VO Anual de Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zona Industrial de Bahía de Algeciras (ES0104)</td>
</tr>
</tbody>
</table>

4.8.7.2. Estaciones utilizadas para la evaluación del Ni

Con el objetivo de conocer la distribución espacial de los niveles de Ni, se ha elaborado la Figura 4.132, que muestra los estadísticos de las estaciones que han participado en la evaluación de este contaminante en 2012, según la siguiente escala de color: rojo, si las estaciones superan el valor objetivo; naranja, cuando los valores medidos se encuentran entre el valor objetivo y el umbral de evaluación superior; amarillo, si estuvieran entre los dos umbrales de evaluación; o verde, por debajo del umbral de evaluación inferior.

4.8.7.3. Concentración mensual de los niveles de Ni en 2012

Para estudiar cómo han variado los niveles de Ni a lo largo de 2012, se ha elaborado un mapa con los valores mensuales de todas las estaciones que han participado en su evaluación (Figura 4.133), así como un gráfico de la distribución de los niveles registrados en las estaciones a lo largo del año, agrupadas por tipo de área (Figura 4.134). En el caso de las áreas urbanas y suburbanas se observa a lo largo del año un perfil en forma de sierra, más suave en las rurales. Los valores más altos se registran en otoño, en áreas rurales y suburbanas, y en verano, en las urbanas.
Figura 4.133. Evolución de las medias mensuales de Ni en 2012.
Figura 4.134. Evolución de las medias mensuales de Ni en 2012 por tipo de área.

4.8.7.4. Análisis del Ni por tipo de área y tipo de estación en 2012

La Figura 4.135 representa la distribución de las medias anuales de las estaciones utilizadas en 2012 para evaluar Ni, agrupadas por tipo de área y por tipo de estación. La mayor parte de las estaciones se mantienen por debajo del umbral inferior de evaluación, y tan sólo puntualmente se superan el umbral superior y el valor objetivo anual (una estación en cada caso).
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Figura 4.135. Distribución de los niveles de Ni en relación a los valores legislados (VOA) por tipo de área y tipo de estación (2012).

4.8.8 Evolución 2001-2012 del Pb

La evolución del Pb entre los años 2001 y 2012 se va a analizar a través de la consideración de tres cuestiones distintas: la evolución de las áreas de evaluación, la evolución de las estaciones y la evolución de las medidas anuales (para el total de las estaciones y para las estaciones agrupadas por tipo de área). A este respecto, hay que resaltar que el valor límite anual de Pb entró en vigor en el año 2005.
4.8.8.1. Evolución 2006-2012 de los valores legislados en las zonas Pb

No se incluye para este contaminante la representación del número de superaciones del valor objetivo anual legislado por zonas de evaluación porque no se ha producido ninguna a lo largo del período considerado.

4.8.8.2. Evolución 2008-2012 de los valores legislados de Pb en estaciones

La Figura 4.136 muestra la evolución de los estadísticos del valor objetivo legislado para el Pb de los últimos seis años (2007-2012). Dicha representación muestra que no se han producido grandes episodios en ninguna estación a lo largo del periodo considerado (los niveles han sido bajos en toda España).

![Figura 4.136. Evolución de los valores registrados de Pb (media anual) a lo largo del periodo 2007-2012.](image)

4.8.8.3. Evolución 2008-2012 de los niveles de Pb

La distribución de las medias anuales de las estaciones participantes en la evaluación del Pb a lo largo del periodo 2001-2012 ha sido la mostrada en la Figura 4.137, en la que, las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de...
las medias anuales. En ella se confirman las conclusiones de los apartados precedentes, ya que muestra cómo las medias anuales se encuentran muy por debajo del valor límite para este contaminante. Y, lógicamente, lo mismo ocurre si lo que se representa son las medias anuales de las estaciones correspondientes, agrupadas por tipo de estación y de área (Figura 4.138). En ambas figuras se puede además observar claramente el descenso producido por la desaparición del Pb en los carburantes.

![Figura 4.137. Evolución de la media anual de Pb a lo largo del periodo 2001-2012.](image)

![Figura 4.138. Evolución de las medias anuales de Pb (2001-2012) por tipo de estación y área.](image)
4.8.9 Evolución 2008-2012 del As
La evolución del As entre los años 2008 y 2012 se va a analizar a través de la consideración de tres cuestiones distintas: la evolución de las áreas de evaluación, la evolución de las estaciones y la evolución de las medidas anuales (para el total de las estaciones y para las estaciones agrupadas por tipo de área).

