

MINISTRY FOR THE ECOLOGICAL TRANSITION AND THE DEMOGRAPHIC CHALLENGE SECRETARY OF STATE FOR THE ENVIRONMENT

DIRECTORATE GENERAL FOR ENVIRONMENTAL QUIALTY AND ASESSMENT

ENVIRONMENTAL LIABILITY

INFORMATION SYSTEM

(SIRMA)

USER'S GUIDE

ANNEX I: Bibliographic references – ARM probabilities

TECHNICAL COMMISSION OF PREVENTION AND REMEDIATION OF ENVIRONMENTAL DAMAGES

INDEX

1	. E	BASIC EVENT BIBLIOGRAPHIC PROBABILITIES 5	-
	A. Hea	HSE 2019 - Failure Rate and Event Data for use within Risk Assessments (02/02/19). alth and Safety Executive (HSE)5	-
		FG 2009 - Handbook failure frequencies 2009 for drawing a safety report. Flemish vernment. LNE Department. Environment, Nature and Energy Policy Unit. Safety porting Division	-
	GE	VROM 2005 - Guidelines for quantitative risk assessment. PUBLICATIEREEKS VAARLIJKE STOFFEN. Publication Series on Dangerous Substances (PGS 3). Ministerie van rkeer en Waterstaat 22	
2	. (CONDITIONING FACTORS BIBLIOGRAPHIC PROBABILITIES	-
	A. Pre	HSE 2003 - Assessment of benefits of fire compartmentation in chemical warehouses. epared by WS Atkins Consultants Ltd for the Health and Safety Executive 31	-
		FG 2009 - Handbook failure frequencies 2009 for drawing a safety report. Flemish vernment. LNE Department. Environment, Nature and Energy Policy Unit. Safety porting Division	-
		VROM 2005 - Guidelines for quantitative risk assessment. PUBLICATIEREEKS VAARLIJKE STOFFEN. Publication Series on Dangerous Substances (PGS 3). Ministerie van rkeer en Waterstaat	

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO

1. BASIC EVENT BIBLIOGRAPHIC PROBABILITIES

A. HSE 2019 - Failure Rate and Event Data for use within Risk Assessments (02/02/19). Health and Safety Executive (HSE).

Source of danger	Basic event	Probability	Unit	Page
Large vessels >12000 m3	Catastrophic release	5,00E-06	year ⁻¹ vessel ⁻¹	7
Large vessels >12000 m3	Major release (hole diameter 1000 mm)	1,00E-04	year ⁻¹ vessel ⁻¹	7
Large vessels >12000 m3	Minor release (hole diameter 300 mm)	2,50E-03	year ⁻¹ vessel ⁻¹	7
Large vessels >12000 m3	Roof release	2,00E-03	year ⁻¹ vessel ⁻¹	7
Large vessels 12000-4000 m3	Catastrophic release	5,00E-06	year ⁻¹ vessel ⁻¹	7
Large vessels 12000-4000 m3	Major release (hole diameter 750 mm)	1,00E-04	year ⁻¹ vessel ⁻¹	7
Large vessels 12000-4000 m3	Minor release (hole diameter 225 mm)	2,50E-03	year ⁻¹ vessel ⁻¹	7
Large vessels 12000-4000 m3	Roof release	2,00E-03	year ⁻¹ vessel ⁻¹	7
Large vessels 4000-450 m3	Catastrophic release	5,00E-06	year ⁻¹ vessel ⁻¹	7
Large vessels 4000-450 m3	Major release (hole diameter 500 mm)	1,00E-04	year ⁻¹ vessel ⁻¹	7
Large vessels 4000-450 m3	Minor release (hole diameter 150 mm)	2,50E-03	year ⁻¹ vessel ⁻¹	7
Large vessels 4000-450 m3	Roof release	2,00E-03	year ⁻¹ vessel ⁻¹	7
Small and medium atmospheric tanks (SMATS). Non Flammable Contents	Catastrophic release	8,00E-06	year ⁻¹ vessel ⁻¹	9
Small and medium atmospheric tanks (SMATS). Non Flammable Contents	Large release	5,00E-05	year ⁻¹ vessel ⁻¹	9
Small and medium atmospheric tanks (SMATS). Non Flammable Contents	Small release	5,00E-04	year ⁻¹ vessel ⁻¹	9

Source of danger	Basic event	Probability	Unit	Page
Small and medium atmospheric tanks (SMATS). Flammable Contents	Catastrophic release	1,60E-05	year ⁻¹ vessel ⁻¹	9
Small and medium atmospheric tanks (SMATS). Flammable Contents	Large release	1,00E-04	year ⁻¹ vessel ⁻¹	9
Small and medium atmospheric tanks (SMATS). Flammable Contents	Small release	1,00E-03	year ⁻¹ vessel ⁻¹	9
Single walled vessels >12000 m3	Catastrophic failure	4,00E-05	year ⁻¹ vessel ⁻¹	12
Single walled vessels >12000 m3	Major failure (hole diameter 1000 mm)	1,00E-04	year ⁻¹ vessel ⁻¹	12
Single walled vessels >12000 m3	Minor failure (hole diameter 300 mm)	8,00E-05	year ⁻¹ vessel ⁻¹	12
Single walled vessels >12000 m3	Failure with a release of vapour only	2,00E-04	year ⁻¹ vessel ⁻¹	12
Single walled vessels 12000-4000 m3	Catastrophic failure	4,00E-05	year ⁻¹ vessel ⁻¹	12
Single walled vessels 12000-4000 m3	Major release (hole diameter 750 mm)	1,00E-04	year ⁻¹ vessel ⁻¹	12
Single walled vessels 12000-4000 m3	Minor release (hole diameter 225 mm)	8,00E-05	year ⁻¹ vessel ⁻¹	12
Single walled vessels 12000-4000 m3	Failure with a release of vapour only	2,00E-04	year ⁻¹ vessel ⁻¹	12
Single walled vessels 4000-450 m3	Catastrophic failure	4,00E-05	year ⁻¹ vessel ⁻¹	12
Single walled vessels 4000-450 m3	Major release (hole diameter 500 mm)	1,00E-04	year ⁻¹ vessel ⁻¹	12
Single walled vessels 4000-450 m3	Minor release (hole diameter 150 mm)	8,00E-05	year ⁻¹ vessel ⁻¹	12
Single walled vessels 4000-450 m3	Failure with a release of vapour only	2,00E-04	year ⁻¹ vessel ⁻¹	12
Double walled vessels >12000 m3	Catastrophic failure	5,00E-07	year ⁻¹ vessel ⁻¹	12
Double walled vessels >12000 m3	Major failure (hole diameter 1000 mm)	1,00E-05	year ⁻¹ vessel ⁻¹	12
Double walled vessels >12000 m3	Minor failure (hole diameter 300 mm)	3,00E-05	year ⁻¹ vessel ⁻¹	12
Double walled vessels >12000 m3	Failure with a release of vapour only	4,00E-04	year ⁻¹ vessel ⁻¹	12
Double walled vessels 12000-4000 m3	Catastrophic failure	5,00E-07	year ⁻¹ vessel ⁻¹	12
Double walled vessels 12000-4000 m3	Major failure (hole diameter 750 mm)	1,00E-05	year ⁻¹ vessel ⁻¹	12

Source of danger	Basic event	Probability	Unit	Page
Double walled vessels 12000-4000 m3	Minor failure (hole diameter 225 mm)	3,00E-05	year ⁻¹ vessel ⁻¹	12
Double walled vessels 12000-4000 m3	Failure with a release of vapour only	4,00E-04	year ⁻¹ vessel ⁻¹	12
Double walled vessels 4000-450 m3	Catastrophic failure	5,00E-07	year ⁻¹ vessel ⁻¹	12
Double walled vessels 4000-450 m3	Major failure (hole diameter 500 mm)	1,00E-05	year ⁻¹ vessel ⁻¹	12
Double walled vessels 4000-450 m3	Minor failure (hole diameter 150 mm)	3,00E-05	year ⁻¹ vessel ⁻¹	12
Double walled vessels 4000-450 m3	Failure with a release of vapour only	4,00E-04	year ⁻¹ vessel ⁻¹	12
Double wall vessels >12000 m3	Catastrophic failure	5,00E-08	year ⁻¹ vessel ⁻¹	15
Double wall vessels >12000 m3	Major failure (hole diameter 1000 mm)	1,00E-06	year ⁻¹ vessel ⁻¹	15
Double wall vessels >12000 m3	Minor failure (hole diameter 300 mm)	3,00E-06	year ⁻¹ vessel ⁻¹	15
Double wall vessels >12000 m3	Failure with a release of vapour only	4,00E-05	year ⁻¹ vessel ⁻¹	15
Double walled vessels 12000-4000 m3	Catastrophic failure	5,00E-08	year ⁻¹ vessel ⁻¹	15
Double walled vessels 12000-4000 m3	Major release (hole diameter 750 mm)	1,00E-06	year ⁻¹ vessel ⁻¹	15
Double walled vessels 12000-4000 m3	Minor release (hole diameter 225 mm)	3,00E-06	year ⁻¹ vessel ⁻¹	15
Double walled vessels 12000-4000 m3	Failure with a release of vapour only	4,00E-05	year ⁻¹ vessel ⁻¹	15
Double walled vessels 4000-450 m3	Catastrophic failure	5,00E-08	year ⁻¹ vessel ⁻¹	15
Double walled vessels 4000-450 m3	Major release (hole diameter 500 mm)	1,00E-06	year ⁻¹ vessel ⁻¹	15
Double walled vessels 4000-450 m3	Minor release (hole diameter 150 mm)	3,00E-06	year ⁻¹ vessel ⁻¹	15
Double walled vessels 4000-450 m3	Failure with a release of vapour only	4,00E-05	year ⁻¹ vessel ⁻¹	15
Single walled vessels 4000-2000 m3	Catastrophic failure	2,20E-05	year ⁻¹ vessel ⁻¹	16
Single walled vessels 4000-2000 m3	Major failure (hole diameter 400 mm)	1,00E-04	year ⁻¹ vessel ⁻¹	16
Single walled vessels 4000-2000 m3	Minor failure (hole diameter 120 mm)	8,00E-05	year ⁻¹ vessel ⁻¹	16
Single walled vessels 200-2000 m3	Catastrophic failure	2,20E-05	year ⁻¹ vessel ⁻¹	16
Single walled vessels 200-2000 m3	Major failure (hole diameter 250 mm)	1,00E-04	year ⁻¹ vessel ⁻¹	16

Source of danger	Basic event	Probability	Unit	Page
Single walled vessels 200-2000 m3	Minor failure (hole diameter 75 mm)	8,00E-05	year ⁻¹ vessel ⁻¹	16
Cluster tanks 4000-2000 m3	Simultaneous catastrophic failure of all tanks in cluster	1,00E-06	year ⁻¹	16
Cluster tanks 4000-2000 m3	Catastrophic failure of single tank in cluster	1,00E-06	year ⁻¹ tank ⁻¹	16
Cluster tanks 4000-2000 m3	Major failure (hole diameter 400 mm)	1,00E-05	year ⁻¹ tank ⁻¹	16
Cluster tanks 4000-2000 m4	Minor failure (hole diameter 120 mm)	5,00E-05	year ⁻¹ tank ⁻¹	16
Cluster tanks 200-2000 m3	Simultaneous catastrophic failure of all tanks in cluster	1,00E-06	year ⁻¹	16
Cluster tanks 200-2000 m3	Catastrophic failure of single tank in cluster	1,00E-06	year ⁻¹ tank ⁻¹	16
Cluster tanks 200-2000 m3	Major failure (hole diameter 250 mm)	1,00E-05	year ⁻¹ tank ⁻¹	16
Cluster tanks 200-2000 m4	Minor failure (hole diameter 75 mm)	5,00E-05	year ⁻¹ tank ⁻¹	16
Pressure Vessels	Catastrophic release (upper failures)	6,00E-06	year ⁻¹ vessel ⁻¹	18
Pressure Vessels	Catastrophic release (median failures)	4,00E-06	year ⁻¹ vessel ⁻¹	18
Pressure Vessels	Catastrophic release (lower failures)	2,00E-06	year ⁻¹ vessel ⁻¹	18
Pressure Vessels	50 mm diameter hole release	5,00E-06	year ⁻¹ vessel ⁻¹	18
Pressure Vessels	25 mm diameter hole release	5,00E-06	year ⁻¹ vessel ⁻¹	18
Pressure Vessels	13 mm diameter hole release	1,00E-05	year ⁻¹ vessel ⁻¹	18
Pressure Vessels	6 mm diameter hole release	4,00E-05	year ⁻¹ vessel ⁻¹	18
Chlorine pressure Vessels	Catastrophic release (use where site specific factors increase likehood of failure)	4,00E-06	year ⁻¹ vessel ⁻¹	23
Chlorine pressure Vessels	Catastrophic release (normal value)	2,00E-06	year ⁻¹ vessel ⁻¹	23
Chlorine pressure Vessels	50 mm diameter hole release	5,00E-06	year ⁻¹ vessel ⁻¹	23
Chlorine pressure Vessels	25 mm diameter hole release	5,00E-06	year ⁻¹ vessel ⁻¹	23
Chlorine pressure Vessels	13 mm diameter hole release	1,00E-05	year ⁻¹ vessel ⁻¹	23

Source of danger	Basic event	Probability	Unit	Page
Chlorine pressure Vessels	6 mm diameter hole release	4,00E-05	year ⁻¹ vessel ⁻¹	23
LPG pressure Vessels	Catastrophic release (cold vessel failures)	2,00E-06	year ⁻¹ vessel ⁻¹	25
LPG pressure Vessels	BLEVE (Boiling liquid expanding vapour explosion)	1,00E-05	year ⁻¹ vessel ⁻¹	25
LPG pressure Vessels	50 mm diameter hole release	5,00E-06	year ⁻¹ vessel ⁻¹	25
LPG pressure Vessels	25 mm diameter hole release	5,00E-06	year ⁻¹ vessel ⁻¹	25
LPG pressure Vessels	13 mm diameter hole release	1,00E-05	year ⁻¹ vessel ⁻¹	25
Spherical Vessels	Catastrophic release (upper failures)	6,00E-06	year ⁻¹ vessel ⁻¹	28
Spherical Vessels	Catastrophic release (median failures)	4,00E-06	year ⁻¹ vessel ⁻¹	28
Spherical Vessels	Catastrophic release (lower failures)	2,00E-06	year ⁻¹ vessel ⁻¹	28
Spherical Vessels	50 mm diameter hole release	5,00E-06	year ⁻¹ vessel ⁻¹	28
Spherical Vessels	25 mm diameter hole release	5,00E-06	year ⁻¹ vessel ⁻¹	28
Spherical Vessels	13 mm diameter hole release	1,00E-05	year ⁻¹ vessel ⁻¹	28
Spherical Vessels	6 mm diameter hole release	4,00E-05	year ⁻¹ vessel ⁻¹	28
Chemical reactors	Catastrophic release	1,00E-05	year ⁻¹ reactor ⁻¹	29
Chemical reactors	50 mm diameter hole release	5,00E-06	year ⁻¹ reactor ⁻¹	29
Chemical reactors	25 mm diameter hole release	5,00E-06	year ⁻¹ reactor ⁻¹	29
Chemical reactors	13 mm diameter hole release	1,00E-05	year ⁻¹ reactor ⁻¹	29
Chemical reactors	6 mm diameter hole release	4,00E-05	year ⁻¹ reactor ⁻¹	29
Manual valves (Exc. Human error)	Failure to close	1,00E-04	failure ⁻¹ demand ⁻¹	32
Remotely Operated Shutoff Valves (ROSOV) (Inc. Human error)	Failure to close	3,00E-02	failure ⁻¹ demand ⁻¹	32
Automatic shut-off valves (ASOV)	Failure to close	1,00E-02	failure ⁻¹ demand ⁻¹	32
Excess flow valves (XSFV) valves	Failure to operate	1,30E-02	failure ⁻¹ demand ⁻¹	32

Source of danger	Basic event	Probability	Unit	Page
Valves	Spray release	2,00E-04	year ⁻¹ valve ⁻¹	32
Pumps	Failure of casing	3,00E-05	year ⁻¹ pump ⁻¹	36
Pump single seal	Spray release	5,00E-04	year ⁻¹ pump ⁻¹	36
Pump double seal	Spray release	5,00E-05	year ⁻¹ pump ⁻¹	36
Hose and coupling basic facilities	Guillotine failure	4,00E-05	transfer ⁻¹	39
Hose and coupling average facilities	Guillotine failure	4,00E-06	transfer ⁻¹	39
Hose and coupling multi safety system facilities	Guillotine failure	2,00E-07	transfer ⁻¹	39
Hose and coupling basic facilities	15 mm diameter hole	1,00E-06	transfer ⁻¹	39
Hose and coupling average facilities	15 mm diameter hole	4,00E-07	transfer ⁻¹	39
Hose and coupling multi safety system facilities	15 mm diameter hole	4,00E-07	transfer ⁻¹	39
Hose and coupling basic facilities	5 mm diameter hole	1,30E-05	transfer ⁻¹	39
Hose and coupling average facilities	5 mm diameter hole	6,00E-06	transfer ⁻¹	39
Hose and coupling multi safety system facilities	5 mm diameter hole	6,00E-06	transfer ⁻¹	39
Hose and coupling	Spray release	1,20E-07	transfer ⁻¹	39
Hard arms	Guillotine failure	2,00E-07	transfer ⁻¹	43
Hard arms	15 mm diameter hole	4,00E-07	transfer ⁻¹	43
Hard arms	5 mm diameter hole	6,00E-06	transfer ⁻¹	43
Flanges and gaskets	Failure of one segment of a gasket	5,00E-06	year ⁻¹ joint ⁻¹	45
Flanges and gaskets	Failure of spiral wound gasket	1,00E-07	year ⁻¹ joint ⁻¹	45
Fixed pipe flange	Spray release	5,00E-06	year ⁻¹ flange ⁻¹	45
Pipework (diameter 0-49mm)	Hole size 3mm diameter	1,00E-05	year ⁻¹ metre ⁻¹	48

Source of danger	Basic event	Probability	Unit	Page
Pipework (diameter 50-149mm)	Hole size 3mm diameter	2,00E-06	year ⁻¹ metre ⁻¹	48
Pipework (diameter 150-299mm)	Hole size 4mm diameter	1,00E-06	year ⁻¹ metre ⁻¹	48
Pipework (diameter 300-499mm)	Hole size 4mm diameter	8,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 500-1000mm)	Hole size 4mm diameter	7,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 0-49mm)	Hole size 25mm diameter	5,00E-06	year ⁻¹ metre ⁻¹	48
Pipework (diameter 50-149mm)	Hole size 25mm diameter	1,00E-06	year ⁻¹ metre ⁻¹	48
Pipework (diameter 150-299mm)	Hole size 25mm diameter	7,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 300-499mm)	Hole size 25mm diameter	5,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 500-1000mm)	Hole size 25mm diameter	4,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 150-299mm)	Hole size 1/3 pipework diameter	4,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 300-499mm)	Hole size 1/3 pipework diameter	2,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 500-1000mm)	Hole size 1/3 pipework diameter	1,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 0-49mm)	Hole size: guillotine	1,00E-06	year ⁻¹ metre ⁻¹	48
Pipework (diameter 50-149mm)	Hole size: guillotine	5,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 150-299mm)	Hole size: guillotine	2,00E-07	year ⁻¹ metre ⁻¹	48
Pipework (diameter 300-499mm)	Hole size: guillotine	7,00E-08	year ⁻¹ metre ⁻¹	48
Pipework (diameter 500-1000mm)	Hole size: guillotine	4,00E-08	year ⁻¹ metre ⁻¹	48
Above ground pipelines in gas installation	Rupture (>110mm diameter)	6,50E-09	year ⁻¹ metre ⁻¹	58
Above ground pipelines in gas installation	Large Hole (>75 – ≤110mm)	3,30E-08	year ⁻¹ metre ⁻¹	58
Above ground pipelines in gas installation	Small Hole (>25 mm – ≤75 mm diameter)	6,70E-08	year ⁻¹ metre ⁻¹	58
Above ground pipelines in gas installation	Pin Hole (≤25 mm diameter)	1,60E-07	year ⁻¹ metre ⁻¹	58
Centrifugal compressor	Rupture (>110mm diameter)	2,90E-06	year ⁻¹ compressor ⁻¹	61
Centrifugal compressor	Large Hole (>75 – ≤110mm)	2,90E-06	year ⁻¹ compressor ⁻¹	61

