COMBUSTIÓN INESPECÍFICA EN LA RED DE TRANSPORTE DE COMBUSTIBLES POR TUBERÍA (COMPRESORES)

ACTIVIDADES CUBIERTAS SEGÚN NOMENCLATURA							
NOMENCLATURA CÓDIGO							
SNAP 97	01.05.06						
CRF	1A3ei						
NFR	1A3ei						

Descripción de los procesos generadores de emisiones

En la presente ficha se recogen las emisiones originadas en los procesos de combustión relacionados con el transporte por tubería de combustibles líquidos (productos petrolíferos) y gaseosos (gas natural).

Se corresponde con la actividad del conjunto de compresores empleados para el transporte por tubería, que incluye las emisiones de los equipos —motores/compresores— que dan servicio tanto a la red de oleoductos (estaciones de bombeo) como a la red de gasoductos de alta presión (estaciones de compresión).

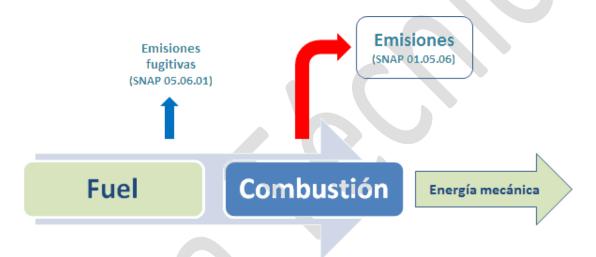


Figura 1. Diagrama de proceso en pequeñas instalaciones de combustión (adaptado de Libro Guía EMEP/EEA 2019)

Contaminantes inventariados

Gases de efecto invernadero

CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆			
✓		✓	NA	NA	NA			
OBSERVACIONES:								
Notation Keys correspondientes al último reporte a UNFCCC.								

Contaminantes atmosféricos

Con	taminantes	princip	ales	Mater	rial par	ticula	do	Otros	Metales pesados prioritarios		Metales pesados adicionales			Contaminantes orgánicos persistentes							
NO _X	NMVOC	SO _X	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	DIOX	PAHs	нсв	PCBs
✓	✓	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

OBSERVACIONES:

• Notation Keys correspondientes al último reporte a CLRTAP.

Sectores del Inventario vinculados

Las actividades del Inventario relacionadas con la presente ficha metodológica son las siguientes:

RELACIÓN CON OTRAS FICHAS METODOLÓGICAS								
ACTIVIDAD SNAP ACTIVIDAD CRF ACTIVIDAD NFR			DESCRIPCIÓN					
05.06.01	1B2b4 / 1B2bc1ii	1B2b / 1B2c	Emisiones fugitivas de las redes de transporte y distribución de gas natural					

Descripción metodológica general

Contaminante	Tier	Fuente		Descripción
CO ₂	T1	Guía IPCC 2006. Vol. 2, Cap. 2.	- -	Balance estequiométrico, en el caso del gas natural. Aplicación de FE por defecto, para el gasóleo.
CH₄	T1	Guía IPCC 2006. Vol. 2, Cap. 2.	-	Basada en la aplicación de FE por defecto.
N ₂ O	T1	Guía IPCC 2006. Vol. 2, Cap. 2.	-	Basada en la aplicación de FE por defecto.
NO _X	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
NMVOC	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
SO _x	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
PM _{2,5} , PM ₁₀ , TSP	T1	Base de datos CEPMEIP (2000). Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
BC	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
СО	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
Metales Pesados	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
DIOX	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
PAHs	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
НСВ	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.
PCBs	T1	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.3.e.i.	-	Basada en la aplicación de FE por defecto.

Una descripción de las metodologías de estimación de las emisiones por combustión se encuentra en la Ficha Introductoria C.