4.8.9.1. Evolución 2008-2012 de los valores legisla dos en las zonas As
La Figura 4.139 presenta la evolución de las zonas de evaluación del As y su situación respecto a los valores legisla dos a lo largo del periodo 2008-2012. En ella se aprecia que no hay zonas no evaluadas, y que entre los años considerados únicamente se produjeron dos superaciones puntuales del valor objetivo establecido (que no entrará en vigor hasta el año 2013), la primera en 2008 y la segunda en 2009. Desde entonces no se ha vuelto a sobrepasar dicho valor objetivo.

Figura 4.139. Evolución del número de superaciones del VO de As (2008-2012).

4.8.9.2. Evolución 2008-2012 de los valores legisla dos de As en estaciones
La Figura 4.140 muestra la evolución de los estadísticos del valor objetivo legislado para el As de los últimos cinco años (2008-2012). En ella se observa cómo los mayores episodios vienen asociados a zonas industriales, como ocurre en el entorno industrial de Huelva a lo largo de todo el periodo considerado.
4.8.9.3. Evolución 2008-2012 de los niveles de As

La distribución de las medias anuales de las estaciones participantes en la evaluación del As a lo largo del periodo 2008-2012 ha sido mostrada en la Figura 4.141, en la que, las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales. En ella se confirman las conclusiones de los apartados precedentes, ya que se muestra cómo las medias anuales se encuentran por debajo del valor objetivo para este contaminante, aunque algunos máximos superaron el valor objetivo en los años 2008 y 2009. Y lo mismo ocurre si lo que se representa son las medias anuales de las estaciones agrupadas por tipo de estación y de área (Figura 4.142).
Análisis de la Calidad del Aire en España: Evolución 2001-2012

(*) En vigore a partir de 2013

Figura 4.142. Evolución de las medias anuales de As (2008-2012) por tipo de estación y área.
4.8.10 Evolución 2008-2012 del Cd

La evolución del Cd entre los años 2008 y 2012 se va a analizar a través de la consideración de tres cuestiones distintas: la evolución de las áreas de evaluación, la evolución de las estaciones y la evolución de las medidas anuales (para el total de las estaciones y para las estaciones agrupadas por tipo de área).

4.8.10.1. Evolución 2008-2012 de los valores legisados en las zonas Cd

La Figura 4.143 presenta la evolución de las zonas de evaluación del Cd y su situación respecto a los valores legisados a lo largo del periodo 2008-2012. En ella se aprecia que no hay zonas no evaluadas, y que entre los años considerados únicamente se ha producido una superación puntual, en 2010. Desde entonces no se ha vuelto a sobrepasar el valor objetivo establecido.

![Figura 4.143. Evolución del número de superaciones del VO de Cd (2008-2012).](image)

4.8.10.2. Evolución 2008-2012 de los valores legisados de Cd en estaciones

La Figura 4.144 muestra la evolución de los estadísticos del valor objetivo legislando para el Cd de los últimos cinco años (2008-2012). Ésta muestra niveles bajos generalizados, salvo excepciones puntuales, como en Córdoba (Parque Joyeros), como consecuencia de una instalación ya clausurada.

4.8.10.3. Evolución 2008-2012 de los niveles de Cd

La distribución de las medias anuales de las estaciones participantes en la evaluación del Cd a lo largo del período 2008-2012 ha sido mostrada en la Figura 4.145, en la que, las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales. En dicha figura se muestra cómo las medias anuales se han encontrado siempre por debajo del valor objetivo para este contaminante, salvo en el año 2010, cuando se produjo la superación ya comentada.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

La representación de las medias anuales de las estaciones correspondientes, agrupadas por tipo de estación y de área, confirman los buenos niveles registrados en general para este contaminante a lo largo del periodo considerado (Figura 4.146).

4.8.11 Evolución 2008-2012 del Ni

La evolución del Ni entre los años 2008 y 2012 se va a analizar a través de la consideración de tres cuestiones distintas: la evolución de las áreas de evaluación, la evolución de las estaciones y la evolución de las medidas anuales (para el total de las estaciones y para las estaciones agrupadas por tipo de área).

4.8.11.1. Evolución 2007-2012 de los valores legislados en las zonas Ni

La Figura 4.147 presenta la evolución de las zonas de evaluación del Ni y su situación respecto a los valores legislados entre los años 2008 y 2012. Anualmente a lo largo del periodo considerado se ha producido una o ninguna superación del valor objetivo (a cumplir en 2013); y no hay zonas sin evaluar. Aún no se dispone de datos de años suficientes como para llegar a una conclusión sobre la tendencia de este contaminante; no obstante, sí merece la pena destacar que el número de estaciones participantes en la evaluación en 2012 se ha incrementado respecto a los años anteriores, sin que se haya aumentado el número de superaciones.