Source of danger	Basic event	Probability	Unit	Page
Centrifugal compressor	Small Hole (>25 mm – ≤75 mm diameter)	2,70E-04	year ⁻¹ compressor ⁻¹	61
Centrifugal compressor	Pin Hole (≤25 mm diameter)	1,20E-02	year ⁻¹ compressor ⁻¹	61
Reciprocating compressor	Rupture (>110mm diameter)	1,40E-05	year ⁻¹ compressor ⁻¹	61
Reciprocating compressor	Large Hole (>75 – ≤110mm)	1,40E-05	year ⁻¹ compressor ⁻¹	61
Reciprocating compressor	Small Hole (>25 mm – ≤75 mm diameter)	3,30E-03	year ⁻¹ compressor ⁻¹	61
Reciprocating compressor	Pin Hole (≤25 mm diameter)	8,60E-02	year ⁻¹ compressor ⁻¹	61
Tank containers with a pressure relief system	Catastrophic failure	4,00E-06	year ⁻¹ vessel ⁻¹	63
Tank containers with no pressure relief system	Catastrophic failure	3,00E-06	year ⁻¹ vessel ⁻¹	63
Tanks containers	50 mm diameter hole	3,00E-05	year ⁻¹ vessel ⁻¹	63
Tanks containers	25 mm diameter hole	3,00E-05	year ⁻¹ vessel ⁻¹	63
Tanks containers	13 mm diameter hole	6,00E-05	year ⁻¹ vessel ⁻¹	63
Tanks containers	4 mm diameter hole	3,00E-04	year ⁻¹ vessel ⁻¹	63
Tanks containers	vapour release (50 mm diameter hole)	5,00E-04	year ⁻¹ vessel ⁻¹	63
Tanks containers	50 mm diameter hole (Failures due to dropping of the tank < 5 metres)	6,00E-07	year ⁻¹ lift ⁻¹	63
Tanks containers	Catastrophic failure (Failures due to dropping of the tank > 5 metres)	3,00E-08	year ⁻¹ lift ⁻¹	63
Tanks containers	50 mm diameter hole (Failures due to dropping of the tank > 5 metres)	6,00E-07	year ⁻¹ lift ⁻¹	63
Tanks containers	50 mm diameter hole (Failures due to a container being dropped on to the tank)	9,00E-11	year ⁻¹ pass ⁻¹	63
Road tankers	Serious accident rate	2,20E-07	km ⁻¹	65
LPG road tanker	LPG road tanker BLEVE (sites with small tanks)	1,00E-07	year ⁻¹ delivery ⁻¹	67
LPG road tanker	LPG road tanker BLEVE (sites with large tanks)	1,10E-08	year ⁻¹ delivery ⁻¹	67

Source of danger	Basic event	Probability	Unit	Page
Incompatible deliveries: below average	Incompatible deliveries: below average	6,00E-06	year ⁻¹ delivery ⁻¹	69
Incompatible deliveries: average	Incompatible deliveries: average	1,00E-07	year ⁻¹ delivery ⁻¹	69
Incompatible deliveries: above average	Incompatible deliveries: above average	5,00E-08	year ⁻¹ delivery ⁻¹	69
Transfer of liquefied gases (when 1 arm used)	Guillotine break	7,00E-06	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquefied gases (when 1 arm used)	Hole=0,1 cross sectional area of pipe	8,00E-06	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquefied gases (when 2 arms used)	Guillotine break	1,30E-05	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquefied gases (when 2 arms used)	Hole=0,1 cross sectional area of pipe	1,60E-05	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquefied gases (when 2 arms used)	Simultaneous guillotine breaks (for multiple arms)	1,00E-07	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquefied gases (when 3 arms used)	Guillotine break	1,90E-05	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquefied gases (when 3 arms used)	Hole=0,1 cross sectional area of pipe	2,40E-05	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquefied gases (when 3 arms used)	Simultaneous guillotine breaks (for multiple arms)	1,00E-07	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquid cargo (when 1 arm used)	Guillotine break	3,80E-05	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquid cargo (when 1 arm used)	Hole=0,1 cross sectional area of pipe	3,30E-05	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquid cargo (when 2 arms used)	Guillotine break	5,00E-05	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquid cargo (when 2 arms used)	Hole=0,1 cross sectional area of pipe	6,60E-05	year ⁻¹ transfer operation ⁻¹	73
Transfer of liquid cargo (when 2 arms used)	Simultaneous guillotine breaks (for multiple arms)	2,60E-06	year ⁻¹ transfer operation ⁻¹	73

Source of danger	Basic event	Probability	Unit	Page
Transfer of liquid cargo (when 3 arms used)	Guillotine break	6,20E-05	year ⁻¹ transfer operation ⁻¹	74
Transfer of liquid cargo (when 3 arms used)	Hole=0,1 cross sectional area of pipe	9,90E-05	year ⁻¹ transfer operation ⁻¹	74
Transfer of liquid cargo (when 3 arms used)	Simultaneous guillotine breaks (for multiple arms)	2,60E-06	year ⁻¹ transfer operation ⁻¹	74
Drums 1 te	Spontaneous drum failure	2,00E-06	year ⁻¹ . average number of drums stored on site	77
Drums 1 te	Coupling failure (guillotine)	1,20E-06	year ⁻¹ . total number of drums used on the site	77
Drums 1 te	Coupling failure (leak)	5,00E-06	year ⁻¹ . total number of drums used on the site	77
Drums 1 te	Coupling error (liquid) (Liquid off-take plants x 10 for sites with automatic)	4,50E-06	year ⁻¹ . total number of drums used on the site	77
Drums 1 te	Coupling error (liquid) (Gas off-take plant)	4,50E-06	year ⁻¹ . total number of drums used on the site	77
Drums 1 te	Coupling error (vapour)	1,00E-05	year ⁻¹ . total number of drums used on the site	77
Drums 1 te	Uncoupling error (liquid)	9,00E-05	year ⁻¹ . total number of drums used on the site	77
Drums 1 te	Uncoupling error (vapour)	1,00E-06	year ⁻¹ . total number of drums used on the site	77
Drums 1 te	Pipework	1,00E-08	year ⁻¹ . total number of drums used on the site	77
Drums 210 litre	Catastrophic (2 × drum contents released)	1,00E-06	year ⁻¹ . total number of drums used on the site	77

Source of danger	Basic event	Probability	Unit	Page
Drums 210 litre	Catastrophic (1 × drum contents released)	1,00E-05	year ⁻¹ . total number of drums used on the site	77
Drums 210 litre	Major failure of 2 drums (10 mm hole)	1,00E-04	year ⁻¹ . total number of drums used on the site	77
Drums 210 litre	Major failure of 1 drum (10 mm hole)	3,00E-06	year ⁻¹ . total number of drums used on the site	77
Human Factors	Human factors	1,00E-01	year ⁻¹	98

Source of danger	Basic event	Probability 1	Probability 2	Unit 1	Unit 2	Page
IBCs (Intermediate Bulk Containers)	Catastrophic	7,10E-05	1,40E-05	year ⁻¹ n ⁻¹	year ⁻¹ N ⁻¹	82
IBCs (Intermediate Bulk Containers)	Major (10 mm hole)	1,13E-04	1,30E-05	year ⁻¹ n ⁻¹	year ⁻¹ N ⁻¹	82
IBCs (Intermediate Bulk Containers)	Minor (5 mm hole)	5,20E-05	9,30E-04	year ⁻¹ n ⁻¹	year ⁻¹ N ⁻¹	82

* n (nº containers passing through the site)

** N (average nº of containers continuously in store)

Source of danger	Basic event	Probability	Unit	Page
Drums 210 litre	Catastrophic (2 × drum contents released)	0,000084*T/4	year ⁻¹	79
Drums 210 litre	Catastrophic (1 × drum contents released)	0,000002*T/4	year-1	79
Drums 210 litre	Major failure of 2 drums (10 mm hole)	0,000036*T/4	year-1	79
Drums 210 litre	Major failure of 1 drum (10 mm hole)	0,000002*T/4	year ⁻¹	79
Drums 210 litre	Minor failure of 1 drum (5 mm hole)	(6*10^-6 T/4) + (8*10^-5Q)	year-1	79

* T is the throughput per year

** Q is the maximum number of drums in storage at any time

Source of danger	Basic event	Probability	Unit	Page
Portable containers	Catastrophic container failure	2,00E-06	year ⁻¹ N ⁻¹	84
Portable containers	Holes in container (large - 10mm)	1,20E-06	year ⁻¹ n ⁻¹	84
Portable containers	Holes in container (small - 5mm)	5,00E-06	year ⁻¹ n ⁻¹	84

* N is the average number of containers stored on site

** n is the number of movements per container x the total number of containers passing through the site per year

B. FG 2009 - Handbook failure frequencies 2009 for drawing a safety report. Flemish Government. LNE Department. Environment, Nature and Energy Policy Unit. Safety Reporting Division.

Source of danger	Basic event	Probability	Unit	Page
Storage tanks above ground, road tankers and tankwagons	Small leak (0,1 < d ≤ 10 mm (deq = 10 mm))	1,20E-05	year ⁻¹ tank ⁻¹	12
Storage tanks above ground, road tankers and tankwagons	Medium leak (10 < d ≤ 50 mm (deq = 25 mm))	1,10E-06	year ⁻¹ tank ⁻¹	12
Storage tanks above ground, road tankers and tankwagons	Large leak (50 < d ≤ Dmax (deq = DL, max))	1,10E-06	year ⁻¹ tank ⁻¹	12
Storage tanks above ground, road tankers and tankwagons	Complete outflow (Complete outflow in 10 min)	3,20E-07	year ⁻¹ tank ⁻¹	12
Storage tanks above ground, road tankers and tankwagons	Rupture	3,20E-07	year ⁻¹ tank ⁻¹	12
Underground or mounded	Small leak (0,1 < d ≤ 10 mm (deq = 10 mm))	1,20E-05	year ⁻¹ tank ⁻¹	12
Underground or mounded	Medium leak (10 < d ≤ 50 mm (deq = 25 mm))	1,10E-06	year ⁻¹ tank ⁻¹	12
Underground or mounded	Large leak (50 < d ≤ Dmax (deq = DL, max))	1,10E-06	year ⁻¹ tank ⁻¹	12
Underground or mounded	Complete outflow (Complete outflow in 10 min)	1,00E-07	year ⁻¹ tank ⁻¹	12
Underground or mounded	Rupture	1,00E-07	year ⁻¹ tank ⁻¹	12
Process installations and other	Small leak (0,1 < d ≤ 10 mm (deq = 10 mm))	1,20E-04	year ⁻¹ tank ⁻¹	12
Process installations and other	Medium leak (10 < d ≤ 50 mm (deq = 25 mm))	1,10E-05	year ⁻¹ tank ⁻¹	12

Source of danger	Basic event	Probability	Unit	Page
Process installations and other	Large leak (50 < d ≤ Dmax (deq = DL, max))	1,10E-05	year ⁻¹ tank ⁻¹	12
Process installations and other	Complete outflow (Complete outflow in 10 min)	3,20E-06	year ⁻¹ tank ⁻¹	12
Process installations and other	Rupture	3,20E-06	year ⁻¹ tank ⁻¹	12
Gas cylinder	Leak (deq=Dmax)	-	year ⁻¹ cylinder ⁻¹	13
Gas cylinder	Rupture	1,10E-06	year ⁻¹ cylinder ⁻¹	13
Pressure vessel	Leak (deq=Dmax)	1,10E-05	year ⁻¹ cylinder ⁻¹	13
Pressure vessel	Rupture	1,10E-06	year ⁻¹ cylinder ⁻¹	13
Storage tank type 1 (incl. road tankers and tankwagons), 2, 3, 4 and underground or mounded	Small leak (0,1 < d ≤ 10 mm; deq = 10 mm)	2,40E-03	year ⁻¹ tank ⁻¹	14
Process installations and other	Small leak (0,1 < d ≤ 10 mm; deq = 10 mm)	2,40E-02	year ⁻¹ tank ⁻¹	14
Storage tank type 1 (incl. road tankers and tankwagons), 2, 3, 4 and underground or mounded	Medium leak (10 < d \leq 50 mm; deq = 25 mm)	2,20E-04	year ⁻¹ tank ⁻¹	14
Process installations and other	Medium leak ($10 < d \le 50 \text{ mm}$; deq = 25 mm)	2,20E-03	year ⁻¹ tank ⁻¹	14
Storage tank type 1 (incl. road tankers and tankwagons), 2, 3, 4 and underground or mounded	Large leak (50 < d ≤ Dmax; deq = DL,max)	2,20E-04	year ⁻¹ tank ⁻¹	14
Process installations and other	Large leak (50 < d ≤ Dmax; deq = DL,max)	2,20E-03	year ⁻¹ tank ⁻¹	14
Storage tank type 1	Complete outflow in 10 min	5,00E-06	year ⁻¹ tank ⁻¹	14
Storage tank type 2	Complete outflow in 10 min	5,00E-07	year ⁻¹ tank ⁻¹	14
Storage tank type 3	Complete outflow in 10 min	1,20E-08	year ⁻¹ tank ⁻¹	14
Storage tank type 4	Complete outflow in 10 min	1,00E-08	year ⁻¹ tank ⁻¹	14

Source of danger	Basic event	Probability	Unit	Page
Underground or mounded storage tanks	Complete outflow in 10 min	1,00E-08	year ⁻¹ tank ⁻¹	14
Process installations and other	Complete outflow in 10 min	5,00E-05	year ⁻¹ tank ⁻¹	14
Storage tank type 1	Rupture	5,00E-06	year ⁻¹ tank ⁻¹	14
Storage tank type 2	Rupture	5,00E-07	year ⁻¹ tank ⁻¹	14
Storage tank type 3	Rupture	1,20E-08	year ⁻¹ tank ⁻¹	14
Storage tank type 4	Rupture	1,00E-08	year ⁻¹ tank ⁻¹	14
Underground or mounded storage tanks	Rupture	1,00E-08	year ⁻¹ tank ⁻¹	14
Process installations and other	Rupture	5,00E-05	year ⁻¹ tank ⁻¹	14
Tank with external floating roof	Tank fire (P1 liquid)	2,50E-04	year ⁻¹ tank ⁻¹	16
Tank with external floating roof	Tank fire (P2 liquid)	7,60E-05	year ⁻¹ tank ⁻¹	16
Tank with external floating roof	Tank fire (P3 and P4 liquids)	2,30E-05	year ⁻¹ tank ⁻¹	16
Tank with fixed roof without nitrogen blanket	Tank fire (P1 liquid)	6,90E-04	year ⁻¹ tank ⁻¹	16
Tank with fixed roof without nitrogen blanket	Tank fire (P2 liquid)	2,10E-04	year ⁻¹ tank ⁻¹	16
Tank with fixed roof without nitrogen blanket	Tank fire (P3 and P4 liquids)	6,20E-05	year ⁻¹ tank ⁻¹	16
Tank with fixed roof with nitrogen blanket	Tank fire (P1 liquid)	2,50E-04	year ⁻¹ tank ⁻¹	16
Tank with fixed roof with nitrogen blanket	Tank fire (P2 liquid)	7,60E-05	year ⁻¹ tank ⁻¹	16
Tank with fixed roof with nitrogen blanket	Tank fire (P3 and P4 liquids)	2,30E-05	year ⁻¹ tank ⁻¹	16
Pipe heat exchangers	Small leak. $0 < d \le 25 \text{ mm}$ (deq = 10 mm)	6,00E-03	year ⁻¹ heat exchanger ⁻¹	17
Pipe heat exchangers	Medium leak. 25 < d ≤ 50 mm (deq = 35 mm)	3,90E-03	year ⁻¹ heat exchanger ⁻¹	17
Pipe heat exchangers	Large leak. 50 < d ≤ 150 mm (deq = 100 mm)	1,60E-05	year ⁻¹ heat exchanger ⁻¹	17
Pipe heat exchangers	Rupture	1,30E-05	year⁻¹heat	17

Source of danger	Basic event	Probability	Unit	Page
			exchanger ⁻¹	
Plate heat exchangers (Working pressure (P) < 5 bar)	Small leak. 0 < d ≤ 25 mm (deq = 10 mm)	4,6E-03	year ⁻¹ plate heat exchanger ⁻¹	18
Plate heat exchangers (Working pressure (P) < 5 bar)	Medium leak. 25 < d ≤ 50 mm (deq = 35 mm)	2,0E-03	year ⁻¹ plate heat exchanger ⁻¹	18
Plate heat exchangers (Working pressure (P) < 5 bar)	Rupture	5,5E-06	year ⁻¹ plate heat exchanger ⁻¹	18
Plate heat exchangers (Working pressure (P) >= 5 - 8 bar)	Small leak. 0 < d ≤ 25 mm (deq = 10 mm)	7,0E-03	year ⁻¹ plate heat exchanger ⁻¹	18
Plate heat exchangers (Working pressure (P) >= 5 - 8 bar)	Medium leak. 25 < d ≤ 50 mm (deq = 35 mm)	3,0E-03	year ⁻¹ plate heat exchanger ⁻¹	18
Plate heat exchangers (Working pressure (P) >= 5 - 8 bar)	Rupture	8,3E-06	year ⁻¹ plate heat exchanger ⁻¹	18
Plate heat exchangers (Working pressure (P) >= 8 bar)	Small leak. 0 < d ≤ 25 mm (deq = 10 mm)	3,6E+02	year ⁻¹ plate heat exchanger ⁻¹	18
Plate heat exchangers (Working pressure (P) >= 8 bar)	Medium leak. 25 < d ≤ 50 mm (deq = 35 mm)	7,2E-03	year ⁻¹ plate heat exchanger ⁻¹	18
Plate heat exchangers (Working pressure (P) >= 8 bar)	Rupture	2,0E-05	year ⁻¹ plate heat exchanger ⁻¹	18
Centrifugal pumps with gaskets	Leak. deq = 0,1 Dmax	4,4E-03	year ⁻¹ pump ⁻¹	19
Reciprocating pumps	Leak. deq = 0,1 Dmax	4,4E-03	year ⁻¹ pump ⁻¹	19
Compressors	Leak. deq = 0,1 Dmax	4,4E-03	year ⁻¹ compressor ⁻¹	19
Centrifugal pumps without gaskets	Leak. deq = 0,1 Dmax	1,00E-04	year ⁻¹ pump ⁻¹	19
Compressors	Rupture	1,0E-04	year ⁻¹ compressor ⁻¹	19
Reciprocating pumps	Rupture	1,0E-04	year ⁻¹ pump ⁻¹	19
Above ground pipeline	Small leak. deq = 0,1 D	2,80E-07	L/D year ⁻¹	20

Source of danger	Basic event	Probability	Unit	Page
Above ground pipeline	Medium leak. deq = 0,15 D	1,20E-07	L/D year ⁻¹	20
Above ground pipeline	Large leak. deq = 0,36 D	5,00E-08	L/D year-1	20
Above ground pipeline	Rupture	2,20E-08	L/D year-1	20
Underground pipeline	Crack. deq = 10 mm	7,90E-08	year ⁻¹ metre ⁻¹	20
Underground pipeline	Hole. deq = 0,5 D	6,90E-08	year ⁻¹ metre ⁻¹	20
Underground pipeline	Rupture	2,80E-08	year ⁻¹ metre ⁻¹	20
(Un)loading arm	Leak. deq=0,1 D(max. 50 mm)	3,00E-07	hour ⁻¹	21
(Un)loading arm	Rupture	3,00E-08	hour ⁻¹	21
Hose	Leak. deq=0,1 D(max. 50 mm)	4,00E-05	hour ⁻¹	21
Hose	Rupture	4,00E-06	hour ⁻¹	21
Hose for LPG	Leak. deq=0,1 D(max. 50 mm)	5,40E-06	hour ⁻¹	21
Hose for LPG	Rupture	5,40E-07	hour ⁻¹	21
Fire in warehouse without an automatic fire fighting system	Fire	2,50E-03	year ⁻¹ fire compartment ⁻¹	22
Fire in warehouse with an automatic fire fighting system	Fire	6,90E-04	year ⁻¹ fire compartment ⁻¹	22
Packaging unit storage	One packaging unit fails	2,50E-05	packaging unit year ⁻¹	23
Packaging unit handling	One packaging unit fails	2,50E-05	handling of packaging unit ⁻¹	23
Packaging unit handling	All packaging units on a pallet fail	2,50E-06	handling of packaging unit ⁻¹	23

C. VROM 2005 - Guidelines for quantitative risk assessment. PUBLICATIEREEKS GEVAARLIJKE STOFFEN. Publication Series on Dangerous Substances (PGS 3). Ministerie van Verkeer en Waterstaat.