Variable de actividad

Variable	Descripción
Red de gasoductos	
Consumo de combustibles	Se consume gas natural en los compresores (turbinas de gas) de la red de gasoductos de alta presión (con una extensión de más de 11.000 km); también se emplea gasóleo, de forma secundaria, en motores estacionarios.
Red de oleoductos	
Consumo de combustibles	Se consume gasóleo en las estaciones de bombeo (motobombas) de los oleoductos (red de más de 4.000 km de tuberías subterráneas).

Fuentes de información sobre la variable de actividad

Periodo	Fuente						
Consumo de combustibles (red de gasoductos)							
1990-2004	Publicación «Los Transportes y los Servicios Postales» ⁽¹⁾ del Ministerio de Fomento: consumo de gas natural en la red de gasoductos en alta presión.						
2005-2021	Cuestionarios individualizados (IQ) remitidos a las estaciones de compresión de gas natural (todas pertenecientes a la compañía ENAGÁS): consumos de gas natural y gasóleo y características del gas natural.						
Consumo d	e combustibles (red de oleoductos)						
1990-2007	Publicación «Los Transportes y los Servicios Postales» ⁽¹⁾ del Ministerio de Fomento: consumo de gasóleo para el transporte por tubería de productos refinados.						
2008-2021	Cuestionario sobre consumos en las estaciones de bombeo de la red de oleoductos perteneciente a CLH (Compañía Logística de Hidrocarburos): consumo de gasóleo.						
OBSERVACI	ONES:						
⁽¹⁾ Hasta el a	año 1998 esta publicación se denominaba «Los Transportes y las Comunicaciones».						

Fuente de los factores de emisión

Contaminante	Periodo	Tipo	Fuente		Descripción
CO ₂	1990-2021	D/CS	Guía IPCC 2006. Vol. 2, Cap. 2, Tabla 2.2.		Algoritmo de cálculo de FE nacionales (gas natural). FE generales por defecto (gasóleo).
CH₄	1990-2021	D	Guía IPCC 2006. Vol. 2, Cap. 2, Tabla 2.2.		FE generales por defecto.
N ₂ O	1990-2021	D	Guía IPCC 2006. Vol. 2, Cap. 2, Tabla 2.2.	-	FE generales por defecto.
NO _X	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.		FE generales por defecto.
NMVOC	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.		FE generales por defecto.
SO_X	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.		FE generales por defecto.
PM _{2,5} , PM ₁₀ , TSP ⁽¹⁾	2000-2021	D	Base de datos CEPMEIP (2000).		FE generales por defecto.
BC ⁽¹⁾	2000-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.		FE generales por defecto.
СО	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.	-	FE generales por defecto.
Metales Pesados	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.	-	FE generales por defecto.
DIOX	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.	-	FE generales por defecto.
PAHs	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.		FE generales por defecto.
НСВ	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.	-	FE generales por defecto.
PCBs	1990-2021	D	Libro Guía EMEP/EEA (2019). Parte B, Cap. 1.A.4, Tablas 3-28 y 3-31.	-	FE generales por defecto.

OBSERVACIONES: D: por defecto (del inglés *Default*); CS: específico del país (del inglés *Country Specific*); OTH: otros (del inglés *Other*); M: modelo (del inglés *Model*).

Incertidumbres

Las incertidumbres de los Gases de efecto invernadero en esta actividad, se calculan a nivel de CRF 1A3e. Se recogen en la siguiente tabla.

Contaminante	Combustible	Inc. VA (%)	Inc. FE (%)	Descripción			
CO ₂	Todos	100	4	Variable de actividad: el valor se calcula según la guía IPCC 2006.			
CH ₄	Todos	100	200	<u>Factor de emisión</u> : se calcula con las incertidumbres propuestas en la Guía			
N ₂ O	Todos	100	200	IPCC 2006.			

Las incertidumbres de los Contaminantes atmosféricos están calculadas a nivel de NFR 1A3ei. Se muestran a continuación.