4.8.11.2. Evolución 2008-2012 de los valores legislados de Ni en estaciones

La Figura 4.148 muestra la evolución de los estadísticos del valor objetivo legislado para el Ni de los últimos cinco años (2008-2012). La representación de la evolución de los valores legisados en un mapa muestra que los mayores episodios se asocian a estaciones de tipo industrial, localizadas en áreas urbanas y suburbanas, de Cádiz (Bahía de Algeciras), Ciudad Real (Puertollano) y Bilbao.

4.8.11.3. Evolución 2008-2012 de los niveles de Ni

La distribución de las medias anuales de las estaciones participantes en la evaluación del Ni a lo largo del periodo 2008-2012 ha sido mostrada en la Figura 4.149, en la que, las cajas vienen definidas por los percentiles 75 y 25, los bigotes marcan el máximo y mínimo, y el punto azul el valor medio de las medias anuales. En ella se aprecian las tres superaciones que tuvieron lugar en los años 2009, 2010 y 2012; a pesar de que las medias se encuentran alejadas del valor objetivo marcado para 2013.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Ese alejamiento queda patente en el gráfico que se recoge a continuación, que representa las medias anuales de las estaciones correspondientes, agrupadas por tipo de estación y de área (Figura 4.150).

4.9 Amoniaco (NH₃)

4.9.1 Efectos del NH₃

El amoniaco (NH₃) es un compuesto de nitrógeno gaseoso altamente reactivo, alcalino, con efectos acidificadores y eutrofizadores, que favorece la generación de partículas PM10 y PM2,5 secundarias (reacciona con el ácido nítrico HNO₃, gaseoso, y forma nitrato amónico NH₄NO₃, particulado; también con el SO₂, lo que origina sulfato amónico (NH₄)₂SO₄). Es precisamente por su contribución a la formación de partículas por lo que este contaminante aparece además contemplado dentro de la Directiva 2008/81/CE, de 23 de octubre de 2001, de Techos Nacionales de Emisión de ciertos contaminantes atmosféricos.

Además, en condiciones de alta temperatura (por ejemplo, en verano), el nitrato amónico generado no es estable, y se descompone de nuevo en NH₃ y ácido nítrico, ácido que a su vez puede reaccionar con cloruro sódico (NaCl) o con carbonato cálcico (CaCO₃) y dar lugar a nitrato sódico o cálcico (según el caso) y a ácido clorhídrico (ClH).

4.9.2 Origen de la contaminación

Como se observa en la Figura 4.151, según el Inventario Nacional de Emisiones Contaminantes a la ATMósfera, en 2011 las emisiones atmosféricas de NH₃ se han debido básicamente a las actividades agropecuarias (en Europa las actividades ganaderas y agrícolas han sido las causantes del 94% de las emisiones de este contaminante), por la utilización de nitrógeno, presente en fertilizantes y en alimentos para animales, que sale transformado en compuestos nitrogenados, entre ellos el NH₃. Este efecto tiene lugar en general en áreas extensas y poco pobladas.

Por otra parte, las emisiones del tratamiento y eliminación de residuos y las procedentes de determinados procesos industriales sin combustión también pueden ser puntualmente importantes. Con todo, la contribución del resto de fuentes distintas de las agropecuarias no llega a superar el 10% del total.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Figura 4.151. Contribución de las actividades por categorías a las emisiones de NH$_3$ (2011).

Como se observa en la Figura 4.152, la contribución de la actividad principal se ha mantenido más o menos constante en el tiempo, a la par que se aprecia cierta tendencia al ascenso desde 2010 de las emisiones minoritarias.

Capítulo 4. Análisis de contaminantes principales
4.9.3 **Requerimientos de medición**

El Real Decreto 102/2011 no fija objetivos de calidad del aire para este contaminante, pero sí considera la vigilar de sus niveles en el aire ambiente, a través de su medición en estaciones de fondo regional y en estaciones de tráfico de las principales ciudades españolas. Además, el Real Decreto también establece la información a facilitar a la población y a intercambiar entre las diferentes administraciones.

En concreto, el Real Decreto 102/2011 determina que el Ministerio de Agricultura, Alimentación y Medio Ambiente, en colaboración con las comunidades autónomas, determinará cinco puntos rurales de fondo para la medición, repartidos uniformemente por el territorio español, mediciones que se coordinarán con la estrategia de vigilancia y medición del Programa EMEP. Además, las autoridades competentes desarrollarán al menos un punto para la medición de NH₃ en áreas de intensidad elevada de tráfico en todas las ciudades con más de 500.000 habitantes. Las condiciones de ubicación de tales puntos de muestreo se concretan igualmente en el Real Decreto 102/2011.