Source of danger	Basic event	Probability	Unit	Page
Stationary tanks and vessels, pressurised. Pressure vessel	Instantaneous release of the complete inventory	5,00E-07	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels, pressurised. Pressure vessel	Continuous release of the complete inventory in 10 min at a constant rate of release	5,00E-07	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels, pressurised. Pressure vessel	Continuous release from a hole with an effective diameter of 10 mm	1,00E-05	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels, pressurised. Process vessel	Instantaneous release of the complete inventory	5,00E-06	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels, pressurised. Process vessel	Continuous release of the complete inventory in 10 min at a constant rate of release	5,00E-06	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels, pressurised. Process vessel	Continuous release from a hole with an effective diameter of 10 mm	1,00E-04	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels, pressurised. Reactor vessel	Instantaneous release of the complete inventory	5,00E-06	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels, pressurised. Reactor vessel	Continuous release of the complete inventory in 10 min at a constant rate of release	5,00E-06	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels, pressurised. Reactor vessel	Continuous release from a hole with an effective diameter of 10 mm	1,00E-04	year ⁻¹ vessel ⁻¹	3.3
Stationary tanks and vessels,atmospheric. Singlecontainment tank	Instantaneous release of the complete inventory directly to the atmosphere	5,00E-06	year ⁻¹ tank ⁻¹	3.6

Source of danger	Basic event	Probability	Unit	Page
Stationary tanks and vessels,atmospheric. Singlecontainment tank	Continuous release of the complete inventory in 10 min at a constant rate of release directly to the atmosphere	5,00E-06	year ⁻¹ tank ⁻¹	3.6
Stationary tanks and vessels,atmospheric. Singlecontainment tank	Continuous release from a hole with an effective diameter of 10 mm directly to the atmosphere	1,00E-04	year ⁻¹ tank ⁻¹	3.6
Stationary tanks and vessels, atmospheric. Tank with a protective outer shell	Instantaneous release of the complete inventory directly to the atmosphere	5,00E-07	year ⁻¹ tank ⁻¹	3.6
Stationary tanks and vessels, atmospheric. Tank with a protective outer shell	Instantaneous release of the complete inventory from the primary container into the unimpaired secondary container or outer shell	5,00E-07	year ⁻¹ tank ⁻¹	3.6
Stationary tanks and vessels, atmospheric. Tank with a protective outer shell	Continuous release of the complete inventory in 10 min at a constant rate of release directly to the atmosphere	5,00E-07	year ⁻¹ tank ⁻¹	3.6
Stationary tanks and vessels, atmospheric. Tank with a protective outer shell	Continuous release of the complete inventory in 10 min at a constant rate of release from the primary container into the unimpaired secondary container or outer shell	5,00E-07	year ⁻¹ tank ⁻¹	3.6
Stationary tanks and vessels, atmospheric. Tank with a protective outer shell	Continuous release from a hole with an effective diameter of 10 mm from the primary container into the unimpaired secondary container or outer shell	1,00E-04	year ⁻¹ tank ⁻¹	3.6
Stationary tanks and vessels, atmospheric. Double containment tank	Instantaneous release of the complete inventory directly to the atmosphere	1,25E-08	year ⁻¹ tank ⁻¹	3.6
Stationary tanks and vessels, atmospheric. Double containment tank	Instantaneous release of the complete inventory from the primary container into the unimpaired secondary container or	5,00E-08	year ⁻¹ tank ⁻¹	3.6

Source of danger	Basic event	Probability	Unit	Page
	outer shell			
	Continuous release of the complete			
Stationary tanks and vessels, atmospheric. Double containment tank	Continuous release of the complete inventory in 10 min at a constant rate of release directly to the atmosphere	1,25E-08	year ⁻¹ tank ⁻¹	3.6
	Continuous release of the complete			
Stationary tanks and vessels, atmospheric.	inventory in 10 min at a constant rate of release from the primary container into the	5,00E-08	year ⁻¹ tank ⁻¹	3.6
Double containment tank	unimpaired secondary container or outer	3,002 00		5.0
	shell			
Stationary tanks and vessels, atmospheric.	Continuous release from a hole with an effective diameter of 10 mm from the			
Double containment tank	primary container into the unimpaired	1,00E-04	year ⁻¹ tank ⁻¹	3.6
	secondary container or outer shell			
Stationary tanks and vessels, atmospheric. Full containment tank	Instantaneous release of the complete inventory directly to the atmosphere	1,00E-08	year ⁻¹ tank ⁻¹	3.6
	Instantaneous release of the complete			
Stationary tanks and vessels, atmospheric. In- ground tank	inventory from the primary container into the unimpaired secondary container or	1,00E-08	year ⁻¹ tank ⁻¹	3.6
<u> </u>	outer shell			
Stationary tanks and vessels, atmospheric.	Instantaneous release of the complete	1,00E-08	year ⁻¹ tank ⁻¹	3.6
Mounded tank	inventory directly to the atmosphere	4 005 06	-1 -1 -1	~ .
Gas cylinders. Gas cylinder	Catastrophic failure (instant release)	1,00E-06	year ⁻¹ cylinder ⁻¹	3.4
Pipes. Pipeline, nominal diameter < 75 mm	Full bore rupture	1,00E-06	year ⁻¹ metre ⁻¹	3.7
Pipes. Pipeline, nominal diameter < 75 mm	Leak	5,00E-06	year ⁻¹ metre ⁻¹	3.7
Pipes. Pipeline, 75 mm ≤ nominal diameter ≤ 150 mm	Full bore rupture	3,00E-07	year ⁻¹ metre ⁻¹	3.7

Source of danger	Basic event	Probability	Unit	Page
Pipes. Pipeline, 75 mm ≤ nominal diameter ≤ 150 mm	Leak	2,00E-06	year ⁻¹ metre ⁻¹	3.7
Pipes. Pipeline, nominal diameter > 150 mm	Full bore rupture	1,00E-07	year ⁻¹ metre ⁻¹	3.7
Pipes. Pipeline, nominal diameter > 150 mm	Leak	5,00E-07	year ⁻¹ metre ⁻¹	3.7
Pumps. Pumps without additional provisions	Catastrophic failure	1,00E-04	year ⁻¹ pump ⁻¹	3.9
Pumps. Pumps without additional provisions	Leak	5,00E-04	year ⁻¹ pump ⁻¹	3.9
Pumps. Pumps with a wrought steel containment	Catastrophic failure	5,00E-05	year ⁻¹ pump ⁻¹	3.9
Pumps. Pumps with a wrought steel containment	Leak	2,50E-04	year ⁻¹ pump ⁻¹	3.9
Pumps. Canned pumps	Catastrophic failure	1,00E-05	year ⁻¹ pump ⁻¹	3.9
Pumps. Canned pumps	Leak	5,00E-05	year ⁻¹ pump ⁻¹	3.9
Heat exchangers. Heat exchanger, dangerous substance outside pipes	Instantaneous release of the complete inventory	5,00E-05	year ⁻¹ heat exchanger ⁻¹	3.10
Heat exchangers. Heat exchanger, dangerous substance outside pipes	Continuous release of the complete inventory in 10 min at a constant rate of release	5,00E-05	year ⁻¹ heat exchanger ⁻¹	3.10
Heat exchangers. Heat exchanger, dangerous substance outside pipes	Continuous release from a hole with an effective diameter of 10 mm	1,00E-03	year ⁻¹ heat exchanger ⁻¹	3.10
Heat exchangers. Heat exchanger, dangerous substance inside pipes, design pressure outer shell less than pressure of dangerous substance	Full bore rupture of ten pipes simultaneously, outflow from both sides of the full bore rupture	1,00E-05	year ⁻¹ heat exchanger ⁻¹	3.10
Heat exchangers. Heat exchanger, dangerous substance inside pipes, design pressure outer shell less than pressure of dangerous substance	Full bore rupture of one pipe outflow from both sides of the full bore rupture	1,00E-03	year ⁻¹ heat exchanger ⁻¹	3.10

Source of danger	Basic event	Probability	Unit	Page
Heat exchangers. Heat exchanger, dangerous substance inside pipes, design pressure outer shell less than pressure of dangerous substance	Leak, outflow from a leak with an effective diameter of 10% of the nominal diameter, with a maximum of 50 mm	1,00E-02	year ⁻¹ heat exchanger ⁻¹	3.10
Heat exchangers. Heat exchanger, dangerous substance inside pipes, design pressure outer shell more than pressure of dangerous substance	Full bore rupture of ten pipes simultaneously, outflow from both sides of the full bore rupture	1,00E-06	year ⁻¹ heat exchanger ⁻¹	3.10
Pressure relief devices. Pressure relief device	Discharge of a pressure relief device with maximum discharge rate	2,00E-05	year ⁻¹ devices ⁻¹	3.11
Warehouses. Storage of substances in warehouses with protection levels 1 and 2	Handling solids: dispersion of a fraction of the packaging unit inventory as respirable powder	1,00E-05	handling of packaging unit ⁻¹	3.11
Warehouses. Storage of substances in warehouses with protection levels 1 and 2	Handling liquids: spill of the complete packaging unit inventory (liquid spill)	1,00E-05	handling of packaging unit ⁻¹	3.11
Warehouses. Storage of substances in warehouses with protection levels 1 and 2	Emission of unburned toxics and toxics produced in the fire (fire)	8,80E-04	year ⁻¹	3.11
Warehouses. Storage of substances in warehouses with protection level 3	Handling solids: dispersion of a fraction of the packaging unit inventory as respirable powder	1,00E-05	handling of packaging unit ⁻¹	3.11
Warehouses. Storage of substances in warehouses with protection level 3	Handling liquids: spill of the complete packaging unit inventory (liquid spill)	1,00E-05	handling of packaging unit ⁻¹	3.11
Warehouses. Storage of substances in warehouses with protection level 3	Emission of unburned toxics and toxics produced in the fire (fire)	1,80E-04	year ⁻¹	3.11
Storage of explosives. Storage of explosives	Mass detonation	1,00E-05	year ⁻¹	3.12
Road tankers and tank wagons. Tank, pressurised	Instantaneous release of the complete inventory	5,00E-07	year ⁻¹ tank ⁻¹	3.14

Source of danger	Basic event	Probability	Unit	Page
Road tankers and tank wagons. Tank, pressurised	Continuous release from a hole the size of the largest connection. If the tank is (partly) filled with liquid, the release is modelled from the liquid phase out of the largest liquid connection.	5,00E-07	year ⁻¹ tank ⁻¹	3.14
Road tankers and tank wagons. Tank, pressurised	Full bore rupture of the loading/unloading hose. The outflow is from both sides of the full bore rupture.	4,00E-06	hour ⁻¹	3.14
Road tankers and tank wagons. Tank, pressurised	Leak of the loading/unloading hose. The outflow is from a leak with an effective diameter of 10% of the nominal diameter, with a maximum of 50 mm.	4,00E-05	hour ⁻¹	3.14
Road tankers and tank wagons. Tank, pressurised	Full bore rupture of the loading/unloading arm. Outflow from both sides of the full bore rupture	3,00E-08	hour ⁻¹	3.14
Road tankers and tank wagons. Tank, pressurised	Leak of the loading/unloading arm. Outflow from a leak with an effective diameter of 10% of the nominal diameter, with a maximum of 50 mm	3,00E-07	hour ⁻¹	3.14
Road tankers and tank wagons. Tank, pressurised	Fire under tank, to be modelled as an instantaneous release of the complete inventory of the tank	1,00E-06	year ⁻¹ tank ⁻¹	3.14
Road tankers and tank wagons. Tank, atmospheric	Instantaneous release of the complete inventory	1,00E-05	year ⁻¹ tank ⁻¹	3.14
Road tankers and tank wagons. Tank, atmospheric	Continuous release from a hole the size of the largest connection. If the tank is (partly) filled with liquid, the release is modelled from the liquid phase out of the largest liquid connection.	5,00E-07	year ⁻¹ tank ⁻¹	3.14

Source of danger	Basic event	Probability	Unit	Page
Road tankers and tank wagons. Tank, atmospheric	Full bore rupture of the loading/unloading hose. The outflow is from both sides of the full bore rupture.	4,00E-06	hour ⁻¹	3.14
Road tankers and tank wagons. Tank, atmospheric	Leak of the loading/unloading hose. The outflow is from a leak with an effective diameter of 10% of the nominal diameter, with a maximum of 50 mm.	4,00E-05	hour ⁻¹	3.14
Road tankers and tank wagons. Tank, atmospheric	Full bore rupture of the loading/unloading arm. Outflow from both sides of the full bore rupture	3,00E-08	hour ⁻¹	3.14
Road tankers and tank wagons. Tank, atmospheric	Leak of the loading/unloading arm. Outflow from a leak with an effective diameter of 10% of the nominal diameter, with a maximum of 50 mm	3,00E-07	hour ⁻¹	3.14
Road tankers and tank wagons. Tank, atmospheric	Fire under tank, to be modelled as an instantaneous release of the complete inventory of the tank	1,00E-05	year ⁻¹ tank ⁻¹	3.14
Ships in an establishment. Single-walled liquid tanker	Full bore rupture of the loading/unloading arm outflow from both sides of the full bore rupture	6,00E-05	transhipment ⁻¹	3.15
Ships in an establishment. Single-walled liquid tanker	Leak of the loading/unloading arm outflow from a leak with an effective diameter equal to 10% of the nominal diameter, with a maximum of 50 mm	6,00E-04	transhipment ⁻¹	3.15
Ships in an establishment. Single-walled liquid tanker	External impact, large spill, continuous release of 75 m3 in 1800 s	6,70E-12	Total number of ships per year on the transport route or in the harbour ⁻¹ average duration of loading/unloading per ship (in hours) ⁻¹ Number of transhipments per year ⁻¹	3.15

Source of danger	Basic event	Probability	Unit	Page
Ships in an establishment. Single-walled liquid tanker	External impact, small spill, continuous release of 30 m3 in 1800 s	1,34E-11	Total number of ships per year on the transport route or in the harbour ⁻¹ average duration of loading/unloading per ship (in hours) ⁻¹ Number of transhipments per year ⁻¹	3.15
Ships in an establishment. Double-walled liquid tanker	Full bore rupture of the loading/unloading arm outflow from both sides of the full bore rupture	6,00E-05	transhipment ⁻¹	3.15
Ships in an establishment. Double-walled liquid tanker	Leak of the loading/unloading arm outflow from a leak with an effective diameter equal to 10% of the nominal diameter, with a maximum of 50 mm	6,00E-04	transhipment ⁻¹	3.15
Ships in an establishment. Double-walled liquid tanker	External impact, large spill, continuous release of 75 m3 in 1800 s	4,02E-13	Total number of ships per year on the transport route or in the harbour ⁻¹ average duration of loading/unloading per ship (in hours) ⁻¹ Number of transhipments per year ⁻¹	3.15
Ships in an establishment. Double-walled liquid tanker	External impact, small spill, continuous release of 20 m3 in 1800 s	1,01E-13	Total number of ships per year on the transport route or in the harbour ⁻¹ average duration of loading/unloading per ship (in hours) ⁻¹ Number of transhipments per year ⁻¹	3.15
Ships in an establishment. Gas tanker	Full bore rupture of the loading/unloading arm outflow from both sides of the full bore rupture	6,00E-05	transhipment ⁻¹	3.15

Source of danger	Basic event	Probability	Unit	Page
Ships in an establishment. Gas tanker	Leak of the loading/unloading arm outflow from a leak with an effective diameter equal to 10% of the nominal diameter, with a maximum of 50mm	6,00E-04	transhipment ⁻¹	3.15
Ships in an establishment. Gas tanker	External impact, large spill, continuous release of 180 m3 in 1800 s	1,68E-12	Total number of ships per year on the transport route or in the harbour ⁻¹ average duration of loading/unloading per ship (in hours) ⁻¹ Number of transhipments per year ⁻¹	3.15
Ships in an establishment. Gas tanker	External impact, small spill, continuous release of 90 m3 in 1800 s	8,04E-15	Total number of ships per year on the transport route or in the harbour ⁻¹ average duration of loading/unloading per ship (in hours) ⁻¹ Number of transhipments per year ⁻¹	3.15
Ships in an establishment. Semi-gas tanker	Full bore rupture of the loading/unloading arm outflow from both sides of the full bore rupture	6,00E-05	transhipment ⁻¹	3.15
Ships in an establishment. Semi-gas tanker	Leak of the loading/unloading arm outflow from a leak with an effective diameter equal to 10% of the nominal diameter, with a maximum of 50 mm	6,00E-04	transhipment ⁻¹	3.15
Ships in an establishment. Semi-gas tanker	External impact, large spill, continuous release of 126 m3 in 1800 s	1,68E-12	Total number of ships per year on the transport route or in the harbour ⁻¹ average duration of loading/unloading per ship (in hours) ⁻¹ Number of transhipments per year ⁻¹	3.15

Source of danger	Basic event	Probability	Unit	Page
Ships in an establishment. Semi-gas tanker	External impact, small spill, continuous release of 32 m3 in 1800 s	8,04E-15	Total number of ships per year on the transport route or in the harbour ⁻¹ average duration of loading/unloading per ship (in hours) ⁻¹ Number of transhipments per year ⁻¹	3.15

2. CONDITIONING FACTORS BIBLIOGRAPHIC PROBABILITIES

A. HSE 2003 - Assessment of benefits of fire compartmentation in chemical warehouses. Prepared by WS Atkins Consultants Ltd for the Health and Safety Executive.