Contaminant e	Combustible	Inc. VA (%)	Inc. FE (%)	Descripción
NO _X	-	-	-	
NMVOC	-	-	-	No estimada. El Inventario contempla en su estimación de incertidumbre
SO _X	-	-	-	total aquellos sectores que más emiten hasta completar el 97 % de las
PM _{2.5}	-	-	-	emisiones totales, quedando esta actividad y contaminante fuera del cómputo. Para más información, consultar la metodología para el cálculo de
PM ₁₀	-	-	-	incertidumbres del reporte a CLRTAP.
TSP	-	-	-	

⁽¹⁾ Para el material particulado y el BC, el periodo inventariado comienza en el año 2000, de conformidad con lo requerido por el Convenio de Ginebra de Contaminación Transfronteriza a Larga Distancia (CLRTAP) y su programa EMEP asociado.

Contaminant e	Combustible	Inc. VA (%)	Inc. FE (%)	Descripción				
ВС	-	-	-					
СО	-	-	-					
Metales Pesados	-	-	-	Para estos contaminantes no se realiza análisis de incertidumbre. Para r				
DIOX	-	-	-	información, consultar la metodología para el cálculo de incertidumbres del reporte a CLRTAP.				
PAHs	-	-	-	reporte d CERTAIN				
НСВ	-	-	-					
PCBs	-	-	-					

Coherencia temporal de la serie

Esta actividad se encuentra bien controlada debido a lo reducido de su tamaño. La continuidad de la serie queda garantizada porque los proveedores de la información primaria han sido siempre los principales operadores de las redes de gasoductos y oleoductos en España. En los años en que los datos proceden de la publicación del Ministerio de Fomento, estos fueron igualmente proporcionados a dicha fuente por ENAGÁS y CLH.

Observaciones

Para una descripción de los procesos de combustión generadores de emisiones, ver la Ficha Introductoria A.

Para una descripción de las técnicas de reducción de las emisiones, ver la Ficha Introductoria B.

Criterio para la distribución espacial de las emisiones

La ubicación de las estaciones de compresión de la red de gasoductos de ENAGÁS es conocida, por lo que las emisiones de los diferentes contaminantes son distribuidas provincialmente conforme a los consumos respectivos.

Para realizar el desglose provincial de los consumos en el subsector «Estaciones de bombeo en oleoductos - motores estacionarios», hasta el año 2016 se utiliza la información sobre estaciones de compresión facilitadas por ENAGÁS, tomando como variable subrogada la emisión de las plantas compresoras (venteos). De 2017 en adelante, la distribución provincial de las emisiones de este subsector se hace según la localización de las estaciones de bombeo de la red de oleoductos de CLH.

Juicio de experto asociado

No procede.

Fecha de actualización

Octubre de 2023.

ANEXO I

Datos de la variable de actividad

		Toneladas	
	ESTACIONES DE BOMBEO EN OLEODUCTOS	ESTACIONES DE COMPRESIÓN DE GAS	ESTACIONES DE COMPRESIÓN DE GAS
Año	– MOTORES ESTACIONARIOS	NATURAL – TURBINAS DE GAS	NATURAL – MOTORES ESTACIONARIOS
	Gasóleo	Gas natural	Gasóleo
1990	900	6.000	<u>-</u>
1991	200	8.500	-
1992	900	6.100	-
1993	3.700	6.900	-
1994	3.300	15.900	-
1995	4.000	16.000	-
1996	3.400	42.000	-
1997	4.900	49.700	-
1998	4.200	22.500	-
1999	3.700	25.800	-
2000	2.800	45.600	-
2001	2.500	79.900	-
2002	2.600	94.300	-
2003	2.800	94.900	-
2004	2.200	81.000	-
2005	300	86.635	2
2006	100	46.427	7
2007	100	38.180	9
2008	390	44.834	44
2009	190	44.434	180
2010	229	52.227	13
2011	226	48.920	15
2012	176	44.880	19
2013	290	52.982	12
2014	154	50.027	14
2015	143	39.788	11
2016	183	43.014	10
2017	1.207	47.398	13
2018	1.146	50.991	10
2019	911	47.044	16
2020	524	34.919	12
2021	223	54.307	13