Las mediciones se distribuirán homogéneamente a lo largo del año y, ya sea en las estaciones rurales de fondo o en las estaciones de tráfico, el NH₃ se determinará mediante uno de los siguientes métodos de análisis:

- Sistemas pasivos, con captación en cartuchos adsorbentes de ácido fosfórico, u otro absorbente adecuado, y determinación en el laboratorio por espectrofotometría UV/visible.
- Métodos automáticos basados en quimiluminiscencia con una eficacia de oxidación del convertidor superior al 95 %.
- Métodos específicos fotoacústicos.

Sólo se podrán utilizar técnicas distintas a éstas cuando las autoridades competentes puedan demostrar que generan resultados equivalentes a dichas técnicas.

En cualquier caso, los objetivos de calidad de los datos en lo que se refiere a las mediciones de NH₃ se ajustarán a lo indicado en la Tabla 4.20.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Captación pasiva</th>
<th>Métodos automáticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incertidumbre</td>
<td>50 %</td>
<td>25 %</td>
</tr>
<tr>
<td>Captura mínima de datos</td>
<td>90 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Período de muestreo</td>
<td>Quincenal o inferior</td>
<td>Diaria o inferior</td>
</tr>
<tr>
<td>Cobertura mínima temporal</td>
<td>60 %</td>
<td>33 %</td>
</tr>
</tbody>
</table>

4.9.4 Resultados 2012

La Figura 4.153 y la Tabla 4.21 resumen los resultados obtenidos de la vigilancia de los niveles de NH₃ en 2012. De ambos se desprende que los valores más altos se registran en la estación industrial suburbana de “Campo de fútbol”, localizada en Puertollano (Ciudad Real), así como en estaciones urbanas de tráfico como “Plaza de España” (en Madrid). Por el contrario, los valores más bajos se registran por lo general en estaciones rurales remotas de fondo, especialmente en “Barcarrota” (en Badajoz) y “Viznar” (Granada), aunque hay excepciones, como es el caso de “Els Torms” (en Lérida), donde se han registrado valores altos debido a las explotaciones porcinas existentes en sus alrededores (ver capítulo 6).

<table>
<thead>
<tr>
<th>Código estación</th>
<th>Nombre estación</th>
<th>Tipo estación</th>
<th>Tipo de área (y de subárea, si rural)</th>
<th>NH₃ (Media anual)</th>
<th>Tipo de evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES0011R</td>
<td>Barcarrota</td>
<td>Fondo</td>
<td>Rural (remota)</td>
<td>0,55</td>
<td>Pasivos de periodicidad semanal medio año</td>
</tr>
<tr>
<td>ES1279A</td>
<td>Campo de fútbol</td>
<td>Industrial</td>
<td>Suburbana</td>
<td>5,6</td>
<td>Mediciones horarias continuas</td>
</tr>
<tr>
<td>ES0007R</td>
<td>Viznar</td>
<td>Fondo</td>
<td>Rural (remota)</td>
<td>0,68</td>
<td>Pasivos de periodicidad semanal medio año</td>
</tr>
<tr>
<td>ES0009R</td>
<td>Campisábalos</td>
<td>Fondo</td>
<td>Rural (remota)</td>
<td>0,91</td>
<td>Pasivos de periodicidad semanal todo el año</td>
</tr>
<tr>
<td>ES0014R</td>
<td>Els Torms</td>
<td>Fondo</td>
<td>Rural (remota)</td>
<td>3,6</td>
<td>Pasivos de periodicidad semanal medio año</td>
</tr>
<tr>
<td>ES0115A</td>
<td>Plaza de España</td>
<td>Tráfico</td>
<td>Urbana</td>
<td>5,3</td>
<td>Campañas de pasivos (2 quincenas)</td>
</tr>
<tr>
<td>ES0118A</td>
<td>Escuelas Aguirre</td>
<td>Tráfico</td>
<td>Urbana</td>
<td>3,9</td>
<td>Campañas de pasivos (2 quincenas)</td>
</tr>
<tr>
<td>ES1943A</td>
<td>Fernández Ladreda-Oporto</td>
<td>Tráfico</td>
<td>Urbana</td>
<td>4,3</td>
<td>Campañas de pasivos (2 quincenas)</td>
</tr>
<tr>
<td>ES1751A</td>
<td>El Atabal</td>
<td>Fondo</td>
<td>Suburbana</td>
<td>1,3</td>
<td>Campañas de pasivos quincenales todo el año</td>
</tr>
<tr>
<td>ES0008R</td>
<td>Niembro</td>
<td>Fondo</td>
<td>Rural (remota)</td>
<td>0,87</td>
<td>Pasivos de periodicidad semanal todo el año</td>
</tr>
<tr>
<td>ES0817A</td>
<td>La Ranilla</td>
<td>Tráfico</td>
<td>Urbana</td>
<td>4,8</td>
<td>Campañas de pasivos quincenales todo el año</td>
</tr>
<tr>
<td>ES0001R</td>
<td>San Pablo de los Montes</td>
<td>Fondo</td>
<td>Rural (remota)</td>
<td>1,1</td>
<td>Pasivos de periodicidad semanal medio año</td>
</tr>
</tbody>
</table>
4.10 Análisis de tendencias temporales (2001-2012) de los principales contaminantes en ambiente urbano e industrial en España