Category	System type	Probability	Unit	Page
Detection	Manual (Fuel Type 1)	9,00E-01	demand ⁻¹	26
Detection	Manual (Fuel Type 2)	8,00E-01	demand ⁻¹	26
Detection	Manual (Fuel Type 3)	7,00E-01	demand ⁻¹	26
Detection	Manual (Fuel Type 4)	9,00E-01	demand ⁻¹	26
Detection	Manual (Fuel Type 5)	8,00E-01	demand ⁻¹	26
Detection	Automatic (Fuel Type 1)	2,00E-01	demand ⁻¹	26
Detection	Automatic (Fuel Type 2)	2,00E-01	demand ⁻¹	26
Detection	Automatic (Fuel Type 3)	2,00E-01	demand ⁻¹	26
Detection	Automatic (Fuel Type 4)	2,00E-01	demand⁻¹	26
Detection	Automatic (Fuel Type 5)	2,00E-01	demand ⁻¹	26

Category	System type	Probability	Unit	Page
Detection	Manual and automatic (Fuel Type 1)	1,80E-01	demand ⁻¹	26
Detection	Manual and automatic (Fuel Type 2)	1,60E-01	demand ⁻¹	26
Detection	Manual and automatic (Fuel Type 3)	1,40E-01	demand ⁻¹	26
Detection	Manual and automatic (Fuel Type 4)	1,80E-01	demand ⁻¹	26
Detection	Manual and automatic (Fuel Type 5)	1,60E-01	demand ⁻¹	26
Suppression system	Water sprinklers (Fuel Type 1)	4,00E-01	demand ⁻¹	28
Suppression system	Water sprinklers (Fuel Type 2)	3,00E-01	demand ⁻¹	28
Suppression system	Water sprinklers (Fuel Type 3)	2,00E-01	demand ⁻¹	28
Suppression system	Water sprinklers (Fuel Type 4)	1,00E-01	demand ⁻¹	28
Suppression system	Water sprinklers (Fuel Type 5)	1,50E-01	demand ⁻¹	28
Suppression system	Foam/water sprinklers (Fuel Type 1)	2,00E-01	demand ⁻¹	28
Suppression system	Foam/water sprinklers (Fuel Type 2)	1,00E-01	demand ⁻¹	28
Suppression system	Foam/water sprinklers (Fuel Type 3)	5,00E-02	demand ⁻¹	28
Suppression system	Foam/water sprinklers (Fuel Type 4)	5,00E-02	demand ⁻¹	28
Suppression system	Foam/water sprinklers (Fuel Type 5)	1,00E-01	demand ⁻¹	28
Suppression system	Gaseous (Fuel Type 1)	2,00E-01	demand ⁻¹	28
Suppression system	Gaseous (Fuel Type 2)	1,00E-01	demand ⁻¹	28
Suppression system	Gaseous (Fuel Type 3)	5,00E-02	demand ⁻¹	28
Suppression system	Gaseous (Fuel Type 4)	8,00E-01	demand ⁻¹	28
Suppression system	Gaseous (Fuel Type 5)	9,00E-01	demand ⁻¹	28
Suppression system	Manual (Fuel Type 1)	9,00E-01	demand ⁻¹	28
Suppression system	Manual (Fuel Type 2)	8,00E-01	demand ⁻¹	28
Suppression system	Manual (Fuel Type 3)	6,00E-01	demand ⁻¹	28

Category	System type	Probability	Unit	Page
Suppression system	Manual (Fuel Type 4)	6,00E-01	demand ⁻¹	28
Suppression system	Manual (Fuel Type 5)	8,00E-01	demand ⁻¹	28

Fuel Type		
Fuel Type 1	Highly flammable liquid	
Fuel Type 2	Flammable liquid	
Fuel Type 3	Combustible liquid	
Fuel Type 4	Metal compound	
Fuel Type 5	Strong oxidising agent	

B. FG 2009 - Handbook failure frequencies 2009 for drawing a safety report. Flemish Government. LNE Department. Environment, Nature and Energy Policy Unit. Safety Reporting Division.

Category	System type	Probability	Unit	Page
Blocking system	Automatic simple system	1,00E-01	demand ⁻¹	24
Blocking system	Automatic redundant system	1,00E-02	demand ⁻¹	24
Blocking system	Automatic diversely redundant system	1,00E-03	demand ⁻¹	24
Blocking system	Semi-automatic	[0,1-0,01]	demand ⁻¹	24
Excess flow valve	Outflow rate ≤ set value	1,00E+00	demand ⁻¹	24
Excess flow valve	Set value < outflow rate ≤ 1.2 × set value	1,20E-01	demand ⁻¹	24
Excess flow valve	Outflow rate > 1.2 × set value	6,00E-02	demand ⁻¹	24
Non-return valve tested regularly	Non-return valve tested regularly	6,00E-02	demand ⁻¹	24
Operator intervention during (un)loading activity	Operator intervention during (un)loading activity	1,00E-01	demand ⁻¹	24
Passive repression systems	Passive repression systems	0,00E+00	demand ⁻¹	24
Other repression systems	Other repression systems	1,00E-01	demand ⁻¹	27

C. VROM 2005 - Guidelines for quantitative risk assessment. PUBLICATIEREEKS GEVAARLIJKE STOFFEN. Publication Series on Dangerous Substances (PGS 3). Ministerie van Verkeer en Waterstaat.

Category	Probability	Unit	Page
Automatic blocking system	1,00E-03	demand ⁻¹	4.5
Remote-controlled blocking system	1,00E-02	demand ⁻¹	4.5
Hand-operated blocking system	1,00E-02	demand ⁻¹	4.5
Other repression systems	5,00E-02	demand ⁻¹	4.6

MINISTRY FOR THE ECOLOGICAL TRANSITION AND THE DEMOGRAPHIC CHALLENGE SECRETARY OF STATE FOR THE ENVIRONMENT

DIRECTORATE GENERAL FOR ENVIRONMENTAL QUALITY AND ASSESSMENT

ENVIRONMENTAL LIABILITY

INFORMATION SYSTEM

(SIRMA)

USER'S GUIDE

ANNEX II: IDM agents-resources combinations

TECHNICAL COMMISSION OF PREVENTION AND REMEDIATION OF ENVIRONMENTAL DAMAGES

1. INTRODUCTION

This annex includes a series of indications to help users in the interpretation and use of the agents-resources combinations considered within the IDM application, that is show below.

			Resource							
			Water					Species		
			e	Conti	nental	Continental shelf and seabed	Soil	Sea and estuary banks	S	3
			Marine	Surface	Underground	Contine and		and est	Plants	Fauna
		Halogenated VOC								
	Chemical	Non-halogenated VOC	Group 1		roup 2 Group 5		-			
		Halogenated SVOC					-	Group 10	Group 11	Group 16
		Non-halogenated SVOC					Group 9			
		Fuels and NVOC				• •				
mage		Inorganic substances		_		Group 7				
ie da		Explosives								
Agent causing the damage	ical	Extraction/Disappearance		Group 3	Group 6		Group 3		Group 12	Group 17
nt ca	Physical	Inert waste discharge				Group 8				
Age		Temperature		Group 4			Group 4		Group 13	Group 18
	Fire								Group 14	Group 19
		GMO							Group 15	
	Biological	Invasive alien species								Group 20
	Biolo	Virus and bacteria								
		Fungi and insects							Group 15	

Figure AI.1.-1 IDM agent-resources combinations. Source: Regulation of partial development of Law 26/2007

2. SPECIFIC INDICATIONS

2.1. MARINE WATER

Marine water damages will affect its chemical properties and/or its environmental status.

In the group of chemical pollutants, the only ones not included in the table are: 1) explosive substances denser than water, because it is considered they would provoke damages to the seabed and not the marine water itself; and 2) those substances that are foreseen to dissolve in the water (inorganic substances and some explosives), since being marine waters a very resilient resource, it has not been possible to identify specific remediation techniques for them.

The same applies for physical damages caused by abstraction of seawater. For this damage to be relevant, it would be necessary to be of high magnitude. The same applies to damages caused by temperature.

Some combinations such as the spill of inert substances in marine waters, are already covered in other combinations, in this case a damage by inert substances to seabed.

Biological damages are note considered in the table, since they would be related to marine species and not marine waters itself.

2.2. CONTINENTAL SURFACE WATERS

As in the case of marine waters, in continental surface waters it is only considered those agents that affect their chemical properties and environmental damage.

In the same way, the spill of inert substances is considered as a damage to the continental bed.

Biological damages are note considered in the table, since they would be related to the species and not the continental waters.

2.3. CONTINENTAL GROUNDWATER

As in the previous cases, groundwater damage is only considered by those agents that affect their physic-chemical properties and environmental damage.

Due to its depth and difficulty to access them, it is considered they can not be affected by inert substances of temperature variations.

Biological damages would be excluded for the same reason given for marine waters and continental surface waters.

2.4. CONTINENTAL SHEALF AND SEABED

Only substances denser than water can affect these resources. Therefore volatile and semi volatile chemical substances are excluded in this case.

The damages caused by the rest of agents (temperature, fire and biological) are not considered as being able to cause damage to these resources.

2.5. SOIL

Soil damage is considered as a modification of its physic-chemical properties.

Therefore, the only agents that are not considered relevant to cause damage to soil are fire and biological agents. A fire would only affect the top layer of the terrain and not damaging a significant amount of the resource, and its remediation would be linked to a remediation of the plants or fauna present in the soil.

2.6. SEA AND ESTUARY BASINS

This resource is linked to marine waters resource since the most common damages that can affect both resources are caused by fuels, VOC and SVOC.

In the rest of options not included in the table, the approach would be similar to that in the case of soil or a combination of soil and water.

As in the case of soil and water, fire and biological agents are not considered as having an impact.

2.7. PLANTS

In the damages caused to plants only two agents are not considered:

- Inerts. The surface affected by inter substances are not usually high enough to cause significant damage to plants. In case this occurs, they could be treated as a combination of soil and damage to plants by extraction.
- Viruses and bacteria. They are considered to cause damage only to fauna.

2.8. FAUNA

As in the case of plants (or flora), only two agents are not considered:

• Inerts. Due to the movility of fauna it is not likely to affect them. In any case, it could be treated as a damage to soil and fauna by extraction.

• Fungi and insects. They usually affect flora.

For determining if a specie is threatened it is proposed to use as a source of information the categories of the International Union for Conservation of Nature (IUCN). In this sense, the species considered as threatened will be those in the category of critical danger, in danger and vulnerable. The rest will ben considered as non threatened.

MINISTRY FOR THE ECOLOGICAL TRANSITION AND THE DEMOGRAPHIC CHALLENGE SECRETARY OF STATE FOR THE ENVIRONMENT

DIRECTORATE GENERAL FOR ENVIRONMENTAL QUALITY AND ASSESSMENT

ENVIRONMENTAL LIABILITY

INFORMATION SYSTEM

(SIRMA)

USER'S GUIDE

ANNEX III: IDM modifiers

TECHNICAL COMMISSION OF PREVENTION AND REMEDIATION OF ENVIRONMENTAL DAMAGES

1. INTRODUCTION

This annex includes a description of the modifier used in the IDM equation and are taken from the Regulation of partial development of Law 26/2007.

In the equation of the IDM, the modifiers that allow for the estimation of the affected resources based on the amount of agent released (type B modifiers) make up the characteristics of the damage causing agent and the environment that condition their greater or lesser diffusion in the receiving environment. Likewise, modifiers of the unit cost estimator (type A modifiers) and the revision and control cost estimator (type C modifiers) have been identified.

The following figure shows the different types of modifiers (A, B and C) indicated in the IDM equation.

Figure 1. IDM Estimation: list of type A, B and C modifiers. Source: Prepared by the authors.

2. DESCRIPTION OF THE MODIFIERS

2.1. MODIFIER OF THE COST UNIT ESTIMATOR (MA)

2.1.1. VEGETATION DENSITY

As modifier o the cost unit, and considering "Tragsa rates 2007", vegetation density determines the remedial technique, according to the number of feet per hectare needed to replant in case of trees and a mean density in the case of scrub and grassland.

Cathegories	Description	Value
Very dense	Foot density higher than 700 feet/ha. Scrub or grassland very dense	1,20
Medium	Foot density 50-700 feet/ha. Scrub or grassland density medium	1,00
Low density	Foot density lower than 50 pies/ha. Scrub or grassland low density	0,50

2.1.2. PROTECTED NATURAL AREA (PNA)

IDM methodology takes into account the possible damage protected natural areas, as an increase in the remedial project cost.

Cathegories	Description	Value
PNA	Possible damage to a PNA	1,25
No PNA	No damage to a PNA	1,00

2.1.3. STONINESS

In order to determine the difficulty to access da place where the damage occurs, two categories have been described. They are based on the costs of reforestation in Tragsa costs 2007.

Cathegories	Description	Value
Stony soil	Soil with rocks of all sizes. Irregular soils	1,10
Non Stony soil	Soils with compacted materials. Soils easily passable.	1,00

2.1.4. SLOPE

The slope is very indicative in the remedial techniques costs taking into account Tragsa costs 2007.

Cathegories	Description	Value
High	Average slope > 50%	1,50
Medium	Average slope between 30 and 50%	1,25
Low	Average slope < 30%	1,00

2.2. MODIFIERS OF THE AMOUNT OF RECEPTOR AFFECTED (MB)

2.2.1. BIODEGRADABILITY

There are different expressions to represent biological degradability. To evaluate this modifier, it is recommended to check the security sheets as those gathered in the European Chemical Substances Information System (<u>http://esis.jrc.ec.europa.eu/</u>)

Cathegories	Description	Value
High	High biodegradability	1,00
Medium	Medium biodegradability	0,90
Low	Low biodegradability	0,80

2.2.2. POPULATION DENSITY

IDM methodology proposes a scale based on semiquantitative criteria to establish the population density in the area affected by a damage:

Cathegories	Description	Value
Very dense	There are many references on the presence of the specie in the area. There is a high number of individuals per surface unit compared with other comparable populations of the same species.	2,00
Medium	There is a high number of references on the presence of the specie in the area. There is a medium number of individuals per surface unit compared with other comparable populations of the same species.	1,50
Low density	There are scarce references on the presence of the specie in the area. There is a low number of individuals per surface unit compared with other comparable populations of the same species.	1,00

2.2.3. VEGETATION DENSITY

Vegetation density has been classified taking into account the number of feet per hectare needed for carrying out the reforestation, in the case of forests, and an average qualitative density in the case of scrub and grassland. The use of this modifier is based on the information required by the BEHAVE (USDA) fire forest model.

Cathegories	Description	Value
Very dense	Foot density higher than 700 feet/ha. Scrub or grassland very dense	1,20
Medium	Foot density 50-700 feet/ha. Scrub or grassland density medium	1,00
Low density	Foot density lower than 50 pies/ha. Scrub or grassland low density	0,50

2.2.4. TEMPERATURA DIFFERENCE

In the case of damages caused by temperature, it has been considered that the difference of temperature between the agent and the resource determines the amount of resource potentially affected. The different categories have been established taking into account the average temperature difference of the water in a river in Spain (between 5°C and 25 °C) and the range of temperatures in a common industrial spill (between 5°C and 100 °C). These ranges have been considered taking into account expert's criteria.

Cathegories	Description	Value
High	Temperature differece > 50 °C	2,00
Medium	Temperature differece between 20 and 50 °C	1,50
Low	Temperature differece < 20 °C	1,00

2.2.5. LAKE OR RESERVOIR

The information on the size of lakes or reservoirs have been obtained from the Spanish Inventory of Dams and Reservoirs (MITERD).

Cathegories	Description	Value
Big	Volume > 100 hm ³	3,00
Medioum size	Volume between 5 and 100 hm ³	2,00
Small	Volume < 5 hm ³	1,50
No damage	No damage	1,00

2.2.6. HAZARD OR DANGER

This is taken into account in damages caused by biological agents only (GMO, alien species or pathogen microorganisms). The higher their hazard level, the bigger the damages they can cause. The technical criteria taken into account have been based on the legislation on genetically modified organisms (GMO).

Cathegories	Description	Value
High	Very high probability of causing a severe illness or replace other organisms and high probability of propagation to other collectives. In the case of GMO it refers to a moderate or high confinement degree (GMO 3 or 4)	3,00
Medium	Possibility of causing illness or replace other organisms but low probability of propagation to other collectives. In the case of GMO it refers to a medium confinement degree (GMO 2)	2,00
Low	Very low probability of causing illness or replace other organisms. In the case of GMO it refers to a low confinement degree (GMO 1)	1,00

2.2.7. SLOPE

Based on the BEHAVE (USDA) model.

Cathegories	Description	Value
High	Average slope > 10%	2,50
Medium	Average slope between 5 and 10%	1,00
Low	Average slope < 5%	0,50

2.2.8. PERMEABILITY 1

This modifier refers to soil. Based on (GRIMAZ, S., 2007 y 2008).

Cathegories	Description	Value
High	High permeability soil (gravel, sand, fractured limestone, etc.)	2,00
Medium	Medium permeability soil (silts, etc.)	1,50
Low	Low permeability soil (clays, non fractured rock, etc.)	1,00

2.2.9. PERMEABILITY 2

This modifier refers to groundwater. Based on (GRIMAZ, S., 2007 y 2008).

Cathegories	Description	Value
High	High permeability soil (gravel, sand, fractured limestone, etc.)	3,00
Medium	Medium permeability soil (silts, etc.)	2,00
Low	Low permeability soil (clays, non-fractured rock, etc.)	1,00

2.2.10. RAINFAL

Based on BEHAVE (USDA) and the Iberian Climatic Atlas (MITERD, 2011).

Cathegories	Description	Value
Dry area	Average rainfal < 400 mm	2,50
Medium rainfal area	Average rainfal between 400 and 700 mm	1,00
Wet area	Average rainfal > 700 mm	0,50

2.2.11. RIVER TIPOLOGY

River typologies according to their flow where an industrial spill can occur are classified according to the Environmental Profile of Spain (MITERD)

Cathegories	Description	Value
Average Flow high	Average Flow >100 m ³ /s	2,00
Average Flow moderate	Average Flow between 5 and 100 m ³ /s	1,50
Average Flow low	Average Flow < 5 m ³ /s	1,25
No damage	No damage	1,00

2.2.12. SOLUBILITY

Based on FAO (2000).

Cathegories	Description	Value
Non soluble	Solubility < 0,1 mg/l of water at 20°C	1,00
Solubility low	Solubility between 0,1 and 10 mg/l of water at 20°C	0,90
Solubility high	Solubility > 10 mg/l of water at 20°C	0,80

2.2.13. TEMPERATURE

Air temperature has been introduced based on BEHAVE (USDA) and the Iberian Climatic Atlas (MITERD, 2011).

Cathegories	Description	Value
High	Air temperature > 17,5 °C	2,50
Medium	Air temperature between 10 and 17,5 °C	1,00
Low	Air temperature < 10 ℃	0,50

2.2.14. TIPE OF LEAKAGE

Based on GRIMAZ, S. (2007 y 2008).

Cathegories	Description	Value
Growing leakage	The volume of the leakage increases through time	1,50
Continiuos leakage	The volume of the leakage is constant through time	1,25
Instantaneous leakage	The volume of the leakage is almost instantaneous	1,00

2.2.15. TOXICITY

Chemical substances toxicity is described in three categories based on the intensity of the adverse effects the organisms exposed to them experience in a time period. The adverse effects are related to mortality, immobility, growth inhibition, etc (ECB, 2003).

Cathegories	Description	Value
High	Substances with clear and short-term adverse effects, with evident consequences on the ecosystems and their habitats and species. Foreseen effect in at least 50% of the population exposed to the agent causing the damage	2,00
Medium	Substances with possible and long-term adverse effects in 10% to 50% of the population exposed to the agent causing the damage	1,50
Low	Substances that may affect at least at 1% of the population exposed to the agent causing the damage	1,00

2.2.16. WIND

Based on BEHAVE (USDA) and Atlas Nacional de España (ANE).

Cathegories	Description	Value
Strong	Average wind speed > 5 m/s	2,50
Medium	Average wind speed between 1 and 5 m/s	1,00
Low	Average wind speed < 1 m/s	0,50

2.2.17. VISCOSITY

Based on GRIMAZ, S. (2007 y 2008).

Cathegories	Description	Value
Low viscosity	Substances such as water, solvents, etc.	1,25
Medium viscosity	Medium viscosity substances	1,10
High viscosity	High viscosity substances such as resins, Sustancias de elevada viscosidad como resinas, bituminous material, etc.	1,00

2.2.18. VOLATILITY

Based on the scale used to classify chemical substances using the boiling point used in MORA.

Cathegories	Description	Value
Low	Boiling point > 325 °C	1,00
Medium	Boiling point between 100 and 325 °C	0,90
High	Boiling point < 100 °C	0,80

2.3. MODIFIERS OF REVISION AND CONTROL COST ESTIMATOR (Mc)

The IDM methodology defines damage duration the time elapsed between the moment the damage occurs, and the remedial measures restore the natural resources to its baseline condition. The longer the duration, the higher the revision and control costs associated to the remedial project.

Five different scales have been created to adapt it to the different agent-resource combinations:

2.3.1. DURATION MODIFIER 1

Based on the information on surface water remedial measures provided by FRTR (since 1990).

Cathegories	Description	Value
High	> 1 year	1,25
Medium	6 months - 1 year	1,10
Low	< 6 months	1,00

2.3.2. DURATION MODIFIER 2

Based on the information on groundwater remedial measures provided by FRTR (since 1990).

Cathegories	Description	Value
High	> 10 years	1,25
Medium	3 years – 10 years	1,10
Low	< 3 years	1,00

2.3.3. DURATION MODIFIER 3

Based on the information on soil remedial measures provided by FRTR (since 1990).

Cathegories	Description	Value
High	> 2 years	1,25
Medium	6 months – 2 years	1,10
Low	< 6 months	1,00

2.3.4. DURATION MODIFIER 4

Addressed to flora based on the time needed to obtain a mass of vegetation similar to that affected.