	Miles de gigajulios								
Año	ESTACIONES DE BOMBEO EN OLEODUCTOS - MOTORES ESTACIONARIOS	ESTACIONES DE COMPRESIÓN DE GAS NATURAL – TURBINAS DE GAS	ESTACIONES DE COMPRESIÓN DE GAS NATURAL – MOTORES ESTACIONARIOS						
70	Gasóleo	Gas natural	Gasóleo						
1990	38	296	-						
1991	8	420	-						
1992	38	294	-						
1993	157	336	-						
1994	140	781	-						
1995	170	785	-						
1996	144	2.041	-						
1997	208	2.394	-						
1998	178	1.059	-						
1999	157	1.213	-						
2000	119	2.194	-						
2001	106	3.852	-						
2002	110	4.591	-						
2003	119	4.581	-						
2004	93	3.921	-						
2005	13	4.243	0,1						
2006	4	2.259	0,3						
2007	4	1.851	0,4						
2008	17	2.152	1,9						
2009	8	2.159	7,6						
2010	10	2.537	0,6						
2011	10	2.360	0,6						
2012	7	2.167	0,8						
2013	12	2.543	0,5						
2014	7	2.384	0,6						
2015	6	1.913	0,5						
2016	8	2.065	0,4						
2017	51	2.288	0,5						
2018	49	2.458	0,4						
2019	39	2.282	0,7						
2020	22	1.698	0,5						
2021	94	2.623	0,5						

ANEXO II

Datos de factores de emisión

COMBUSTIBLE	SO₂ (g/GJ)	NO _x (g/GJ)	NMVOC (g/GJ)	CH₄ (g/GJ)	CO (g/GJ)	CO₂ (kg/GJ)	N₂O (g/GJ)
Gasóleo	141,5 129,7 94,3 48	942	50	3	130	74,1	0,6
Gas natural	0,5	48	1,6	1	4,8	56,18*	0,1

Fuentes: Libro Guía EMEP/EEA (2019). Parte B, cap. 1.A.4, tablas 3-28 y 3-31.

Guía IPCC 2006. vol. 2, cap. 2, tabla 2.2.

Gasóleo: SO2: 1990-1993: 141,5 g/GJ (%S = 0,3); 1994: 129,7 g/GJ (%S = 0,275);

1995-2007: 94,3 g/GJ (%S = 0,2); 2008 y siguientes: 48 g/GJ (%S = 0,1).

^{*} FE específico nacional para 2021, calculado a partir del contenido de C, densidad y PCI anuales.

COMBUSTIBLE	As (mg/GJ)	Cd (mg/GJ)	Cr (mg/GJ)	Cu (mg/GJ)	Hg (mg/GJ)	Ni (mg/GJ)	Pb (mg/GJ)	Se (mg/GJ)	Zn (mg/GJ)	PM _{2,5} (g/GJ)	PM ₁₀ (g/GJ)	TSP (g/GJ)	BC (%PM _{2,5})
Gasóleo	0,06	0,01	0,2	0,3	0,11	0,01	0,15	0,22	58	5	5	5	78
Gas natural	0,12	0,00025	0,00076	0,000076	0,1	0,00051	0,0015	0,011	0,0015	0,2	0,2	0,2	2,5

Fuente: Metales pesados: Libro Guía EMEP/EEA (2019). Parte B, cap. 1.A.4, tablas 3-28 y 3-31.

Partículas: CEPMEIP (2000), asimilando los FE del sector de «Autoproducción de electricidad y cogeneración», asumiendo un nivel de emisión medio-alto.

Black carbon (BC): Libro Guía EMEP/EEA (2019). Parte B, cap. 1.A.4, tablas 3-28 y 3-31.