En este apartado se pretende dar una visión de cómo ha evolucionado la calidad del aire en los últimos 12 años en ambientes urbanos e industriales de España (la evaluación de tendencias temporales de la calidad del aire en fondo regional se describe al final del Capítulo 6). Para ello, se ha partido de las series temporales de niveles de parámetros de SO2, NO2, O3, CO, PM10 y PM2,5, para las ciudades españolas con una población superior a 240.000 habitantes, representadas en la Figura 4.154.

De ellas, se han seleccionado las series con al menos un 75% de disponibilidad de datos en 2001-2012 para PM10, PM2,5, SO2 y NO2, y en 2004-2012 y 2003-2012 para O3 y CO, respectivamente, sin tener en cuenta las series interrumpidas por clausura de la estación anterior a 2010.

Una vez seleccionadas, las estaciones han sido clasificadas en función de su tipología como de fondo urbano, de tráfico o industriales. La categoría “industrial” contiene aquellas clasificadas como industriales por la propia red de calidad del aire, o calificadas como urbanas o de tráfico por la red, pero situadas en una zona con fuerte actividad industrial. En el caso de existir varias estaciones de cada tipo en una misma ciudad se ha calculado la media de las mismas.

Posteriormente, se ha realizado el estudio estadístico de las tendencias temporales utilizando el programa Openair. En el análisis de tendencias se indica del grado de significación estadística de la tendencia observada, según la siguiente clave:

4.10.1 SO₂

Fondo urbano: Se dispone de datos para 8 ciudades, y éstas muestran un rango de concentraciones en 2012 que varía entre 1,3 y 5,7 µg/m³ (correspondientes, respectivamente, a Zaragoza y a Palma), con una media de 4 µg/m³. Se observa una tendencia decreciente estadísticamente significativa en Zaragoza (**), Bilbao (*) y Valencia (+), con un ratio de decrecimiento medio para las 9 ciudades de -3,6%/año, y un descenso acumulado de un -40% desde 2001 a 2012. La disminución ha sido progresiva, aunque se produjo un aumento entre 2003 y 2005 (Figura 4.161).

Tráfico (13 ciudades): El rango de concentraciones en 2012 oscila entre 2,9 y 7,8 µg/m³ (valores correspondientes a Zaragoza y a Granada, respectivamente), con una media de 5 µg/m³. Se aprecia una tendencia decreciente estadísticamente significativa en Zaragoza (**), Bilbao (*), Alicante (*), Sevilla (*) y Santa Cruz de Tenerife (+), con un ratio de decrecimiento medio para las 13 ciudades de -4,6%/año, y un descenso acumulado de un -50% desde 2001 a 2012 (la disminución que ha sido progresiva; ver Figura 4.161).

Industrial (9 ciudades): El rango de concentraciones en 2012 ha variado entre 4,0 y 13,0 µg/m³, (valores correspondientes a Gijón y a Santa Cruz de Tenerife, respectivamente), con una media de 8 µg/m³. la tendencia decreciente estadísticamente significativa se observa en esta ocasión en Gijón (**), Avilés (**), Oviedo (**), A Coruña (*) y Las Palmas (*), con un ratio de decrecimiento medio para las 9 ciudades de -4,3%/año, un descenso acumulado de un -47% desde 2001 a 2012, y una disminución de nuevo progresiva (Figura 4.161), aunque en algunas estaciones asturianas se observa de forma muy marcada un drástico descenso 2007-2008, probablemente causado por la implementación de la Directiva de Grandes Instalaciones de Combustión que supuso la puesta en marcha de sistemas de desulfurización en grandes focos.

![Figura 4.155. Rango de variación en 2012 de los valores de SO₂ para los diferentes entornos en las ciudades de estudio.](image-url)
4.10.2 NO₂

Fondo urbano: Se dispone de datos para 9 ciudades, y éstas muestran un rango de concentraciones en 2012 de entre 10 y 42 µg/m³ (para Palma y Barcelona, respectivamente), con una media de 24 µg/m³. Se observa una tendencia decreciente estadísticamente significativa en Madrid (**), Palma de Mallorca (**), Córdoba (*), Valencia (*) y Barcelona (*), con un ratio de decrecimiento medio para las 9 ciudades de -1,1%/año, y un descenso acumulado de un -12% desde 2001 a 2012. Esta ligera disminución ha sido progresiva, aunque se produjo un aumento entre 2004 y un mínimo en 2008 (Figura 4.161).