Cathegories	Description	Value
High	Mature woodland, older than 30 years	1,25
Medium-high	Young Woodland, younger than 30 años	1,10
Medium-low	Scrub	1,05
Low	Grassland	1,00

2.3.5. DURATION MODIFIER 5

For fauna, the information has been derived from the MORA methodology, that is based on the information provided by the autonomous communities within the Technical commission of prevention and remediation of environmental damages.

Cathegories	Description	Value
High	Mammals	1,25
Low	Other species	1,00

MINISTRY FOR THE ECOLOGICAL TRANSITION AND THE DEMOGRAPHIC CHALLENGE SECRETARY OF STATE FOR THE ENVIRONMENT DIRECTORATE GENERAL FOR ENVIRONMENTAL QUALITY AND ASSESSMENT

ÍNDICE

1.	OBJECTIVE OF THE PRACTICAL EXAMPLE1
2.	DESCRIPTION OF THE FACILITY AND ACTIVITY2
2.1.	SUBSTANCES
2.2.	NATURAL RESOURCES
2.3.	CHARACTERISTICS OF THE ENVIRONMENT
3. IN SPA	DEVELOPMENT OF THE ENVIRONMENTAL RISK ANALYSIS (ARM FOR ITS ACRONYM NISH) FROM THE ARM APPLICATION
3.1.	EXAMPLE OF DATA INTRODUCTION IN THE ARM MODULE5
3.2.	EXAMPLE OF THE USER'S BIBLIOGRAPHICAL SOURCES FUNCTIONALITY
4.	ENVIRONMENTAL DAMAGE INDEX ESTIMATION27
4.1.	EXAMPLE OF ENTERING DATA IN THE IDM APPLICATION
5.	SELECTION OF THE REFERENCE ACCIDENT SCENARIO
6.	QUANTIFICATION AND MONETIZATION OF THE REFERENCE SCENARIO
6.1.	EXTENT OF DAMAGE
6.2.	INTENSITY OF DAMAGE
6.3.	TEMPORAL SCALE
7.	ECONOMIC VALUATION OF THE REFERENCE SCENARIO (MORA)40
7.1.	DATA COLLECTION FOR ECONOMIC VALUATION
7.2.	ACCESS TO THE MORA APPLICATION
7.3.	GENERAL DATA
7.4.	LOCATION OF THE DAMAGE
7.5.	AGENTS SELECTION
7.6.	NATURAL RESOURCES AFFECTED BY THE AGENT45
7.7.	COMBINATION AGENT-RESOURCE: DAMAGE DATA45
7.8.	ECONOMIC VALUATION OF THE ENVIRONMENTAL DAMAGE
7.9.	ACCESS COST BUDGET
7.10.	AMOUNT OF FINANCIAL SECURITY
7.11.	FINAL REPORT
8.	DETERMINATION OF THE FINANCIAL SECURITY

1. OBJECTIVE OF THE PRACTICAL EXAMPLE

The objective of this practical example is to illustrate the use of the Environmental Liability Information System (SIRMA), and more specifically the ARM, IDM and MORA applications. Its purpose is to identify each accident scenario resulting from basic or initiating events of a hypothetical installation and know its characteristics, as well as to estimate the IDM associated to each of them to select the reference accident scenario on which the monetization of the environmental damage will be carried out to calculate the amount of the financial security.

The example refers to an annex III of Law 26/2007 facility, although it is necessary to clarify that this is just a hypothetical example where substances and their volumes, probabilities and even accident scenarios have been randomly selected for illustration purposes. Therefore, there is no specific installation that groups all the identified scenarios and that has served as the basis for the drafting of this practical example, since the sole purpose of the example is to illustrate the way in which the amount of the financial security must calculate to comply with the obligations established by the Regulation of Partial Development of Law 26/2007, of October 23.

With the aim of simplifying the example, a facility that handles few substances and therefore has few scenarios has been assumed, and only the probability associated with a single scenario has been entered into detail, giving, of the rest of the accidental scenarios, only the final values that would result for each of them.

2. DESCRIPTION OF THE FACILITY AND ACTIVITY

In this section the substances that can damage the natural resources that can be affected are described, as well as the characteristics of the environment that are relevant for the estimation of the IDM.

It is important to mention that, as a rule, this section should provide, in addition to the aspects included in this document, a summary of the general characteristics of the activity carried out as well as a description of the different phases of the production process in the facility. This complementary information, which in any case should accompany the Environmental Risk Analysis (ARM for its acronym in Spanish), has been omitted in the preparation of this practical case to focus specifically on the use of SIRMA for this example.

2.1. SUBSTANCES

In the current practical example, it has been supposed that, among the total substances handled the ones that can produce an environmental damage on natural resources in the scope of Law 26/2007 are only seven. The rest of substances are considered not as so dangerous or not handled in enough amounts to produce an environmental damage. It is important to highlight that, as will be describe in the following sections, in this example some scenarios in which do not exist a chemical substance causing them have been identified (fires).

A table is attached below with the relevant physic-chemical properties, with a view to estimating the IDM, of each of these substances.

Substances	Physic-chemical properties				
	Degradability	Solubility	Toxicity	Viscosity	Volatility
Substance A	High	Little soluble	High	Medium	High
Substance B	Medium	Insoluble	Medium	High	Medium
Substance C	Low	Very soluble	High	Medium	Medium
Substance D	Medium	Very soluble	High	Low	High
Substance E	Low	Very soluble	Medium	Medium	Medium
Substance F	Low	Insoluble	Low	Low	Medium
Substance G	Medium	Little soluble	High	Low	Low

 Table AIV.2.1-1. Physic-chemical properties of the substances likely to cause damage to the environment. Source: Prepared by the authors.

2.2. NATURAL RESOURCES

It has been assumed that the lands adjacent to the facility are not paved, so that the soil resource would be susceptible to being damaged. In addition, there is an area occupied by a pine forest of 45 years old, which can also be affected by the hypothetical damage. On the other hand, it has been assumed that there is an aquifer in the area and that the terrain is not impermeable.

Therefore, the resources that could be affected are soil, groundwater, and habitat.

2.3. CHARACTERISTICS OF THE ENVIRONMENT

The following table shows the relevant characteristics of the environment with regard the IDM application.

Characteristics	Value
Depth of the aquifer	Shallow
Vegetation density	1.000 trees/ha
Protected natural area	No
Stony	No
Gradient	4%
Permeability	Medium (silty sands)
Average annual precipitation	1.000 mm
Average annual temperature	12,5 ^a
Average wind speed	4,5-5 m/s

 Table AIV.2.3-1.
 Environmental characteristics of the installation.
 Source: Prepared by the

authors.

3. DEVELOPMENT OF THE ENVIRONMENTAL RISK ANALYSIS (ARM FOR ITS ACRONYM IN SPANISH) FROM THE ARM APPLICATION

The ARM application is used to assist in developing the Environmental Risk Analysis in accordance with the methodology set forth in Law 26/2007, of October 23, on Environmental Liability and its Regulation for Partial Development. More specifically, it carries out the event tree analysis resulting from a basic or initiating event, following the scheme settled by UNE 150.008:2008 standard for environmental risk analysis and assessment.

In this practical example (to both the ARM module and IDM module), it has been assumed that the facility under study has different sources of danger distributed in the several zones that are shown in the following table. In addition, the initiation events associated with each of these sources of danger, are listed.

Zone	Sources of danger	Initiating event
	Substance A	Spillage of substance A from equipment
7 1	Substance B	Spillage of substance B from tank
Zone 1	Substance C	Spillage of substance C from tank
	Substance D	Spillage of substance B from tank
	Substance G	Spillage of substance G from pipe
Zone 2	Substance E	Spillage of substance E from equipment
	Spark	Fire in zone 2
Zone 3	Substance F	Explosion/fire of substance F

 Table AIV.3-1. Sources of danger and initiating events identified. Source: Prepared by the authors

It is important to highlight that in the fire in zone 2 there is not a substance associated to the initiating event, but it would be generated because of a spark, being this the source of danger that would produce the damage.

On the other hand, it has been assumed that, in the case of substance D, the consequences of an eventual accident would vary considerably whether the substance were spilled from a pipe or from a tank, since the volume released would be double in the second case. Nevertheless, this can occur by other multiple reasons, for example, because of the storage of the substance and the place in which it entries in the process are in different zones of the facility. In this case, each of them can have risks and prevention and avoidance measures sufficiently different so that their environmental consequences are also different, although the volume released into the environment was the same in both cases.

3.1. EXAMPLE OF DATA INTRODUCTION IN THE ARM MODULE

To illustrate how to use the ARM application and identify the accident scenarios that start from a source of danger, it is described below how the information is entered in the ARM module applied to a specific source of danger. In particular, it will be illustrated the source of danger: Underground Pipe-Substance G.

In the first screen of the ARM module, the general data of the report are entered: name, date of performance and user. The user will fill in the name box and click the button "Save" to continue the screen of sources of danger of the ARM report.

Report ARM data	ı	 	
Name			
Fictitious installati	on		
Entry date 03/24/2022	User		
		Save	Cancel

Figure AIV.3.1-1. General data of the ARM report screen. Source: SIRMA.

In the next screen, click on "Entry data of Source of danger" to enter the sources of danger for the installation in the report.

Sources of dang	t sources of danger	ents Conditioning factors	Accident scenarios	Outline of the re	eport 📾 🛛
ARM Reports					
General data					
ARM Report		Completed	i		
-ictitious instal	lation	No	Modify		
		Entry data of Source of da	inger		
					0
Modify / See	Name of source of danger	Bibliographic source	Source of danger	Basic events	Remove
	ecords to show.				

Figure AIV.3.1-2. Button of "Entry data of Source of danger" of the ARM report. Source: SIRMA.

Next, the general data of the source of danger are filled in/selected; its name, the bibliographic source you want to select to assign the probability of failure to the entered source of danger, the category to which the source of danger belongs, the source of danger (that specifies the source of danger as stated in the bibliography) and the observations that the user deems appropriate.

According to the information provided in Table AIV.3-1, the source of danger in question is "underground pipe of substance G" and the category "pipe systems". In addition, the bibliographic source Flemish Government 2009 is selected. Thus, the screen would be filled in as is shown in the following figure.

Completed	
No	
~	
'Registration of bibliographic sources"	
~	
~	
	No No Registration of bibliographic sources"

Figure AIV.3.1-3. Screen for enter the data of the source of danger associated with the ARM report. Source: SIRMA.

By pressing the "Save" button, a screen appears that shows a list of the sources of danger that the user has introduced in the report. To continue with the development of the report, they proceed to enter the basic events within the source of danger already introduced. To do this, click on the report icon (⁽⁾) that appears under the column "Basic events" in the table.

Sources of da	nger > Basic events > Initiating	events 📏 Conditioning fac	tors > Accident scenarios		
ARM Reports	<u>S</u>				
General dat	ta				
ARM Report		Com	pleted		
Fictitious ins	tallation	No	Modify		
		Entry data of Source	of danger		C
Modify / See	Name of source of danger	Bibliographic source	Source of danger	Basic events	Remove
Ø	Underground pipe of substance G	FLEMISHGOV2009	Underground pipeline (page 20)	A	1

Figure AIV.3.1-4. Report button (1) under column "Basic events" in the table. Source: SIRMA.

To continue, click on "Entry data of Basic event" to go to the next screen.

Sources of danger	Basic events Ini	tiating even	ts 〉 Conditioning	g factors 📏 A	ccident	scenarios	
ARM Reports	Sources of danger						
ARM Report			(Completed			
Fictitious installa	tion		1	No			
Name of source of	fdanger	Bibliog	raphic source	Page	Sour	ce of danger	
Underground pip	e of substance G	FLEM	ISHGOV2009	20	Und	erground pipeline	
			Entry data of E	Basic event			
Modify / See	Name of basic ev	ent	Probability	Basic ev	ent	Initiating events	Remove
There are no rec	cords to show						

Figure AIV.3.1-5. "Entry data of Basic event" button. Source: SIRMA.

This screen includes the general data of the report, the data of the source of danger and a dropdown with the basic events associated with the selected source of danger, in this case, rupture. This basic event "rupture of the underground pipe of substance G" has an associated probability of occurrence that will be shown in the next screen.

Basic event selection				
ARM Report		Completed		
Fictitious installation		No		
Name of source of danger	Bibliographic source	Page	Source of danger	
Underground pipe of substance G	FLEMISHGOV2009	20	Underground pipeline	
Basic event				
Rupture				~

Figure AIV.3.1-6. Screen to enter the data of the basic event. Source: SIRMA.

In addition to the probability of occurrence of the basic event, in the next screen the application requests information regarding the characteristics of the source of danger to which the basic event is associated: meters, type of pollutant, type of reactivity (when applicable), type of discharge, name of the basic event and remarks on the basic event that the user considers proper (see figure below).

Basic event data				
ARM Report		Completed		
Fictitious installation		No		
Name of source of danger	Bibliographic source	Pag	е	Source of danger
Underground pipe of substance G	FLEMISHGOV2009	2	0	Underground pipeline
Basic event				
Rupture				
Probability of occurrence				
	0.00000028			
Metres				
	36.7			
Type of pollutant				
Group 3	~			
Type of reactivity				
	~			
The type of reactivity must be included only for	group 0 fuels			
Type of discharge				
Continuous source term < 10 kg/s The type of dicharge must be included only for	V			
Name of basic event	group 1, 2 and 5 luels			
Rupture of underground pipe of substa	ance G			
Remarks				
Remarks				

Figure AIV.3.1-7. Screen to enter data of the basic event associated with the source of danger. Source: SIRMA.

By pressing the "Save" button will return to the screen of basic events of the source of danger, which now includes the data of the basic events entered in a table, as shown in the following figure. If the user wishes to add new basic events, they must repeat the same process by pressing the "Entry data of Basic event" again.

To continue with the development of the report, the initiating events are entered within the basic event already entered. To do this, click on the report icon (\Box) that appears under the "Initiating events" column in the table.

Sources of dang	jer 🔪 Basic events 🔪 Initia	ting events > Condition	ning factor	rs 🔪 Ac	cident scenarios		
ARM Reports	Sources of danger						
General data							
ARM Report			Comple	eted			
Fictitious insta	llation		No				
Name of source	of danger	Bibliographic source		Page	Source of dange	er	
Underground p	pipe of substance G	FLEMISHGOV2009)	20	Underground p	pipeline	
		Entry data d	of Basic e	event			
							C
Modify / See	Name of basic event		Probat	oility	Basic event	Initiating events	Remove
Ø	Rupture of underground	pipe of substance G	0.0000	010276	Rupture	1	T

Figure AIV.3.1-8. Screen of the list of basic events of the source of danger. Source: SIRMA.

The next screen includes in the upper table the general data of the report, the data of the source of danger and the data of the basic event.

By pressing on the "Modify/see" section of each initiating event (by clicking on the "pencil" icon (), the volume of pollutant associated with each of the initiating events generated is included first. This action, required to continue with the analysis and entered the conditioning factors, it is indicated in the said screen with the following warning message:

"Data of the initiating event must be reported in order to access to the conditioning factors".

		urces of danger 🏘 Basic	events				
General o				Completed			
Fictitious i	nstallatio	n		No			
Name of so	ource of da	anger	Bibliographic source	Page	Source of danger		
Undergrou	und pipe o	of substance G	FLEMISHGOV2009	20	Underground pipelin	ne	
Name of ba	asic event		Basic event				Probability
Rupture o	f undergr	ound pipe of substa	Rupture				0.0000010276
Type of pol	lutant	Type of reactivity	Type of discharge				
Group 3			Continuous source te	erm < 10 kg/s			
ata of the i Modify / See	Code	vent must be reported in Initiating event	Probability	Volume released (m ³)	Conditioning factors		ent tree of the iating event
Ø	SI.1	Pool fire	0.000000061656		4		4
	SI.2	Leakage/Toxic vapour cloud	0.0000010214344		4		٨

Figure AIV.3.1-9. "Modify/see" button of the initiating events of the basic event. Source: SIRMA.

Thus, by clicking on the "pencil" icon (\checkmark) of the "Modify/see" column it accesses to the screen of the initiating event data, called "Initiating event related to the basic event". In this practical example, as described at the beginning of this section 3, the substance G cause the initiating event spillage and therefore the SI.2 selected is Leakage/Toxic vapour cloud.

The new fields that the user must fill in in the next screen are the name of the initiating event in question, the type of fuel, the description of the substance, the volume discharged and the remarks that the user considers appropriate.

Initiating event dat	a					
ARM Report			Completed			
Fictitious installation	I		No			
Name of source of dar	nger	Bibliographic source	Page	Sour	ce of danger	
Underground pipe o	f substance G	FLEMISHGOV2009	20	Unde	erground pipeline	
Name of basic event		Basic event				Probability
Rupture of undergro	und pipe of substa	Rupture				0.0000010276
Type of pollutant	Type of reactivity	Type of discharge				
Group 3		Continuous source te	erm < 10 kg/s			
Initiating event			Modifier		Probability	
Leakage/Toxic vapo	ur cloud			0.994	0.0000010214344	
Code	Name of the initiating e	event				
SI.2	Leakage of substand	ce G from pipe				
Fuel type						
Combustible liquid		~				
Pollutant description			Volume releas	ed (m ³)		
Substance G				3.234		
Remarks						

If the required information is entered and the "Save" button pressed, the application will add the amount released to the column "Volume released (m^3)" of the screen "Initiating events of the basic event" and the report icon will appear (\Box) under the column called "Conditioning factors" that will allow to continue with the environmental risk assessment (see figure below).

Sources of	danger 🔪	Basic events > Initiati	ng events > Conditioni	ng factors 📏 Accid	ent scenarios	
		urces of danger 🍬 Basic	events			
General d						
ARM Repor				Completed		
Fictitious i Name of so			Bibliographic source	No	Source of danger	
		of substance G	FLEMISHGOV2009		Jnderground pipeli	ne
Name of ba			Basic event			Probability
Rupture of	fundergr	ound pipe of substa	Rupture			0.000001027
Type of poll	utant	Type of reactivity	Type of discharge			
Group 3			Continuous source te	erm < 10 kg/s		
ata of the in Modify / See	Code	vent must be reported in Initiating event	order to access to the co	volume released (m ³)	Conditioning factors	Event tree of the initiating event
Ø	SI.1	Pool fire	0.000000061656		4	A
Ø	SI.2	Leakage/Toxic vapour cloud	0.0000010214344	3.234	Δ	4

Figure AIV.3.1-1. Screen with the list of initiating events of the basic event. Source: SIRMA.

Next, the conditioning factors that apply to this initiating event are completed. To do this, if the report icon (\Box) is clicked a summary table of the general information entered so far appears under which is the button "Entry of data of conditioning factor", as shown in the following figure.

Sources of danger > Basic events > Init	U U	Conditioning fact	ors Acc	ident so	cenarios		
ARM Reports # Sources of danger # Bas	ic events 🖷 Initia	ting events					
General data		0	late d				
ARM Report Fictitious installation		Comp	leted				
Name of source of danger	Bibliographic		Deee	0	e of danger		
Underground pipe of substance G	FLEMISHG		Page 20		rground pipeline		
Name of basic event	Basic event	012000	20	onde	Stoand pipoline	Probabili	ty
Rupture of underground pipe of substa							010276
Type of pollutant Type of reactivity	Type of discha					0.0000	010210
Group 3		source term < 1	10 ka/s			1	
Name of the initiating event	Code	Initiating ev	-				
Leakage of substance G from pipe	SI.2	Leakage/T		ir clou	d		
Fuel type					4		
Combustible liquid	volume relea	sed (m ³) Proba 3.234 0.0	00001021	4344			
	Entry da	ata of Condition	ing factor				
			[
Modify / Code Conditioning Po	erformance	Volume vari	ation in o		Volume variation	in case	Remov
	arameters	success of a factor (m ³)			failure of condition factor (m ³)		Keniov
There are no records to show.							
o registers has been found in the datasour	ce. Page 1						

Figure AIV.3.1-12. "Entry of data of conditioning factor" button. Source: SIRMA.