COMBUSTIBLE	DIOX (ng/GJ)	PAHs (mg/GJ)	BEN(A)PI (mg/GJ)	BEN(B)FL (mg/GJ)	BEN(K)FL (mg/GJ)	INDENO (mg/GJ)	HCB (mg/GJ)	PCBs (mg/GJ)
Gasóleo	0,99	0,0201	0,0019	0,015	0,0017	0,0015	0,00022	1,30E-07/E
Gas natural	0,5	0,00308	0,00056	0,00084	0,00084	0,00084	-	-

Fuente: Libro Guía EMEP/EEA (2019). Parte B, cap. 1.A.4, tablas 3-28 y 3-31.

ANEXO III

Cálculo de emisiones

Para los procesos de combustión, en general, las emisiones se estiman de acuerdo con los factores de emisión (FE) y las variables de actividad (VA) reseñadas, siguiendo la siguiente fórmula:

$$Emisiones_{(i)} = VA_j \cdot FE_j$$

i = Contaminante

j = Combustible

VA = Consumo de combustible(GJ)

FE = Factor de emisión (t/GJ)

Lo que diferencia el cálculo de los distintos procesos de combustión es, básicamente, el modo de estimar los FE, que suele depender del contaminante y la tecnología empleada para la combustión.

Por otro lado, las emisiones de un determinado contaminante por parte de una instalación dada, serán el resultado de la suma de las emisiones calculadas de ese contaminante para cada combustible quemado en dicha instalación:

$$\mathit{Emisionestotales}_{(i)} = \sum \mathit{Emisiones}_{(i)}$$

Por lo que la expresión para calcular el total emitido de un contaminante dado, por parte de una instalación de combustión, será:

$$Emisionestotales_{(i)} = \sum_{j=1}^{n} VA_j \cdot FE_j$$

ANEXO IV

Emisiones

01.05.06: Compresores

A 77 -	SO ₂	NO _X	NIVIVOC	CH₄	со	CO ₂	N ₂ O
Año	(t)	(t)	(t)	(t)	(t)	(kt)	(t)
1990	5	50	2	0,4	6	19	0,1
1991	1	28	1	0,4	3	24	0,05
1992	5	50	2	0,4	6	19	0,1
1993	22	164	8	1	22	31	0,1
1994	18	169	8	1	22	54	0,2
1995	16	197	10	1	26	57	0,2
1996	14	234	10	2	29	125	0,3
1997	20	311	14	3	39	150	0,4
1998	17	219	11	2	28	73	0,2
1999	15	206	10	2	26	80	0,2
2000	11	217	9	3	26	133	0,3
2001	10	285	11	4	32	226	0,4
2002	10	324	13	5	36	266	0,5
2003	11	332	13	5	37	268	0,5
2004	9	276	11	4	31	228	0,4
2005	1	216	7	4	22	239	0,4
2006	0,4	113	4	2	11	127	0,2
2007	0,4	93	3	2	9	105	0,2
2008	0,9	121	4	2	13	123	0,2
2009	0,8	118	4	2	12	123	0,2
2010	0,5	131	5	3	14	144	0,3
2011	0,5	123	4	2	13	134	0,2
2012	0,4	112	4	2	11	122	0,2
2013	0,6	134	5″	3	14	145	0,3
2014	0,3	121	4	2	12	136	0,2
2015	0,3	98	3	2	10	108	0,2
2016	0,4	107	4	2	11	117	0,2
2017	2,5	159	6	2	18	132	0,3
2018	2,4	164	6	3	18	141	0,3
2019	1,9	147	6	2	16	131	0,3
2020	1,1	103	4	2	11	99	0,2
2021	0,5	135	5	3	14	148	0,3