Tráfico (15 ciudades): Rango de concentraciones en 2012 de entre 25 y 61 µg/m³, valores correspondientes a Palma y a Barcelona, respectivamente, con una media de 34 µg/m³. Se observa una tendencia decreciente estadísticamente significativa en Zaragoza (**), Valencia (*), Sevilla (*), Madrid (*), Palma de Mallorca (+), Granada (+), Pamplona (+) y Murcia (+), con un ratio de decrecimiento medio para las 15 ciudades de -1,8%/año, y un descenso acumulado de un -20% desde 2001 a 2012. Esta ligera disminución ha sido progresiva, aunque se puede detectar un mínimo en 2008 (Figura 4.161).

Industrial (10 ciudades): Rango de concentraciones en 2012 de entre 11 y 38 µg/m³, extremos correspondientes a Vigo y La Coruña, con una media de 34 µg/m³. Se observa una tendencia decreciente estadísticamente significativa en Gijón (**), Avilés (**), Las Palmas (*) y A Coruña (+) y Oviedo (+), y creciente en el caso de Vigo (*), con un ratio de decrecimiento medio para las 10 ciudades de -2,0%/año, y un descenso acumulado de un -22% desde 2001 a 2012. En el caso de Vigo el aumento acumulado ha sido del 275%. La tendencia media de las 10 estaciones se caracteriza por una ligera disminución que ha sido progresiva, aunque se puede detectar un mínimo en 2004 seguido de un incremento hasta 2009 y un descenso hasta 2012 (Figura 4.161).

La Figura 4.156 resume todas estas variaciones en los rangos de concentración de NO₂, por tipo de ambiente.

![Figura 4.156. Rango de variación en 2012 de los valores de NO₂ para los diferentes entornos en las ciudades de estudio.](image-url)
4.10.3 O₃

Fondo urbano: Se dispone de datos para 10 ciudades, y éstas muestran un rango de concentraciones en 2012 que varía entre 40 y 62 µg/m³ (valores correspondientes, respectivamente, a Madrid y a Córdoba), con una media de 54 µg/m³. Se observa una tendencia creciente estadísticamente significativa en el 50% de las ciudades (en concreto, en Sevilla (***), Barcelona (**), Malaga (*), Valencia (*) y Zaragoza (*)), con un ratio de decrecimiento medio para las 10 ciudades de +1,7%/año, y un incremento acumulado de un +13% desde 2004 a 2012. Este ligero incremento no se detecta a nivel de fondo regional (ver capítulo 6) y se atribuye a una disminución de los niveles de NOx (en especial de NO) que consume el O₃ en ambientes urbanos. La tendencia se caracteriza por un progresivo aumento hasta 2009 y un ligero descenso desde 2009 a 2012 (Figura 4.161).

Tráfico (14 ciudades): Rango de concentraciones en 2012 de entre 35 y 59 µg/m³ (correspondientes a Bilbao y a Palma, respectivamente), y una excepción (Granada, con 16 µg/m³), con una media de 44 µg/m³. Se observa una tendencia creciente estadísticamente significativa) en Valencia (**), Barcelona (**), Zaragoza (**), L’Hospitalet (*), Madrid (+) y Las Palmas (+), con un ratio de decrecimiento medio para las 14 ciudades de +3,0%/año, y un incremento acumulado de un +24% desde 2004 a 2012. Como en el caso de fondo urbano, este incremento se debe probablemente al descenso de los niveles de NO, el cual consume O₃ en ambientes de tráfico. La tendencia se caracteriza por un progresivo aumento paralelo al descrito para fondo urbano (Figura 4.161).

Industrial (8 ciudades): Rango de concentraciones en 2012 entre de 35 y 52 µg/m³ (valores de A Coruña y Sevilla, respectivamente), con una media de 46 µg/m³. Se observa una tendencia creciente estadísticamente significativa en Las Palmas (***) y Sevilla (***)), con un ratio de decrecimiento medio para las 8 ciudades de +1,2%/año, y un incremento acumulado de un +9% desde 2004 a 2012. Como en el caso de fondo urbano y tráfico este ligero incremento se debe probablemente al descenso de los niveles de NO, el cual consume O₃ en ambientes urbanos. La tendencia se caracteriza por un progresivo aumento paralelo al descrito para fondo urbano y tráfico (Figura 4.161).