Once the user has clicked on "Entry data of conditioning factor" the new screen "Conditioning factor included in the ARM Report" opens, which gathers, in addition to the data entered so far in the ARM report, an auto completed field for coding the factor and several fields that the user must fill in. These are: name of the conditioning factor, bibliographic source, category, conditioning factor, the fields "Volume variation in case success of conditioning factor (m³)" and "Volume variation in case failure of conditioning factor (m³)" (the instructions to fill in these changes are described in the main report of the user guide of the ARM module).

As in this practical example, the underground pipe is inside a 0.1 m³ containment tank, this data has been entered in the variation of the released volume (see figure below).

Conditioning factor	or data					
ARM Report			Comple	ted		
Fictitious installatio	n		No			
Name of source of da	nger	Bibliographic source		Page	Source of danger	
Underground pipe	of substance G	FLEMISHGOV2009		20	Underground pipeline	
Name of basic event		Basic event				Probability
Rupture of undergr	ound pipe of substa	Rupture				0.0000010276
Type of pollutant	Type of reactivity	Type of discharge				
Group 3		Continuous source t	erm < 10) kg/s		
Name of the initiating	event	Code Initi	ating ever	nt		
Leakage of substar			-		our cloud	
Fuel type		Volume released (m ³)	Probabi	ility		
Combustible liquid		3.234		000102	14344	
Code	Conditioning factor na	ame				
SI.2-FC.1		ive repression system				
FLEMISHGOV2009 You can enter your own Category Passive repression Conditioning factor	bibliographic sources in th	ne menu option "Registratic	n of bibliog	graphic so	purces"	

Figure AIV.3.1-13. Screen for filling in the data of the conditioning factor associated with the ARM report. Source: SIRMA.

By pressing the "Save" button will return to the "Conditioning factors related to the initiating event" screen, which now includes a summary table of the entered conditioning factor data.

Once the only conditioning factor that applies to the initiating event (passive repression) has been entered and its action parameters have been established, it is possible to generate the accident scenario derived from it by pressing the "Generate accident scenarios" button shown in the following figure.

ARM Rep	oorts & So	ources of danger 🏾 Basic	events • Initiating	events					
General	data								
ARM Repo	ort			Complete	d				
Fictitious	installatio	on		No					
Name of se	ource of d	anger	Bibliographic sour	rce F	age	Source	ofdanger		
Undergro	und pipe	of substance G	FLEMISHGOV2	2009	20	Underg	round pipeline		
Name of b	asic event	1	Basic event					Probabilit	y
Rupture o	of underg	round pipe of substa	Rupture					0.0000	010276
Type of po	llutant	Type of reactivity	Type of discharge						
Group 3			Continuous sour	rce term < 10 k	g/s]	
Name of th	ne initiating	g event	Code	Initiating event					
Leakage	of substa	nce G from pipe	SI.2	Leakage/Toxic	vapo	our cloud			
Fuel type			Volume released	(m ³) Probabilit	y				
Combusti	ble liquid			8.234 0.0000		14344			
			Entry data o	of Conditioning	facto	r			
Modify / See	Code	Conditioning factor	Performance parameters	Volume var case succe conditionin	ss of		Volume variation case failure of conditioning fa (m ³)		Remov
ø	SI.2- FC.1	Passive repression systems (page 24)	Acts first	0.10 l pollutant vo		eases the released		0.00	1

This way, after the confirmation screen, the application generates the accident scenarios derived from applying the conditioning factors to the initiating event. Each of them is linked to the probability of occurrence and the volume released in that scenario. In addition, the "Event tree of the initiating event" button appears.

Accident scen			•	factors > Ac	cident scenari		e of the re	port 🖨
ARM Reports * Sou	rces of danger 🖛	Basic events	• Initiating events	Conditioning	factors			
General data								
ARM Report			Ce	ompleted				
Fictitious installation	า		Ν	0				
Name of source of da	nger	Biblio	graphic source	Page	Source of d	anger		
Underground pipe o	of substance G	FLEM	MISHGOV2009	20	Undergrou	nd pipeline		
Name of basic event		Basic	event				Probabil	lity
Rupture of undergro	ound pipe of sub	sta Rupt	ure				0.0000	010276
Type of pollutant	Type of reactivit		of discharge				_	
Group 3		Conti	nuous source term	n < 10 kg/s				
Name of the initiating		Code		·				
Leakage of substan	ce G from pipe	SI.2	Leakag	je/Toxic vapo	our cloud			
Fuel type		Volun		robability				
Combustible liquid			3.234	0.00000102	14344			
			Event tree of the in	itiating event				
Modify / See	Code	Name	Volume release	d (m ³)	Proba	ability		Detail
Ø	SI.2-E.1			3	.134	0.000001	0214344	<u>_</u>
Ø	SI.2-E.2			3	.234		0.00	Δ
registers found. Page	ourn to the sourc		-			n to the initiati	ing events	

Figure AIV.3.1-15. "Event tree of the initiating event" button and list of accident scenarios of the initiating event. Source: SIRMA.

If the "Event tree of the initiating event" is pressed, the event tree of the initiating event is built that can be displayed on the screen as shown in the following figure.

Initiating event data		
ARM Report		Completed
Fictitious installation		No
Name of the initiating event	Code	Initiating event
Leakage of substance G from pipe	SI.2	Leakage/Toxic vapour cloud
Fuel type	Volume rele	ased (m ³) Probability
Combustible liquid		3.234 0.0000010214344
SI2 /olume released (m ³) = 3.234 /robability = 0.000010214344 - ✓ SI.2-FC.1 Success Volume released (m ³) = 3.134 Probability = 0.0000010214344		

Figure AIV.3.1-15. Event tree of the initiating event screen. Source: SIRMA.

Finally, at the bottom of the screen, the following information appears: "Access the main screen once all the accidental scenarios have been created to complete ARM report". After this last step, the ARM report resulting from using the ARM module is completed.

In this practical example the event tree of the initiating event "Spillage of substance G from pipe" (see previous figure) has been generated. Using the event tree scheme, the resulting accident scenarios are obtained, as well as their probability and volume data. The "S.I.2 E.1" scenario obtained after applying the event tree scheme has the following characteristics:

- -Probability of occurrence 0.0000010214344
- -Volume released (m³): 3.134

It will be necessary to replicate this process as many times as sources of danger exist in the installation that is the object of the Environmental Risk Analysis. Thus, in this practical example it should be carried out for each of the eight sources of danger described at the beginning of section 3 of this document (Table AIV.3-1). Next, possible accident scenarios that could result from the eight sources of danger identified are included. The following table shows the hypothetical probability associated with each accident scenario, including the probability of scenario 4, which calculation has been carried out and described step by step in this practical example.

	Scenario			
Code	Description	Probability		
E.1	Spillage of substance A from equipment. Affect: soil and groundwater	2.01E-02		
E.2	Spillage of substance B from tank. Affect: soil and groundwater	2.12E-02		
E.3	Spillage of substance C from tank. Affect: soil and groundwater	5.91E-04		
E.4	Spillage of substance G from pipe. Affect: soil and groundwater	1.02E-06		
E.5	Spillage of substance D from tank. Affect: soil and groundwater	1.03E-03		
E.6	Spillage of substance E from equipment. Affect: soil and groundwater	1.09E-03		
E.7	Discharge of fire attempt extinguishing water with substance E dissolved. Affect: soil and groundwater	3,11E-04		
E.8	Fire affecting the entire facility and discharge of fire extinguishing water that goes outside with substance C dissolved. Affect: soil, habitat and groundwater.	3.23E-06		
E.9	Fire contained in the starting sector and discharge of fire extinguishing water with substance E dissolved. Affect: soil and groundwater	2.15E-05		
E.10	Fire affecting the entire facility and discharge of fire extinguishing water that does not go outside with substance F dissolved. Affect: soil and groundwater	7.75E-04		

 Table AIV.3.1-16. Accident scenarios and probability assigned to each of them. Source:

 Prepared by the authors

The values of probability obtained in the ARM application will be necessary to calculate the risk associated with each scenario, from which the selection of the reference scenario procedure will be carried out. In addition to the value of the probability of occurrence, it is necessary to know the value of the IDM associated with each accident scenario. The practical example of estimating the IDM associated with each scenario using the IDM application is developed in the following section.

3.2. EXAMPLE OF THE USER'S BIBLIOGRAPHICAL SOURCES FUNCTIONALITY

Through the "user's bibliographical sources" functionality, it is possible to enter sources of danger or conditioning factors not included in the application's own bibliography.

The following is an example of the inclusion of a bibliographic source with the source of danger "Electrical transformer" with its respective initiating events.

The first step is to create a new bibliographic source and then add the information about the source of danger using the "Add bibliographic source" link.

In the "Bibliographic source general data" screen, the following fields should be completed: Code, Full name and Remarks, as shown in the following image.

Code PETERSEN08 (EN) Full name A. Petersen - Marzo 2008 User The Risk of transformer fires and strategies which can be applied to reduce the risk - A. PETERSEN AP Consulting – Transformer Technology	Bibliographic source data	
Full name A. Petersen - Marzo 2008 User Remarks The Risk of transformer fires and strategies which can be applied to reduce the risk - A. PETERSEN AP Consulting – Transformer Technology		
A. Petersen - Marzo 2008 User Remarks The Risk of transformer fires and strategies which can be applied to reduce the risk - A. PETERSEN AP Consulting – Transformer Technology		
Remarks The Risk of transformer fires and strategies which can be applied to reduce the risk - A. PETERSEN AP Consulting – Transformer Technology		
The Risk of transformer fires and strategies which can be applied to reduce the risk - A. PETERSEN AP Consulting – Transformer Technology	User	
The Risk of transformer fires and strategies which can be applied to reduce the risk - A. PETERSEN AP Consulting – Transformer Technology	T	
risk - A. PETERSEN AP Consulting – Transformer Technology	Remarks	
	risk - A. PETERSEN AP Consulting – Transformer Technology	
		Save Cance

Figure AIV.3.2-1. General data of the bibliographic source. Source: SIRMA.

Once the bibliographic source has been registered, it is possible to add the "Source of danger category".

In the "Source of danger Category" screen, the new category "Transformers" would be entered, which would appear at this point reflected in the "Source of danger Categories" table as it is shown in the following figures.

Source	of	danger	category	
--------	----	--------	----------	--

_Category data		
Bibliographic source code	Bibliographyc source full name	
PETERSEN08 (EN)	A. Petersen - Marzo 2008	
Name		
Transformers		
Remarks		
		Save Cancel

Figura AIV.3.2-2. Source of danger category. Source: SIRMA.

Bibliographic sources			
Bibliographic source code	Bibliographyc source full r	ame	
PETERSEN08 (EN)	A. Petersen - Marzo 2008		
Modify / See	Name	Sources of danger	Remove

Figura AIV.3.2-3. Source of danger categories. Source: SIRMA.

Through the "Report" icon of the table, the display of sources of danger within that category can be accessed. In addition, with the "Entry data of Source of danger" button, "Electrical Transformer" would be added. To do this, it will be necessary to complete the Name, Page and Description fields – optionally – optionally, it is also possible to add information in the Remarks section–.

Bibliographic source code	Bibliographyc source full name	
PETERSEN08 (EN)	A. Petersen - Marzo 2008	
Source of danger category		
Transformers		
Name		
Electrical transformer		
^o age		
2		
Description		
The risk of a power transfo 0.05 to 0.25 % per service approximately 0.1% per tra	ormer suffering a serious oil fire is therefore in the order of year for most utilities, with an average figure of ansformer service year.	
Remarks		

Figure AIV.3.2-4. Source of danger. Source: SIRMA.

Once the source of danger has been registered, it is shown in the source of danger table and the corresponding basic events can be added to it by clicking on the "report" icon in the "Basic events" column.

General data	rces & Sources of Danger catego	ones		
Bibliographic sourc	ce code Bibliographyc sourc	ce full name		
PETERSEN08 (B	EN) A. Petersen - Mar	rzo 2008		
Source of danger of	category			
Transformers				
		Entry data of Source of danger		
Modify / See	Name	Avalilable in ERA reports	Basic events	Remove
Ø	Electrical transformer	No		The second se

Figure AIV.3.2-5. Sources of danger. Source: SIRMA.

Through the "Entry data of Basic Event" icon, the user can complete the information requested. It is necessary to complete: Name, Possible ignition with an associated combustible substance/ Possible ignition without an associated combustible substance, Description and Remarks.

Basic event data		
ibliographic source code	Bibliographyc source full name	
PETERSEN08 (EN)	A. Petersen - Marzo 2008	
ource of danger category		
ransformers		
ource of danger		
Electrical transformer		
lame		
Electrical transformer fire		
Possible ignition with asso	ociated combustible substance	
	ssociated combustible substance	
escription		
- Fire in oil transformer. Ref	erence voltages between 120 and 735 kV.	
lemarks		

Figure AIV.3.2-6. Basic event data. Source: SIRMA.

When a basic event has been registered, it is possible to add the probability of occurrence by clicking on the "report" icon in the "Probability" column.

		ources of Danger	categories & Sources o	<u>r danger</u>			
General	data						
Bibliograp	hic source code	Bibliography	c source full name				
PETERS	EN08 (EN)	A. Peterser	n - Marzo 2008				
Source of	danger category						
Transfor	mers						
Source of	danger						
Electrica	l transformer						
			Entry data o	f Basic event			
			Litty data o	i Dasic event			
							Q
		Avalilable in	Possible ignition with associated	Possible ignition without associated	Probability	Initiating events	Remove
Modify / See	Name	ARM reports	combustible substance	combustible substance			

Figure AIV.3.2-7. Basic events. Source: SIRMA.

The data extracted from the reference literature that will be necessary to enter in the "Probability related to the basic event" screen are: Units of the basic event, Probability (numerical probability), Description and Remarks (this is a non-mandatory field). In the example, the probability would be 0.0001 failures per transformer per year as shown in the following figure.

Probability of the basic e	vent data		
Bibliographic source code	Bibliographyc source full name		
PETERSEN08 (EN)	A. Petersen - Marzo 2008		
Source of danger category			
Transformers			
Source of danger			
Electrical transformer			
Basic event			
Electrical transformer fire			
Units of the basic event		Probability	
failures year-1 transformer-	-1		0.0001
Description			
	rmer suffering a serious oil fire is the year for most utilities, with an average insformer service year.		rder of
Remarks			

Figure AIV.3.2-8. Probability related to the basic event. Source: SIRMA.

Once the probability of occurrence of the basic event has been entered, the fields on which this probability will depend must be entered –those concepts involved in the units in which the probability is measured–. To add these fields, click on the "report" icon in the "Fields" column and add the necessary fields by clicking on the "Entry data of Field" button.

Bibliographic sources	Sources of Danger categories Sources of data	anger 🛯 Basic events		
General data				
Bibliographic source co	de Bibliographyc source full name			
PETERSEN08 (EN)	A. Petersen - Marzo 2008			
Source of danger categ	ory			
Transformers				
Source of danger				
Electrical transformer				
Basic event				
Electrical transformer	fire			
Modify / See	Units of the basic event	Probability	Fields	Remove
1	failures year-1 transformer-1	0 0001	٨	1

Figure AIV.3.2-9. Probability of the basic event. Source: SIRMA.

The Application offers a drop-down list to choose the fields needed to calculate the probability of the basic event. In the example, the unit offered in the bibliography refers to failures per year per transformer so, in line with the above, the field to be entered will be the number of transformers. Thus, the generic field "Number of devices" is chosen from those offered by the tool.

Field that affects the pro	bability of the basic event data _		
Bibliographic source code	Bibliographyc source full name		
PETERSEN08 (EN)	A. Petersen - Marzo 2008		
Source of danger category			
Transformers			
Source of danger			
Electrical transformer			
Basic event			
Electrical transformer fire			
Units of the basic event		Probability	
failures year-1 transformer	-1	0.0001	
Field			
Nº devices		~	

Figure AIV.3.2-10. Field that affects basic event probability. Source: SIRMA.

By clicking on the "Save" button, the field will be available in the "Fields that affect the probability of the basic event" table as shown in the following figure.

Bibliographic sources & Sour	ces of Danger categories & Source	s of danger 🖛 <u>Basic</u>	events 🆛 <u>Probability</u>
General data			
Bibliographic source code	Bibliographyc source full name		
PETERSEN08 (EN)	A. Petersen - Marzo 2008		
Source of danger category			
Transformers			
Source of danger			
Electrical transformer			
Basic event			
Electrical transformer fire			
Units of the basic event		Probability	
failures year-1 transformer-	1	0.0001	
	Entry	data of Field	
Name		Remove	
Nº devices			TTT
one register found. Page 1			

Figure AIV.3.2-11. Fields that affect basic event probability. Source: SIRMA.

In this case it is not necessary to include more fields. By clicking on the "Return to the basic events" link the tool returns us to the "Basic events" screen where the "report" icon has been enabled in the initiating events column. The information at this point is completed.

The data requested in the "Initiating event related to the basic event" screen are Initiating event - this is a general description of the type of initiating event generated to be chosen from a dropdown list -, probability Modifier of the basic event and Remarks (optional field). Remember that the sum of the modifiers of the initiating events derived from the same basic event must be unity. In the example, the initiating event derived from the basic event "Transformer fire" will be "Fire" and, since it is a single initiating event associated with the basic event, the value of the probability modifier will be 1.

Basic event data		
Bibliographic source code	Bibliographyc source full name	
PETERSEN08 (EN)	A. Petersen - Marzo 2008	
Source of danger category		
Transformers		
Source of danger		
Electrical transformer		
Basic event		
Electrical transformer fire		
Initiating event		
Fire	~	
Modifier		
1		
Enter the value 1 if there is only	one initiating event for the basic event	
Remarks		

Figure AIV.3.2-12. Initiating event related to the basic event. Source: SIRMA.

With this completed information, the initiating event is already listed in the "Initiating events generated by the basic event" table.

Bibliographic sources & So	ources of Danger categories & Sources of	danger & Basic events	
General data			
Bibliographic source code	Bibliographyc source full name		
PETERSEN08 (EN)	A. Petersen - Marzo 2008		
Source of danger category			
Transformers			
Source of danger			
Electrical transformer			
Basic event			
Electrical transformer fire			
	Entry data of In	itiating event	
	Lindy data of in	luating event	
he sum of modifiers is 1.00			
Modify / See	Initiating event	Modifier	Remove

Figure AIV.3.2-13. Initiating event related to the basic event. Source: SIRMA.

The input data for the Source of danger "Electrical Transformer", the Basic Event "Transformer Fire" and the Initiating Event "Fire" have now been completed and are finally listed in the Sources of Danger Table as "Available in ARM Reports".

- Dibilographic Sou	rces & Sources of Danger cate	gories		
General data				
Bibliographic sour	ce code Bibliographyc so	urce full name		
PETERSEN08 (I	EN) A. Petersen - M	larzo 2008		
Source of danger	category			
Transformers				
		Entry data of Source of danger		
		Avalilable in ARM reports	Basic events	Remove
Modify / See	Name	Available III Alvin reports		

Figure AIV.3.2-14. Sources of danger. Source: SIRMA.

4. ENVIRONMENTAL DAMAGE INDEX ESTIMATION

Once the environmental risk analysis has been carried out and the possible natural resources that could be affected by each accident scenario have been analysed, the IDM is estimated. To do this, the different accident scenarios for which the IDM must be calculated are extracted from the ARM.

First, the agent-resource groups that apply in each accident scenario have been identified, as well as the type of agent involved. As it is shown in the following table, since in all the cases the natural resources that could be affected by the damage are soil, groundwater and habitat, the agent-resource groups of the table 1 of the Annex III of the Regulation for Partial Development that are involved in the different accident scenario set out in this practical example are 5 (damage to groundwater by chemicals), 9 (damage to soil by chemicals) and 14 (damage to plant species by fire).

It is worth noting that, apart from substance D, which is an inorganic substance, it has been assumed that the rest of the substances involved in the different accident scenarios are organic substances (all non-halogenated except for substance A), therefore the agent causing the damage would be classified in the groups of VOCs, SVOCs and NVOCs¹.

Finally, it is important keep in mind that in the case of group 14 (damage to habitat by fire) it has been necessary to classify — according to the categories set out by Annex II of the Regulation for this group — the type of resource that would be affected. In this way, and as it is a 45-year-old pine forest without protected plant species, the resource has been classified as a mature woodland habitat with a diameter greater than 20 cm.