01.05.06: Compresores - Continuación

Año	As (kg)	Cd (kg)	Cr (kg)	Cu (kg)	Hg (kg)	Ni (kg)	Pb (kg)	Se (kg)	Zn (kg)	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)	BC (t)
1990	0,038	0,0005	0,008	0,011	0,034	0,001	0,006	0,012	2,2	-	-	-	-
1991	0,051	0,0002	0,002	0,003	0,043	0,000	0,002	0,006	0,5	-	-	-	-
1992	0,038	0,0005	0,008	0,011	0,034	0,001	0,006	0,012	2,2	-	-	-	-
1993	0,050	0,0017	0,032	0,047	0,051	0,002	0,024	0,038	9,1	-	-	-	-
1994	0,102	0,0016	0,029	0,042	0,093	0,002	0,022	0,039	8,1	-	-	-	-
1995	0,104	0,0019	0,035	0,051	0,097	0,002	0,027	0,046	9,8	-	-	-	-
1996	0,254	0,0020	0,030	0,043	0,220	0,002	0,025	0,054	8,4	-	-	-	-
1997	0,300	0,0027	0,043	0,063	0,262	0,003	0,035	0,072	12,1	-	-	-	-
1998	0,138	0,0020	0,036	0,054	0,125	0,002	0,028	0,051	10,3	-	-	-	-
1999	0,155	0,0019	0,032	0,047	0,139	0,002	0,025	0,048	9,1	-	-	-	-
2000	0,270	0,0017	0,025	0,036	0,232	0,002	0,021	0,050	6,9	1,0	1,0	1,0	0,47
2001	0,469	0,0020	0,024	0,032	0,397	0,003	0,022	0,066	6,2	1,3	1,3	1,3	0,43
2002	0,558	0,0023	0,026	0,033	0,471	0,003	0,023	0,075	6,4	1,5	1,5	1,5	0,45
2003	0,557	0,0023	0,027	0,036	0,471	0,004	0,025	0,077	6,9	1,5	1,5	1,5	0,49
2004	0,476	0,0019	0,022	0,028	0,402	0,003	0,020	0,064	5,4	1,3	1,3	1,3	0,38
2005	0,510	0,0012	0,006	0,004	0,426	0,002	0,008	0,049	0,7	0,9	0,9	0,9	0,07
2006	0,271	0,0006	0,003	0,002	0,226	0,001	0,004	0,026	0,3	0,5	0,5	0,5	0,03
2007	0,222	0,0005	0,002	0,002	0,186	0,001	0,003	0,021	0,3	0,4	0,4	0,4	0,03
2008	0,259	0,0007	0,005	0,006	0,217	0,001	0,006	0,028	1,1	0,5	0,5	0,5	0,08
2009	0,260	0,0007	0,005	0,005	0,218	0,001	0,006	0,027	0,9	0,5	0,5	0,5	0,07
2010	0,305	0,0007	0,004	0,003	0,255	0,001	0,005	0,030	0,6	0,6	0,6	0,6	0,05
2011	0,284	0,0007	0,004	0,003	0,237	0,001	0,005	0,028	0,6	0,5	0,5	0,5	0,05
2012	0,261	0,0006	0,003	0,003	0,218	0,001	0,004	0,026	0,5	0,5	0,5	0,5	0,04
2013	0,306	0,0008	0,004	0,004	0,256	0,001	0,006	0,031	0,7	0,6	0,6	0,6	0,06
2014	0,287	0,0007	0,003	0,002	0,239	0,001	0,005	0,028	0,4	0,5	0,5	0,5	0,04
2015	0,230	0,0005	0,003	0,002	0,192	0,001	0,004	0,022	0,4	0,4	0,4	0,4	0,04
2016	0,248	0,0006	0,003	0,003	0,207	0,001	0,004	0,025	0,5	0,5	0,5	0,5	0,04
2017	0,278	0,0011	0,012	0,016	0,234	0,002	0,011	0,037	3,0	0,7	0,7	0,7	0,21
2018	0,298	0,0011	0,012	0,015	0,251	0,002	0,011	0,038	2,8	0,7	0,7	0,7	0,20
2019	0,276	0,0010	0,010	0,012	0,233	0,002	0,009	0,034	2,3	0,7	0,7	0,7	0,16
2020	0,205	0,0006	0,006	0,007	0,172	0,001	0,006	0,024	1,3	0,5	0,5	0,5	0,10
2021	0,315	0,0008	0,004	0,003	0,263	0,001	0,005	0,031	0,6	0,6	0,6	0,6	0,05