![Gráfico de O₃](image)

Figura 4.157. Rango de variación en 2012 de los valores de O₃ para los diferentes entornos en las ciudades de estudio.

Capítulo 4. Análisis de contaminantes principales
4.10.4 CO

Fondo urbano: Se dispone de datos para 7 ciudades, y éstas muestran un rango de concentraciones en 2012 de entre 0,2 y 0,6 mg/m³ (correspondientes a Bilbao y Pamplona), con media de 0,3 mg/m³. Se observa una tendencia decreciente estadísticamente significativa en la mayoría de las ciudades (Zaragoza (**), Sevilla (**), Madrid (**), Valencia (*), Bilbao (*) y Pamplona (+)), con un ratio de decrecimiento medio para las 7 ciudades de -3,8%/año, y una disminución acumulada de un -34% desde 2003 a 2012. Esta disminución puede deberse a la reducción de los niveles de CO del tráfico rodado debido a las normas EURO4 y EURO5, pero también a la progresiva dieselización del parque de vehículos, ya que los niveles de emisión de CO de los vehículos de gasolina son muy superiores a los de diésel. La tendencia se caracteriza por un paulatino descenso de los niveles en 2003-2009, y unos valores constantes para 2009-2012 (Figura 4.161).

Tráfico (13 ciudades): Rango de concentraciones en 2012 de entre 0,1 y 0,6 mg/m³ (en Valladolid y Barcelona, respectivamente), con una media de 0,3 mg/m³. Se observa una tendencia decreciente estadísticamente significativa en la mayoría de las ciudades (Sevilla (**), Zaragoza (**), Alicante (**), Valencia (**), Granada (**), Murcia (*), Valladolid (*), Madrid (*), Bilbao (*), L´Hospitalet (*) y Las Palmas (+)), con un ratio de decrecimiento medio para las 13 ciudades de -6,4%/año, y una disminución acumulada de un -58% desde 2003 a 2012. La mayor disminución de CO en estaciones de tráfico respecto a las de fondo urbano corrobora el origen del tráfico y de las causas apuntadas anteriormente como principales motivos de su decrecimiento. La tendencia, al igual para las estaciones de fondo urbano, se caracteriza por un progresivo descenso de los niveles en 2003-2009, y uno decrecimiento mucho menos marcado para 2009-2012 (Figura 4.161).

Industriales (4 ciudades): Rango de concentraciones en 2012 de entre 0,2 y 0,4 mg/m³ (correspondientes a Gijón y Oviedo, en ese orden), con una media de 0,3 mg/m³. Se aprecia una tendencia decreciente estadísticamente significativa en la mayoría de las ciudades (como en Avilés (**), Santa Cruz de Tenerife (*) y Gijón (*)), con un ratio de decrecimiento medio para las 4 ciudades de -5,1%/año, y una disminución acumulada de un -46% desde 2003 a 2012. Muchas de estas estaciones además de ser industriales tienen una alta influencia del tráfico. La tendencia se caracteriza por un progresivo descenso de los niveles en 2003-2008 y un estancamiento para 2008-2012 (Figura 4.161).

La Figura 4.158 resume todas estas variaciones en los rangos de concentración de CO, por tipo de ambiente.
Figura 4.158. Rango de variación en 2012 de los valores de CO para los diferentes entornos en las ciudades de estudio.

4.10.5 PM10

Fondo urbano: Se dispone de datos para 9 ciudades, y éstas muestran un rango de concentraciones en 2012 que varía entre 18 y 35 µg/m³ (correspondientes a Palma y Bilbao, respectivamente), con media de 24 µg/m³. Se observa una tendencia decreciente estadísticamente significativa en Madrid (**), Barcelona (**), Valencia (**), Palma (*) y Pamplona (*), con un ratio de decrecimiento medio para las 9 ciudades de -1,9%/año, y un descenso acumulado de un -21% desde 2001 a 2012. Esta disminución ha sido progresiva desde 2007, mientras que en 2001-2007 los niveles se mantuvieron constantes (Figura 4.162).

Tráfico (12 ciudades): Rango de concentraciones en 2012 de entre 20 y 39 µg/m³ correspondientes respectivamente a Valladolid y a Granada, con una media de 28 µg/m³. Se observa una tendencia decreciente estadísticamente significativa en la mayoría de las ciudades (Las Palmas (**), L’Hospitalet (**), Madrid (**), Valladolid (**), Pamplona (*), Palma (*), Alicante (+)), con un ratio de decrecimiento medio para las 11 ciudades de -3,3%/año, y un descenso acumulado de un -36% desde 2001 a 2012. Esta disminución ha seguido la tendencia descrita para las estaciones de fondo urbano (Figura 4.162).