¹ VOCs: Volatile Organic Compounds. SVOCs: Semi-volatile Organic Compounds. NVOCs: Non Volatile Organic Compounds.

Scena	rio	Turne of execut		Group
Code	Description	Type of agent	Resource	table 1
E.1	Spillage of substance A from equipment. Affect:	Halogenated	Groundwater	5
	soil and groundwater	VOCs	Soil	9
E.2	Spillage of substance B from tank. Affect: soil and groundwater	Non-halogenated SVOCs	Groundwater Soil	5 9
E.3	Spillage of substance C from tank. Affect: soil and groundwater	Non-halogenated VOCs	Groundwater	5
	Spillage of substance G from pipe. Affect: soil and	Fuels and	Groundwater	9 5
E.4	groundwater	NVOCs	Soil	9
E.5	Spillage of substance D from tank. Affect: soil and	Inorgonia	Groundwater	5
E.3	groundwater	Inorganic	Soil	9
E.6	Spillage of substance E from equipment. Affect:	Non-halogenated	Groundwater	5
L.0	soil and groundwater	VOCs	Soil	9
E.7	Discharge of fire attempt extinguishing water with substance E dissolved. Affect: soil and	Non-halogenated	Groundwater	5
E./	groundwater	SVOČs	Soil	9
	Fire affecting the entire facility and discharge of		Groundwater	5
E.8	fire extinguishing water that goes outside with substance C dissolved. Affect: soil, habitat and	Non-halogenated VOCs	Soil	8
	groundwater.	VOUS	Habitat	14
E.9	Fire contained in the starting sector and discharge	Non-halogenated	Groundwater	5
E.9	of fire extinguishing water with substance E dissolved. Affect: soil and groundwater	VOČs	Soil	9
= 40	Fire affecting the entire facility and discharge of fire extinguishing water that does not go outside	Non-halogenated	Groundwater	5
E.10	with substance F dissolved. Affect: soil and groundwater	SVOCs	Soil	9

 Table AIV.4-1. Groups of agent-resource assigned to each accident scenario. Source:

Prepared by the authors.

After identifying the different agent-resource combinations (groups) that correspond to each accident scenario, as well as the type of agent causing the damage for each group, the IDM estimation module is used for each of the identified accidental scenarios.

4.1. EXAMPLE OF ENTERING DATA IN THE IDM APPLICATION

In the first screen of the IDM estimation module, the general data of the report are entered: name, date of performance and user. The user will fill in the name field and press the "save" button to continue the screen of Consultation of scenarios included in the IDM report.

Report IDM data -			
lame			
Fictitious installation	on		
Date of performance	User		
03/29/2021			

Figure AIV.4.1-1. General data of the IDM report screen. Source: SIRMA.

On the next screen, click on "Entry data of scenario" to enter the accident scenarios in the report. In this case, the process of estimating the IDM of scenario 1 will be carried out (Spillage of substance A from equipment, affecting to the natural resources soil and groundwater).

Back							
Report IDI	M data —						
Name				Comple	eted		
Fictitious in	nstallation			No		Modify	
ntry data of		perform the referen	ce scenario selecti	al guarantee – ion process		Complete	
ntry data of Remove	<u>Scenario</u>			ion process	Duplicate		Delote
ntry data of Remove Ref. So	<u>Scenario</u>] cenario	Probability	ce scenario selecti IDM value	•	Duplicate	Complete Modify / See	Delete
ntry data of Remove Ref. So	<u>Scenario</u>	Probability		ion process	Duplicate		

Figure AIV.4.1-2. Screen of scenarios included in the IDM report. Source: SIRMA.

Next the general data of the scenario are entered, its name and probability of occurrence and the "Next" button is clicked on.

Report IDM data		Browsing outline
Name		😭 Scenario general data
Fictitious installation		
Scenario data		
Name		
E.1		
Probability	Date of performance	
	0.0201 03/29/2021	

Figure AIV.4.1-3. General data of the scenario. Source: SIRMA.

By pressing the "Next" button, a screen appears that provides a list of different agents causing the damage so that the user can select one or more of the elements of the model that could cause a significant effect on natural resources. In this case, the "halogenated VOCs" agent is selected.

ents	Browsing outline
Chemical	🗞 Scenario general data
Halogenated VOCs (Volatile Organic Compounds)	😭 Agents
Non-halogenated VOCs (Volatile Organic Compounds)	
Halogenated SVOCs (Semi-volatile Organic Compounds)	
Non-halogenated SVOCs (Semi-volatile Organic Compounds)	
Fuels and Non-volatile Organic Compounds (NVOCs)	
Inorganic substances	
Explosives	
Physical	
Extraction/Disappearance	
Inert waste discharge	
Temperature	
Fire	
Biological	
Genetically Modified Organisms (GMO)	
Invasive alien species	
Virus and bacteria	
Fungi and insects	

Figure AIV.4.1-4. Selection of the agent causing the damage for scenario E.1. Source: SIRMA.

In the following step, the user will click on the "Next" button and go to the selection screen of the resources that could be damaged by the accident that, for this first scenario, as indicated in Table AIV.4-1, are the resources soil and groundwater.

natural resources included within the environmental liability regulation scope are the following, habitats and species. Depending on the damaging agent, the resources that could esources.	
Soli Shore of the sea and estuaries Water	Scenario general data Agents Carl Halogenated VOCs (Volatile
Continental water	Organic Compounds)
Surface water Groundwater	
Habitats and species	
 Non-endangered mature trees (diameter greater than 7.8 in) Non-endangered young trees 	
 Non-endangered scrubland Non-endangered grassland 	
Endangered mature trees (diameter greater than 7.8 in)	
Endangered young trees Endangered scrubland	
Animals	
 Non-endangered mammals Non-endangered birds 	
 Non-endangered amphibians and reptiles Non-endangered fish 	
 Endangered mammals Endangered birds 	
 Endangered amphibians and reptiles Endangered fish 	

Figure AIV.4.1-5. Selection screen of the resources damaged by the scenario E.1. Source: SIRMA.

The following screens will show for each combination agent-resource (in this specific scenario halogenated VOCs-soil and halogenated VOCs-groundwater) the coefficients and modifiers that will apply.

As has been previously explained, the coefficients are fixed for each agent-resource combination. Therefore, the user will only have to complete the category that corresponds to each of the modifiers for this scenario, as well as the information regarding the total volume discharged into the soil and the depth of the water table. These last two data are used by the IDM application, in accordance with the equation indicated in section III of Annex III of the Regulation, to establish the distribution of the volume discharged between the natural resources, soil and groundwater.

That section indicates that in the case of combined damage to the soil and groundwater, the distribution of the volume that affects each resource will be carried out in terms of the aquifer depth. This way, from the total volume discharged into the soil, it is considered that a part will remain in the soil, while the rest will seep and end affecting the groundwater. The greater or lesser impact on each of these resources will depend on the depth of the aquifer, in such a way that if the aquifer is shallow, the groundwater will be more affected; on the contrary, if it is deep, the most affected resource will be the soil.

In the case of the accident scenario that is being analysed it is supposed that the total amount discharged into the soil has been 25 m³, therefore, since the aquifer is shallow (see Table AIV. 2.3-1), most of the damage will affect groundwater.

Additionally, according to the data indicated in the tables Table AIV. 2.1-1 (data of the substance involved in the accident scenarios) and Table AIV. 2.3-1 (environmental data such as, for example, soil permeability), and assuming that it is a continuous leakage and that the estimated duration of the damage is less than 6 months, the screen for the case of soil damage would fill in as indicated in the figure below.

he input of the values of the different coefficients and modifiers included in the formula is require	ed to calculate the IDM.
- Coefficients	Browsing outline
Estimator of the remediation project fixed cost	Gin Agents
0.00	😭 Halogenated VOCs (Volatile
Estimator of the remediation project unit cost	Organic Compounds)
201.00	Groundwater
Fotal volume discharged into the soil (m 3)	
25	
Water table	
Shallow (<10 m)	
Connection between the affected resource units and the agent units involved in the damage	
1.00	
Estimator of the remediation project revision and control cost	
887.00	
Estimator of the remediation project consultancycost	
0.03	
- Modifiers	
B	
Degradability of the substance	
Soil permeability	
Medium (silty sands, clayey sands, silts)	1
Cause of the discharge	-
-	
Viscosity of the substance	
Moderately viscous substance	
Volatility of the substance	
-	
C	
Estimated duration of damage	_
Low (<6 months)	

Figure AIV.4.1-6. Screen of coefficients and modifiers in damage to soil for accident scenario E.1. "Spillage of substance A from equipment". Source: SIRMA.

Similarly, the data for the case of damage to groundwater would be completed. To this end, the data in tables AIV. 2.1-1 and AIV. 2.3-1 has also been taken and it has been estimated that the duration of the damage would be less than three years.

It is worth pointing that both in the case of soil damage as well as in the case of damage to groundwater, the user must enter the total amount discharged into the soil (25 m³), because it is the IDM estimation module that will internally allocate the amount to both resources, depending on the part that remains in the soil and the part that would percolate in the ground, affecting groundwater.

Coefficients	ncluded in the formula is	s required to calculate the IDM. Browsing outline
Estimator of the remediation project fixed cost (Ecf)		🔊 Scenario general data
100,00	0.00	🔊 Agents
Estimator of the remediation project unit cost (Ecu)		Halogenated VOCs (Volatile Organic Compounds)
6	7.00	Soil
Total volume discharged into the soil (Alfa) (m ³)		🕅 Groundwater
	5.00	Can Access to the restoration site
Water table (NF)		
Shallow (<10 m)	~	
Connection between the affected resource units and the agent ur nvolved in the damage (Ec)	nits	
	1.50	
Estimator of the remediation project revision and control cost (Ec	r)	
Estimator of the remediation project revision and control cost (Ec 55,23	-	
	-	
55,23 Estimator of the remediation project consultancy cost (Ecc)	-	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01)	8.00	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) [High]	8.00	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01)	8.00	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) [High Soil permeability (MB09)	8.00 0.03	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) [High Soil permeability (MB09) [Medium (silty sands, clayey sands, silts)]	8.00 0.03	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) [High Soil permeability (MB09) [Medium (silty sands, clayey sands, silts) Solubility of the substance (MB12)	8.00 0.03	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) [High Soil permeability (MB09) [Medium (silty sands, clayey sands, silts) Solubility of the substance (MB12) [Little soluble (Solubility in water at 20 °C 0.1 - 10 mg/l)]	8.00 0.03	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) [High Soil permeability (MB09) [Medium (silty sands, clayey sands, silts) Solubility of the substance (MB12) [Little soluble (Solubility in water at 20 °C 0.1 - 10 mg/l) Viscosity of the substance (MB17)	8.00 0.03 ~ ~	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) High Soil permeability (MB09) Medium (silty sands, clayey sands, silts) Solubility of the substance (MB12) Little soluble (Solubility in water at 20 °C 0.1 - 10 mg/l) Viscosity of the substance (MB17) Moderately viscous substance	8.00 0.03 ~ ~	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) [High Soil permeability (MB09) [Medium (silty sands, clayey sands, silts) Solubility of the substance (MB12) [Little soluble (Solubility in water at 20 °C 0.1 - 10 mg/l) Viscosity of the substance (MB17) [Moderately viscous substance Volatility of the substance (MB18)	8.00 0.03 ~ ~ ~	
55,23 Estimator of the remediation project consultancy cost (Ecc) Modifiers B Degradability of the substance (MB01) High Soil permeability (MB09) Medium (silty sands, clayey sands, silts) Solubility of the substance (MB12) Little soluble (Solubility in water at 20 °C 0.1 - 10 mg/l) Viscosity of the substance (MB17) Moderately viscous substance Volatility of the substance (MB18) High (BP<100 °C)	8.00 0.03 ~ ~ ~	

Figure AIV.4.1-7. Screen of coefficients and modifiers in damage to groundwater for accident scenario E.1. "Spillage of substance A from equipment". Source: SIRMA.

Finally, the user must enter the distance to the nearest track so that the IDM application can estimate the cost of access to the damaged site. This is because in the event that it is not possible to access by a road to the damaged site, the estimation of the remediation cost should consider the cost of building a road to the affected site. In this case, it has been assumed that it would not be necessary to build any road when reaching the closest road to the place affected by the damage, so the screen for this estimate would be completed as shown in the following figure.

he value of the cost estimator for the access to the restoration site is considered in order to complete the etween such area and the nearest communication road should be also provided.	IDM calculation process. The value of the existing distance
- Data	Browsing outline
Cost estimator for the access to the restoration site 6.14 Distance to the nearest road (m) 0	 Agents Halogenated VOCs (Volatile Organic Compounds) Soil Groundwater Access to the restoration site

Figure AIV.4.1-8. Screen for estimating the access costs for scenario S.1 "Spillage of substance A from equipment". Source: SIRMA.

Once all the data relating to this first scenario has been entered, the user would get the value of the IDM for the analysed scenario.

cosding to the provided	information, the IDN value for the proposed acenario is the following:		
Result			Browsing outline
DN value	165,260.47		Agents All Halogenated VOCs (Volatile Organic Compounds)
	Print in PDF format Export to Excel		Soil Croundwater
Previous		New scenario	DM result

Figure AIV.4.1-9. Result of the IDM estimation for scenario S.1 "Spillage of substance A from equipment". Source: SIRMA.

The "Complete" button allows you to close and end the scenario, so that it can be considered when determining the accidental reference scenario. By pressing this button, the user is led to the screen for "Consultation of scenarios included in the IDM report" where they can enter all the scenarios of the installation by repeating the previous process as many times as accident scenarios have.

Report	IDM data							
Vame				Comp	oleted			
Fictitiou	s installation			No		Modify		
	of Scenario							_
Remov	ve	Probability	IDM value	Finished	Duplicate	Modify / See	Delete	(
		Probability	IDM value 165,260.47	Finished No	Duplicate	Modify / See	Delete	

Figure AIV.4.1-10. Screen for "Consultation of scenarios included in the IDM report" after having introduced the scenario E.1 "Spillage of substance A from equipment" in the report. Source: SIRMA.

Thus, considering the scenarios of this practical example, the screen of scenarios included in the report is the one shown in the following figure.

Repo	rt IDM data —							
Name				Comp	leted			
Fictiti	ous installation			No		Modify		
Compl		o for the calculation perform the reference		-	[Complete]	
Rem								C
Ref.	Scenario	Probability	IDM value	Finished	Duplicate	Modify / See	Delete	
	E.8	0.00000323	486,682.09	Yes	1	2		
	E.10	0.000775	340,349.57	Yes		Δ		
	E.9	0.0000215	261,260.51	Yes	10	Δ		
	E.3	0.000591	243,645.77	Yes		Δ		
	E.7	0.000311	188,026.63	Yes	10	2		
	E.6	0.00109	186,843.24	Yes	D	Δ		
	E.2	0.0212	182,798.33	Yes	10	Δ		
	E.5	0.00103	170,718.98	Yes	10	Δ		
	E.1	0.0201	165,260.47	Yes	10	2		
	E.4	0.00000102	161,401.22	Yes	10	1		

5. SELECTION OF THE REFERENCE ACCIDENT SCENARIO

Once the IDM has been estimated for each of the ten scenarios proposed for this example, estimated, the reference scenario would be selected. How the reference scenario should be selected to determine the amount of the financial security is as set out in the wording of article 33 of the Regulation for Partial Development of Law 26/2007, of October 23.

To do this, and once the user has entered and completed all their relevant scenarios in the IDM module, will press "complete" the report and the "confirm" button that appears next. When confirming the completion of the report, the screen "Consultation of scenarios included in the IDM report" shows the report as completed and provides by default the reference accident scenario selected for the calculation of the financial security. This scenario appears with a green mark in the column "Ref." from the list of scenarios.

The reference accident scenario in this practical exercise is scenario E.3 as indicated by the IDM module in the next screen. The scenario refers to the discharge of substance C generated by the spillage of that substance from a tank located in zone 1. The accident scenario to be assessed could cause damage to the soil and groundwater.

Back							
Repo	rt IDM data —						
Name				Co	mpleted		
Fictiti	ous installation			Ye	S	Modify	
Refer	ence scenario	o for the calculation	on of the financi	al guarant	ee		
The re	ference scenari	o is E.3				Export to Excel	Export to Pdf
Ref.	Scenario	Probability	IDM value	Finished	Duplicate	Modify / See	Delete
	E.8	0.00000323	486,682.09	Yes		2	6
	E.10	0.000775	340,349.57	Yes		1	6
	E.9	0.0000215	261,260.51	Yes			6
*	E.3	0.000591	243,645.77	Yes		1	ę
	E.7	0.000311	188,026.63	Yes			6
	E.6	0.00109	186,843.24	Yes		1	e
	E.2	0.0212	182,798.33	Yes		2	6
	E.5	0.00103	170,718.98	Yes		Δ	6
	E.1	0.0201	165,260.47	Yes		2	6
	E.4	0.00000102	161,401,22	Yes			8

Figure AIV.5-1. Screen for "Consultation of scenarios included in the IDM report" after the report has been completed and the accidental reference scenario selected. Source: SIRMA.

In addition, the IDM module offers the option of "Export to Excel" and "Export to Pdf" which contents are provided bellow:

- The Excel File is made up of two results sheets that provide the main results of the IDM module: specifically, a graph and a table. Note that the results sheets obtained can be managed and modified by the user as they consider most appropriate to their specific needs and circumstances. The results obtained in this practical example are the following:

Figure AIV.5-2. IDM-Probability graph of the fictitious installation from the Excel file. Source: SIRMA.

			IDM REPORT					
			Fictitious installation					
			REFERENCE SCENARIO					
	E.3							
		REFERENC	E SCENARIO SELECTION PROCES	SS				
Accident scenario	Probability	IDM	Risk	Relative risk (%)	Accumulated relative risk (%)			
E.8	3,23E-06	486.682,09	1,5719831507000000000	0,02	100,00			
E.10	7,75E-04	340.349,57	263,77091675000000000000	3,28	99,98			
E.9	2,15E-05	261.260,51	5,61710096500000000000	0,07	96,70			
E.3	5,91E-04	243.645,77	143,99465007000000000000	1,79	96,63			
E.7	3,11E-04	188.026,63	58,47628193000000000000	0,73	94,85			
E.6	1,09E-03	186.843,24	203,65913160000000000000	2,53	94,12			
E.2	2,12E-02	182.798,33	3.875,324596000000000000000	48,14	91,59			
E.5	1,03E-03	170.718,98	175,84054940000000000000	2,18	43,45			
E.1	2,01E-02	165.260,47	3.321,735447000000000000000	41,26	41,27			
E.4	1,02E-06	161.401,22	0,16462924440000000000	0,00	0,00			

Figure AIV.5-3. Data for the selection of the accident reference scenario from the Excel file of the fictitious installation. Source: SIRMA.

- The Pdf File captures the table obtained in the Excel file in a protected format, so unlike the previous one, it cannot be modified.

≟ ₩₩ৣৣৣৣৣৣ∰ Ă Ă EL RETO D	ANSICIÓN ECOLÓGICA Y R DEMOGRÁFICO Mei	misión Técnica de Preparación de Daños dioambientales				
DETERMINATIO	ON OF THE REFEREN		ROMENTAL LIABILITY		LOUARANTELTOP	
			IDM REPORT			
			Fictitious installation			
		RE	FERENCE SCENARIO			
E.3						
		REFERENCE S	CENARIO SELECTION PRO	OCESS		
Accidental scenario	Probability	IDM	Risk	Relative risk (%)	Accumulated relative ris (%)	
E.8	0.000003230000000000000	486,682.09	1.57198315070000000000	0.02	1	
E.10	0.000775000000000000000	340,349.57	263.77091675000000000000	3.28		
E.9	0.000021500000000000000	261,260.51	5.61710096500000000000	0.07	!	
E.3	0.00059100000000000000	243,645.77	143.99465007000000000000	1.79		
E.7	0.000311000000000000000	188,026.63	58.47628193000000000000	0.73	9	
E.6	0.001090000000000000000	186,843.24	203.659131600000000000000	2.53		
E.2	0.021200000000000000000	182,798.33	3,875.3245960000000000000	48.14	9	
E.5	0.001030000000000000000	170,718.98	175.840549400000000000000	2.18		
E.1	0.020100000000000000000	165,260.47	3,321.7354470000000000000	41.26		
E.4	0.000001020000000000000	161,401,22	0.16462924440000000000	0.00		

6. QUANTIFICATION AND MONETIZATION OF THE REFERENCE SCENARIO

Once the reference scenario for determining the amount of the financial security of the facility under analysis has been selected, it is necessary to quantify and monetize this scenario later.