01.05.06: Compresores - Continuación

Año	DIOX (g)	PAHs (kg)	BEN(A)PI (kg)	BEN(B)FL (kg)	BEN(K)FL (kg)	INDENO (kg)	HCB (kg)	PCBs (kg)
1990	0,0002	0,0017	0,0002	0,0008	0,0003	0,0003	0,000008	0
1991	0,0002	0,0015	0,0003	0,0005	0,0004	0,0004	0,000002	0
1992	0,0002	0,0017	0,0002	0,0008	0,0003	0,0003	0,000008	0
1993	0,0003	0,0042	0,0005	0,0026	0,0005	0,0005	0,000034	0
1994	0,0005	0,0052	0,0007	0,0028	0,0009	0,0009	0,000031	0
1995	0,0006	0,0058	0,0008	0,0032	0,0009	0,0009	0,000037	0
1996	0,0012	0,0092	0,0014	0,0039	0,0020	0,0019	0,000032	0
1997	0,0014	0,0115	0,0017	0,0051	0,0024	0,0023	0,000045	0
1998	0,0007	0,0068	0,0009	0,0036	0,0012	0,0012	0,000040	0
1999	0,0008	0,0069	0,0010	0,0034	0,0013	0,0013	0,000035	0
2000	0,0012	0,0091	0,0015	0,0036	0,0020	0,0020	0,000026	0
2001	0,0020	0,0140	0,0024	0,0048	0,0034	0,0034	0,000024	0
2002	0,0024	0,0164	0,0028	0,0055	0,0040	0,0040	0,000025	0
2003	0,0024	0,0165	0,0028	0,0056	0,0040	0,0040	0,000027	0
2004	0,0021	0,0140	0,0024	0,0047	0,0035	0,0034	0,000020	0
2005	0,0021	0,0133	0,0024	0,0038	0,0036	0,0036	0,000001	1,09668E-11
2006	0,0011	0,0070	0,0013	0,0020	0,0019	0,0019	0	3,9663E-11
2007	0,0009	0,0058	0,0010	0,0016	0,0016	0,0016	0	5,20429E-11
2008	0,0011	0,0070	0,0012	0,0021	0,0018	0,0018	0,000003	2,43477E-10
2009	0,0011	0,0070	0,0012	0,0020	0,0018	0,0018	0,000002	9,93407E-10
2010	0,0013	0,0080	0,0014	0,0023	0,0021	0,0021	0,000001	7,21773E-11
2011	0,0012	0,0075	0,0013	0,0021	0,0020	0,0020	0,000001	8,22627E-11
2012	0,0011	0,0068	0,0012	0,0019	0,0018	0,0018	0,000001	1,0415E-10
2013	0,0013	0,0081	0,0014	0,0023	0,0022	0,0022	0,000001	6,47231E-11
2014	0,0012	0,0075	0,0013	0,0021	0,0020	0,0020	0	7,94833E-11
2015	0,0010	0,0060	0,0011	0,0017	0,0016	0,0016	0,000001	6,06697E-11
2016	0,0010	0,0065	0,0012	0,0019	0,0017	0,0017	0,000001	5,23406E-11
2017	0,0012	0,0081	0,0014	0,0027	0,0020	0,0020	0,000006	7,1097E-11
2018	0,0013	0,0086	0,0015	0,0028	0,0021	0,0021	0,000006	5,71298E-11
2019	0,0012	0,0078	0,0014	0,0025	0,0020	0,0020	0,000006	8,62212E-11
2020	0,0009	0,0057	0,0010	0,0018	0,0015	0,0015	0	6,63312E-11
2021	0,0013	0,0083	0,0015	0,0024	0,0022	0,0022	0	7,11399E-11