Industrial (7 ciudades): El rango de concentraciones en 2012 oscila entre 18 y 30 µg/m³, valores correspondientes a Las Palmas y Avilés, respectivamente, con una media de 24 µg/m³. Se aprecia una tendencia decreciente estadísticamente significativa en Gijón (**), Avilés (**), Oviedo (**), Las Palmas (*) y Santa Cruz (+), con un ratio de decrecimiento medio para las 10 ciudades de -4,70%/año, y un descenso acumulado de un -52% desde 2001 a 2012. La tendencia media de las 7 estaciones se caracteriza por una drástica disminución 2001-2008 y unos niveles constantes para 2009-2012 (Figura 4.162).

La Figura 4.159 resume todas estas variaciones en los rangos de concentración de PM10, por tipo de ambiente.
Análisis de la Calidad del Aire en España: Evolución 2001-2012

Figura 4.159. Rango de variación en 2012 de los valores de PM10 para los diferentes entornos en las ciudades de estudio.

4.10.6 PM2,5

En el caso de las partículas PM2,5 sólo se dispone de series largas (2003-2012) de medida para únicamente 5 ciudades, por lo que el análisis se ha efectuado de forma conjunta, sin distinguir entre ambientes de fondo urbano, de tráfico o industriales. Las series muestran un rango de concentraciones en 2012 de entre 7 y 19 µg/m³, correspondientes a Santa Cruz y Barcelona (en ese orden), con una media de 8 µg/m³ para las estaciones insulares canarias y de 17 µg/m³ para las 3 estaciones urbanas peninsulares. Se observa una tendencia decreciente estadísticamente significativa en todas ellas (Las Palmas (***) , Barcelona (*), Madrid (+), Valencia (+) y Santa Cruz (+)), con un ratio de decrecimiento medio de -2,7%/año entre 2004 y 2012, y un descenso acumulado de -29% para estos 8 años. Esta disminución ha sido progresiva a lo largo del periodo estudiado (Figura 4.162).

La Figura 4.159 resume todas estas variaciones en los rangos de concentración de PM2,5.
Figura 4.160. Rango de variación en 2012 de los valores de PM2,5 en las ciudades de estudio (el análisis se efectúa de manera conjunta, sin distinguir tipos de ambiente).
Figura 4.161. Tendencias 2001-2012 de niveles medios de SO$_2$, NO$_2$, CO y O$_3$ en ambientes de fondo urbano, tráfico e industriales en ciudades de España con población superior a 240.000 habitantes.
Figura 4.162. Tendencias 2001-2012 de niveles medios de PM10 y PM2,5 en ambientes de fondo urbano, tráfico e industriales en ciudades de España con población superior a 240.000 habitantes (sólo se distingue por tipo de ambiente en el caso de PM10).

4.10.7 Conclusiones

A modo de resumen de lo expuesto se destacan las siguientes tendencias:

1. Los niveles de SO$_2$, CO, PM10 y PM2,5 han descendido marcadamente en los últimos 12 años, tanto en entornos rurales, urbanos, como industriales de España, como consecuencia de las políticas ambientales aplicadas sobre las emisiones de fuentes fijas, móviles y difusas. Se destaca especialmente el efecto de las normas EURO en cuanto a emisiones de PM y CO de los vehículos, de las Directivas IPPC y de grandes instalaciones de combustión (GIC), así como de aquellas que han hecho reducir el contenido en azufre de los combustibles en lo que respecta al SO$_2$.

2. En NO$_2$ se ha registrado un descenso mucho menos marcado, debido al bajo efecto de las normas EURO de los vehículos en el caso de este contaminante, y al hecho de que las emisiones industriales de NOx en España han disminuido mucho menos que las de otros contaminantes como SO$_2$ y PM. No obstante, la disminución de las emisiones de NOx (NO+NO$_2$) ha sido mucho más marcada para el NO que para NO$_2$.

3. Esta ligera disminución de NOx, y en especial del NO causa un claro incremento de los niveles de O$_3$ urbanos, debido a que el NO es un contaminante primario que consume O$_3$. Al reducirse el primero, el consumo de O$_3$ es menor. La disminución del NO cesó hace unos pocos años y desde entonces el O$_3$ se mantiene constantemente más elevado que al
principio del periodo de estudio. Es de esperar que si en los años venideros se actúa drásticamente sobre los niveles de NO₂, los niveles de O₃ se volverán a reducir.

4. En entornos rurales los niveles de O₃, permanecen constantemente elevados a lo largo de estos últimos 12 años.

Los resultados demuestran pues un claro efecto positivo y beneficioso de las políticas ambientales seguidas en calidad del aire en los últimos años. Sin embargo, para cumplir los niveles guía de la OMS quedan aún importantes actuaciones para realizar en la próxima década.