The natural resources likely to be damaged in the accident reference scenario (E.3) would be soil and groundwater. Specifically, 350 m³ of substance C would be discharged, affecting these natural resources.

Since the purpose of this practical exercise is not to explain how the reference scenario should be quantified, only the results assumed for the damage quantification process are provided below.

6.1. EXTENT OF DAMAGE

As indicated, it is assumed that the only natural resources potentially affected by environmental damage would be soil and groundwater. Applying a contaminant dispersion model, it is obtained

that the damage would affect 808,31 m³ of soil (applying its density value they are equivalent to 1.333,72 t) and 27.191,78 m³ of groundwater.

6.2. INTENSITY OF DAMAGE

According to the precautionary principle, it is assumed that the damage would have a lethal intensity that would involve the complete loss of the populations reached by the agent causing the damage.

6.3. TEMPORAL SCALE

The temporal scale of damage is evaluated in terms of duration, frequency, and reversibility.

The duration of the damage is estimated by carrying out the MORA assessment report since one of the results of the same is, precisely, the time that it is estimated that it would be necessary to recover the baseline condition of the natural resources. As set out in the following paragraphs, the duration is estimated at:

- 6 months of waiting time and 9 months of recovery time for the soil, which implies a total duration of damage to the soil of 15 months.
- 6 months of waiting time and 18 months of recovery time for groundwater, which implies a total duration of damage to groundwater of 24 months.

Therefore, the duration of the damage caused by the accident reference scenario would be 24 months if both repairs can be carried out at the same time, and at least 39 months if the works must be carried out sequentially.

The estimated frequency for the reference scenario coincides with the probability assigned to it, being 5,91 10⁻⁴.

Finally, considering the characteristics of the accident scenario, it is assumed that the damage is reversible and that, therefore, the natural resources affected could return to their baseline condition within a reasonable period.

7. ECONOMIC VALUATION OF THE REFERENCE SCENARIO (MORA) 7.1. DATA COLLECTION FOR ECONOMIC VALUATION

The following table collects the data of interest for economic assessment of environmental damage using the MORA module. It is assumed that such data must either be collected in the environmental risk analysis of the operator or be consulted in the cartographic viewer of the MORA application.

Parametre	Value	Unit	Source
Type of agent	Biodegradable Non halogenated VOC	-	ARM
Coordinates	-	-	ARM
Amount of damaged soil	1,334	t	ARM
Amount of damaged groundwater	27,192	m ³	ARM
Accesibility	Yes	-	ARM /MORA viewer
Distance to the nearest road	0	m	ARM /MORA viewer
Slope	Very low	-	ARM /MORA viewer
Permeability	Medium	-	ARM /MORA viewer
Protected area	No	-	ARM /MORA viewer

ARM: Environmental risk analysis of the operator

MORA viewer: cartographic viewer of the MORA module

 Table AIV. 7.1-1. Data collection for the use of the MORA module. Source: Prepared by the

authors.

- The type of agent selected is a biodegradable non-halogenated VOC consistent with the treatment given to "Substance C" in the IDM module.
- Regarding the location of the damage, some random coordinates have been entered in the MORA cartographic viewer that respond to the characteristics of the environment that are being assumed. Such coordinates are not shown in the document as they are of no interest as they are a fictitious case.
- The amount of damaged natural resources has been rounded up, thus being 1,334 t of soil and 27,192 m³ of groundwater.
- The area is considered accessible with an adjacent road and a very low slope, a medium permeability and without any specific protection figure.

7.2. ACCESS TO THE MORA APPLICATION

The MORA report can be started by pressing on the "create a new report" button within the MORA section of the navigation menu of the tool.

ARM Reports	
Create a New Report	
Recording Reports	
Bibliography	
IDM Reports	
Create a New Report	
Recording Reports	
MORA Reports	
Create a New Report	
Recording Reports	
My Profile	
Personal Data	
Change Password	

Figure AIV. 7.2-1. Access to the MORA module. Source: SIRMA.

7.3. GENERAL DATA

Once the user clicks on the "Create a new report" button they access the general data screen where they must fill in the name of the report, the name or company name of the operator, the type of company and its CNAE code.

Report data		
Name		
Fictitious installation		
Date of performance	User	
03/30/2021		
Name/Company Nar	e	
Name/Company Nar	e	
Name/Company Nar		~
		~
Company type		~

Figure AIV. 7.3-1. General data of the report. Source: SIRMA.

When such data has been completed, the "Next" button will be pressed to proceed with the location of the environmental damage.

7.4. LOCATION OF THE DAMAGE

In the damage location screen, the user can either directly enter the coordinates of the affected site or select the point on the MORA cartographic viewer by pressing on the "browse" button. As indicated, this document does not specify these data since the practical example has been directed to an hypothetical facility.

Location data	
Q Browse	
X coordinate	
Y coordinate	
Reference System (SRS)	
UTM-ETRS 1989-30N	
Territory data	
Autonomous Community	
Province	
Province	
Province Municipality	

Figure AIV. 7.4-1. Location of the damage. Source: SIRMA.

From the location entered by the user, the MORA application loads the territory parameters predefined by its digital maps.

Parameter data		
Accessibility		
Yes	\sim	
Road distance (m)		
	0	
Slope range		
Very low	\sim	
Permeability		
Medium	\sim	
Protected Area		
No	\sim	
No	~	

Figure AIV. 7.4-2. Damage location parameters. Source: SIRMA.

In the present practical case, all the default values have been maintained, except for the distance to the closest communication route, which has been set to zero, considering that the area affected by the damage has an adjacent road.

7.5. AGENTS SELECTION

A biodegradable non-halogenated VOC is marked as the damaging agent on the damaging agents screen.

ents	
Physical	
Extraction/Disappearance	
Inert waste discharge	
Temperature	
Fire	
Biological	
GMO GMO	
Invasive alien species	
Virus and bacteria	
Fungi and insects	
Chemical	
Biodegradable chemicals Image: Description of the second	
Biodegradable halogenated VOCs	
 Diddegradable halogenated VOCs Non-halogenated biodegradable VOCs 	
Biodegradable halogenated SVOCs	
Non-halogenated biodegradable SVOCs	
Biodegradable explosives	
 Biodegradable inorganic substances 	
Non-biodegradable chemicals	
Fuels and non-biodegradable NVOCs	
Non-biodegradable halogenated VOCs	
Non-biodegradable non-halogenated VOCs	
Non-biodegradable halogenated SVOCs	
Non-biodegradable non-halogenated SVOCs	
Non-biodegradable explosives	
Non-biodegradable inorganic substances	

Figure AIV. 7.5-1. Selection of the damaging agents. Source: SIRMA.

Clicking on the "Next" button it accesses to the natural resources screen.

7.6. NATURAL RESOURCES AFFECTED BY THE AGENT

The user would select as damaged resources the soil and groundwater.

Resources	Navigation
	🔊 Genera
Shore of the sea and stuaries	Sa Locatio
Water	0 Parame
Continental surface water	Agents
Sea water	bio
Groundwater	
Habitat	
Species	
Endangered species	
Accipiter nisus (Harm)	
Accipiter nisus (Death)	
Circus pygargus (Harm)	
Circus pygargus (Death)	
Falco naumanni (Harm)	
E Falco naumanni (Death)	
Otis tarda (Harm)	

By clicking on the "Next" button it starts the specific assessment process of valuation of each combination damaging agent-damaged natural resource.

7.7. COMBINATION AGENT-RESOURCE: DAMAGE DATA

Since the practical example presents two agent-resource combinations (damage by VOC to soil and damage by VOC to groundwater), the reference scenario is made up of these two combinations; that is why the MORA application will request each of these two combinations separately.

The following sections show only, as an illustration, the screens and the process followed for the first combination (biodegradable non-halogenated VOC damage to the soil) since the process for the other combination is similar.

The first screen of each combination refers to the amount of resource that would be affected by the damage and the reversibility of the damage. In the following screens it will proceed to the economic valuation of the environmental damage.

Damage data	Navigation report MORA
Quantity damage (t)	🔊 General data
1334	Sa Location
Reversibility data	Parameters
	G Agents
Reversible ONOn-reversible	biodegradable VOCs
	Gi Soil
	Groundwater
Go sel. Resources	

Figure AIV. 7.7-1. Request for damage data. Source: SIRMA.

7.8. ECONOMIC VALUATION OF THE ENVIRONMENTAL DAMAGE

The reference scenario in the practical example has been considered as reversible so the MORA application proceeds to calculate the primary remediation and the compensatory remediation. It is recalled that if the damage had been described as irreversible the module would only proceed to the valuation of the complementary remediation.

a) Agent-resource combination: Primary remediation technique

MORA recommends a single technique for repairing each agent-resource combination. In this case, the selected technique for the primary remediation is biopiles. However, those operators who wish to modify this selection given by default can do so by selecting one of the techniques listed in the "Recommended Techniques" or "Available Techniques" catalog. Alternatively, the operator could enter its own repair technique in the "Own technique" section.

Recommended techniques	Navigation report MORA
Biopiles	Seneral data
-	Location
○ Available techniques	
Soil replacement	With the second se
Own technique	Gil
	😭 Primary remediati
Technique name	Groundwater
Remarks	
Previous	Next *

Figure AIV. 7.8-1. Screen for the selection of the primary remediation technique. Source: SIRMA.

b) Agent-resource combination: Data of the primary remediation

The next screen shows the cost and recovery time data for the primary remediation.

If the analyst has opted for an own repair technique, they must fill in this screen with the appropriate cost information.

Remediation expenses	Navigation report MORA
Coste _R = Coste _f + (Coste _u * Q) + (p * Q ^q)	S General data Location
Fixed cost outsourcing (Coster)	G Agents
0.00	in Non-halogenated biodegradable VOCs
Unit cost outsourcing (Coste _u)	Soil
135.49	Circle Primary remediation
Multiplier (p)	😭 Data
0.00	Groundwater
Exponent (q)	
0.00	
Remediation data	
Time unit	
Months ~	
Waiting time	
6	
Recovery time	
9	
Efficiency type	
Proven	

Figure AIV. 7.8-2. Screen of primary remediation data. Source: SIRMA.

c) Agent-resource combination: Budget for the primary remediation

With the initial data above, the application builds the budget for the primary remediation so that the valuation of this measure is completed.

Breakdown			Navigation report MORA
Concept	%	Amount (€)	 General data Location
Estimated Costs of Implementation Remediation technique		180,743.66	Parameters Agents
% Contingency Security	20.00	36,148.73	Non-halogenated biodegradable VOCs
% VAT	21.00	45,547.40	Soil
Total Remediation Technique		262,439.79	🗞 Data 😭 Budget
Contracted Operation Budget Consultancy		6,452.82	Groundwater
% Contingency Security	20.00	1,290.56	
% VAT	21.00	1,626.11	
Total Consultancy		9,369.49	
Estimated Costs of Implementation Revision and Control		1,868.00	
% Contingency Security	20.00	373.60	
% VAT	21.00	470.74	
Total Revision and Control		2,712.34	
Total Remediation		274,521.62	

Figure AIV. 7.8-3. Budget for the primary remediation. Source: SIRMA.

d) Agent-resource combination: Compensatory remediation technique

The procedure for the valuation of the compensatory remedial measure is like that performed for the assessment of the primary remedial measure. In this way, it starts from the identification of the technique to be applied.

Recommended techniques	Navigation report MORA
Biopiles	🤍 🔊 General data
	Location
O Available techniques	Operation of the second s
Landfarming	Non-halogenated
O Own technique	Gil
	Primary remediation
Technique name	Data
	Sa Budget
Remarks	Compensatory remediation
	Groundwater
	😭 Groundwater

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO

Figure AIV. 7.8-4. Screen for the selection of the compensatory remediation technique. Source:

SIRMA.

e) Agent-resource combination: Data of the compensatory remediation

The next screen shows the cost and recovery time data, in this case, for the compensatory remediation.

Remediation expenses	Navigation report MORA
$Coste_R = Coste_f + (Coste_u * Q) + (p * Q^q)$	Si General data Si Location
Fixed cost outsourcing (Coste _f)	Parameters Agents
0.00	Cin Non-halogenated
Unit cost outsourcing (Coste _u)	biodegradable VOCs
135.49	Soli Primary remediation
Multiplier (p)	🔊 Data
0.00	🔊 Budget
Exponent (q)	Compensatory remediation
0.00	😭 Data
Remediation data	Groundwater
Time unit	
Months ~	
Waiting time	
6	
Recovery time	
9	
Annual discount rate (%)	
3.00	
Efficiency type	
Proven	

Figure AIV. 7.8-5. Screen of compensatory remediation data. Source: SIRMA.

f) Agent-resource combination: Compensatory remediation diagram

The following screen represents a difference with respect to the design procedure of the primary remediation since it shows the chart of the Resource Equivalency Analysis (REA) that is carried out to know the additional resource units that should be repaired in compensatory measure concept. In other words, the REA result is always expressed in units of affected natural resources (environmental debit) and generated by remediation (environmental credit). Subsequently, these units are object of economic valuation using the methodology and data collected in MORA.

Figure AIV. 7.8-6. REA chart of the compensatory remediation. Source: SIRMA.

In the case used in this practical example in the REA, a result of 34.92 would be obtained. That is, an additional 34.92 t of soil should be repaired to compensate society for the time elapsed from when the damage occurred until it is repaired.

g) Agent-resource combination: Budget for the compensatory remediation

Once the units to be repaired are known, they are monetized, constructing the budget for the compensatory remediation.

reakdown			Navigation report MORA
Concept	%	Amount (€)	Si General data
Estimated Costs of Implementation Remediation technique		4,731.31	Parameters Agents
% Contingency Security	20.00	946.26	Non-halogenated biodegradable VOCs
% VAT	21.00	1,192.29	Soli Primary remediation
Total Remediation Technique		6,869.86	🐼 Data 🔊 Budget
Contracted Operation Budget Consultancy		6,452.82	Compensatory remediation
% Contingency Security	20.00	1,290.56	🔊 Data 🔊 Diagram
% VAT	21.00	1,626.11	Groundwater
Total Consultancy		9,369.49	Groundwater
Estimated Costs of Implementation Revision and Control		1,868.00	
% Contingency Security	20.00	373.60	
% VAT	21.00	470.74	
Total Revision and Control		2,712.34	
Total Remediation		18,951.69	
Export			

Figure AIV. 7.8-7. Budget for the compensatory remediation. Source: SIRMA.

h) Agent-resource combination: Total breakdown of damage

Once the valuation of the remedial measures (primary and compensatory, in this case) has been concluded, the application returns a summary table with the total cost of damage associated with the agent-resource combination that has been entered.

Breakdown	Navigation report MORA	
Concept	Amount (€)	General data Location
Total Primary Remediation	274,521.62	0 Parameters
Total Compensatory Remediation	18,951.69	Agents
Total Damage Remediation	293,473.31	Ci Soil
Export		Primary remediation So Data So Budget
DRA is a voluntary tool that provides the monetization October on Environmental Liability (Ley 26/20 adioambiental). MORA results are non-binding.		Compensatory remediation
Previous	Next 🕶	🐼 Diagram 🐼 Budget 🏹 Budget
		Groundwater

As indicated, in MORA it would be necessary to repeat the previous procedure as many times as agent-resource combinations have been entered in the tool. However, in order to avoid this repetition, this document does not include the screens regarding the damage caused by biodegradable halogenated VOCs to groundwater.

7.9. ACCESS COST BUDGET

The last costs considered before calculating the total cost of the environmental damage is the cost of access to the affected site. In this case since it is assumed the existence of a pre-existing communication route is assumed, these costs are zero.

Breakdown			Navigation report MORA
Concept	%	Amount (€)	General data A Location
Total Road Construction		0.00	Parameters Agents
% Contingency Security	20.00	0.00	Non-halogenated biodegradable VOCs
% VAT	21.00	0.00	Soil Soil Primary remediation
Total Road Execution		0.00	🔊 Data
Contracted Operation Budget Consultancy		0.00	Some Budget Compensatory remediation
% Contingency Security	20.00	0.00	🔊 Data
% VAT	21.00	0.00	🗞 Diagram 🗞 Budget
Total Consultancy		0.00	S Budget
Total Road Construction		0.00	S Groundwater Primary remediation Data Budget
Export RA is a voluntary tool that provides the monetization of e	nvironmental d	amages under Law 26/2007 o	Compensatory remediation
October on Environmental Liability (Ley 26/2007, dioambiental). MORA results are non-binding.			I 🔗 Data 🗞 Diagram
Previous		Next =	🗞 Budget 🔊 Budget Construction Budget

7.10. AMOUNT OF FINANCIAL SECURITY

In this screen the tool calculates the amount of financial security for environmental liability. It includes, on the one hand, the possibility of marking the availability of ISO or EMAS certification - in which case, it would modify the mandatory range of the financial security amount - and, on the other hand, the possibility of modifying the percentage of prevention and avoidance costs. By default, the tool offers 10% for prevention and avoidance, but the user can increase this amount if necessary. In this example, the activity is not ISO or EMAS certified and prevention and avoidance costs are estimated at 10%. As a result, the amount of the financial security for the activity is \in 846,147.39.

Figure AIV. 7.10-1. Financial security budget table. Source: SIRMA.

7.11. FINAL REPORT

Once this procedure is concluded, the user has the possibility of finalizing their report in such a way that its content is blocked and, in this way, protected against editing. The output products offered by MORA are:

- The report in PDF format in which all the data entered are included.
- A summary table with the costs of the repairs.

Agent-resource combinations of the accidental scenario	Action type	Amount (€)
	Primary remediation	274,521.62
Non-halogenated biodegradable VOCs-Soil	Compensatory remediation	18,951.69
Non-halogenated biodegradable VOCS-Soli	Complementary remediation	0.00
	Subtotal	293,473.31
Non-halogenated biodegradable VOCs-Groundwater	Primary remediation	231,885.46
	Compensatory remediation	231,635.43
	Complementary remediation	0.00
	Subtotal	463,520.89
Road Construction Budget		0.00
Primary remediation total (including road construction)		506,407.08
Compensatory remediation total (without including road construction)		250,587.12
Complementary remediation total (without including road construction)		0.00
Remediation total		756,994.20

Figure AIV. 7.11-1. Summary table of the cost of the repairs. Source: SIRMA.

8. DETERMINATION OF THE FINANCIAL SECURITY

As described in section 7.10. Amount of financial security, MORA offers the possibility of calculating the amount of financial security for environmental liability. It includes the amount of the primary remediation and the cost of prevention and avoidance of damage as described in article 33 of the Regulation for Partial Development of Law 26/2007, of October 23, which indicates that in order to include prevention and avoidance costs, the operator may:

- a) Apply a percentage on the total amount of the mandatory financial security.
- b) Estimate such prevention and avoidance costs through the environmental risk analysis.

In any case, the amount of the costs of prevention and avoidance of damage will be, at least, ten percent of the total amount of the financial security.

In this practical example, the financial security is calculated in an illustrative way based on the total amount of the primary remediation and increasing this amount by 10%. In this way, the operator would obtain a value of \in 557,047.79.

Concept	Amount (€)
Primary remediation total (including road construction)	506,407.08
Prevention and avoidance of further damage	50,640.71
Amount of the financial security	557,047.79

Table AIV. 8-1. Calculation of the financial security for environmental liability. Source: Prepared by the authors.

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO SECRETARY OF STATE FOR THE ENVIRONMENT

DIRECTORATE GENERAL FOR ENVIRONMENTAL QUALITY AND ASSESSMENT

TECHNICAL COMMISSION OF PREVENTION AND REMEDIATION OF ENVIRONMENTAL DAMAGES